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Abstract—This paper studies the problem of determining the
sensor locations in a large sensor network using relative distance
(range) measurements only. Our work follows from a seminal
paper by Khan et al. [1] where a distributed algorithm, known
as DILOC, for sensor localization is given using the barycentric
coordinate. A main limitation of the DILOC algorithm is that all
sensor nodes must be inside the convex hull of the anchor nodes.
In this paper, we consider a general sensor network without the
convex hull assumption, which incurs challenges in determining
the sign pattern of the barycentric coordinate. A criterion is
developed to address this issue based on available distance
measurements. Also, a new distributed algorithm is proposed
to guarantee the asymptotic localization of all localizable sensor
nodes.

I. I NTRODUCTION

Location based service is the fundamental issue in the area
of sensor networks and it requires to solve the localization
problem. The localization problem consists of two parts,
namely, acquiring measurements and transforming them to
coordinate information. In this paper, we consider the situation
of using relative distance measurements only and focus on the
localization procedure.

Existing work on localization can be divided into two
classes [2]: sequential methods and concurrent methods. A
sequential method begins with a set of anchor nodes and
computes the locations of other nodes one by one or group
by group. A prominent example is the so-calledtrilateration
method. Its advantage is that it is easy to implement, but it re-
quires each location-unknown node to have three connections
(edges) with location-known nodes, which is a sufficient but
not necessary condition for localizability.

A concurrent method starts with some initial estimate for
the coordinate of every sensor node. Each node then updates
its coordinate in a distributed or cooperative manner using
the relative distance measurements with its neighbors and the
estimates of the neighbors’ coordinates. The iterative process
terminates when the estimates converge, hopefully to the true
coordinates.

A novel concurrent method called distributed iterative
localization (DILOC) was given byKhan et. al. in [1]
based on the barycentric coordinate representation for sensor

localization. The unique feature of this method is that the
sensor locations can be expressed as a linear system, which
can be solved iteratively due to the desirable eigenvalue
distribution of the linear system. Their method relies on two
key assumptions on the network topology. First, all location-
unknown nodes must be inside theconvex hull of the anchor
nodes. Second, every node, other than the anchor nodes, must
be inside a triangle of three neighboring nodes. The main
reasons of requiring these two assumptions are to avoid the
difficulties in determining the sign patterns of the barycentric
coordinate and to ensure the desired eigenvalue distribution of
the linear system so that the iterative algorithm asymptotically
converges. These two assumptions are kind of restrictive,
especially for a large sensor network when the sensing range
for each node is limited and when the neighbors for each node
cannot be arbitrarily arranged.

In this paper, we follow the work of [1] by generalizing
their method and eliminating the two key assumptions as
mentioned above. The main idea is to employ a general
form of barycentric coordinate representation which allows
the coordinate of each node to be expressed as a linear
function of the coordinates of any three neighbors. A criterion
is developed, according to which the linear function can be
determined using the relative distance measurements alone.
The implication of this result is that all the sensor locations
can be expressed as a linear system, just like in the standard
DILOC case. However, the new linear system may not have
a desired eigenvalue distribution like the standard DILOC
algorithm to work. We then provide a new distributed iterative
algorithm for localization. This is done by applying a diagonal
pre-conditioner to the linear system. A simulation result is
also provided to validate the effectiveness of our proposed
algorithm.

Notations:C denotes the set of complex number.E denotes
the Euclidean space.1n represents then-dimensional vector
of ones andIn denotes the identity matrix of ordern. The
bold font of letter indicates vector and capital letter indicates
matrix.∆ijk denotes a triangle formed by nodei, j andk.
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II. PRELIMINARIES AND PROBLEM FORMULATION

A. Barycentric coordinates

The barycentric coordinate, which was firstly introduced by
August Ferdinand Möbius in 1827 [3], is a geometric notion
characterizing the relative position of one node with respect
to its several neighbor nodes. For one node, sayl with its
Euclidean coordinatepl, and its three neighbor nodes, sayi,
j andk with their Euclidean coordinatespi, pj andpk in the
plane, nodel’s barycentric coordinate with respect toi, j and
k is {ali, alj , alk} satisfying

pl = alipi + aljpj + alkpk. (1)

Especially, whenali+alj+alk = 1, the barycentric coordinate
is called theareal coordinate because it can be expressed as
a ratio of signed areas between specified triangles. As shown
in Fig. 1, the barycentric coordinate{ali, alj , alk} is given by











ali =
S∆ljk

S∆ijk

alj =
S∆lki

S∆ijk

alk =
S∆lij

S∆ijk

(2)

where S∆ljk, S∆lki, S∆lij and S∆ijk are the signed areas
of the corresponding triangles∆ljk, ∆lki, ∆lij and∆ijk.
These areas can be calculated with pairwise internode distance
measurements throughCayley-Menger determinant [4]. For
instance,

S2
∆ljk = −
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(3)

wheredlj , dlk anddjk are the distance measurements among
nodel, j andk, respectively. The sign ofS∆ljk is positive if
nodel is on the left-hand side when one moves from nodej

to k, and negative otherwise.
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Fig. 1. An illustrative example for the barycentric coordinate.

To avoid the case thatS∆ijk = 0, we need an assumption
on the configuration of nodel’s three neighbors as below.

A0: For each node in the network, its three neighbors are not
collinear.

Note that, the computation of the coefficients in terms of
(2), i.e., ali, alj and alk, depends on the signed value of

S∆ljk, S∆lki andS∆lij . If we only know the pairwise distance
measurements, we can compute the square values of these
areas and thus the absolute values ofali, alj andalk. However,
we cannot determine the signs of these areas and thus are not
able to have the barycentric coordinate.

B. Problem formulation

The common used trilateration scheme for computing the
coordinate of nodel is to solve a group of equations like







dli = ‖pl − pi‖
dlj = ‖pl − pj‖
dlk = ‖pl − pk‖.

(4)

Here,pu, u ∈ {i, j, k, l}, is the Euclidean coordinate of node
u and duv, u, v ∈ {i, j, k, l}, is the distance measurement
between nodeu and v. These equations can be solved in
a sequential way if each node has at least three distance
measurements to other nodes that know their coordinates. We
call those sensor nodes, who initially know their coordinates,
the anchor nodes. In contrast, we call the nodes, who do not
know their coordinates initially, the normal sensor node or
just sensor nodes for short. In this paper, a network under
consideration is assumed to contain at least three anchor nodes,
which is a necessity for uniquely localizing the network.

Instead of solving these nonlinear equations in a sequential
way, Khan et. al. provide an iterative algorithm [1], named
DILOC, to compute the coordinates of a networkG based
on the barycentric coordinate presentation.

Given a networkG, containing n nodes, its Euclidean
coordinates can be written in a form like

p = Ap, (5)

wherep ∈ Cn is the aggregated Euclidean coordinate ofG
and the nonzero inputs in thei-th row, i ∈ {1, 2, · · · , n} are
the barycentric coordinate of nodei. For example, if nodel
has three neighborsi, j and k, then thel-th row of A has
nonzero entries in the positions corresponding to thei-th, j-th
and k-th columns. The other entries in thel-th row are all
zeros.

If we consider the first three rows ofp to represent the
positions of the three anchor nodes inG, then in terms of the
natural partition of anchor nodes and normal sensor nodes, we
can partitionA andp as

A =

[

I3 0
B C

]

, p =

[

pa

ps

]

(6)

wherepa and ps correspond to the aggregate positions of
anchor nodes and other normal sensor nodes, respectively.
The nonzero entries of thel-th row can be recognized as the
weights of its three neighbors. So, all diagonal inputs ofC are
zeros. The matrixA is often treated as theadjacency matrix
of the network. Thus, the representation ofps can be written
as

ps = Cps +Bpa (7)



and
(I − C)ps = Bpa. (8)

According to eq. (7), we could obtain an iterative algorithm
to solveps under certain conditions,

zs(t+ 1) = Czs(t) +Bpa(t) (9)

wherezs ∈ C
n−3 represents the estimate of the coordinateps

of the normal sensor nodes inG.
In [1], a sensor network to be localized is assumed to satisfy

the following two assumptions.

A1: All sensor nodes lie inside a convex hull formed by the
anchor nodes.

A2: Each sensor nodel lies inside a convex hull formed by
its three neighbors.

In the 2D case, a convex hull is actually a triangle formed
by three nodes. Thus, assumptionA2 leads to two constraints
of the barycentric coordinate, i.e.,

ali + alj + alk = 1, (10)

0 < ali, alj , alk < 1. (11)

In [1], Khan et. al. proved that the spectral radius ofC is
less than 1 when (10) and (11) hold. Thus, the estimate of
the coordinate in (9) can converge to the true value in the
Euclidean coordinate system.

In this paper, we will relax the assumptionsA1 andA2 and
address a distributed algorithm to compute the locations of
sensor nodes no matter whether they lie inside a convex hull
or not. After relaxing these two assumptions, two problems
need to be addressed. First, how to determine the signs of
the barycentric coordinate when one node lies outside the
convex hull of its neighbors. Second, when the convex hull
assumption is dropped, the matrixC in system (9) might not be
Schur. Then, how to provide a convergent iterative algorithm
to compute the coordinate.

III. S IGN PATTERN DETERMINATION FOR THE

BARYCENTRIC COORDINATE

For u, v ∈ {i, j, k, l}, we useσuv ∈ {1,−1} to indicate the
sign of auv. Suppose nodel is localizable. It is known that
no matter a nodel lies inside the convex hull of its three
neighbors or not, the barycentric coordinate{ali, alj , alk}
obtained from eq. (2) must satisfyali + alj + alk = 1. Thus,
given |ali|, |alj |, |alk|, which can be calculated from (3), the
problem of determining the sign pattern of the barycentric
coordinate is equivalent to solve the following equation

σli|ali|+ σlj |alj |+ σlk|alk| = 1 (12)

whereσli, σlj andσlk take values either1 or −1.
In the following we will discuss whether (12) has a unique

solution. Moreover, ifσli, σlj and σlk can not be uniquely
solved from (12), we then explore other range based conditions
to determine the sign pattern.

The first case that (12) does not have a unique solution is
that one of|ali|, |alj |, |alk| equals to zero. That is, a nodel

lies on the line aligned with one of three edges of the triangle
formed by its three neighbors, according to (2). Without loss
of generality, sayali = 0. For this case,σli can be either1
or −1. But the other two signsσlj andσlk can be determined
according to the following criterion.

{σli, σlj , σlk} =







{σli, 1, 1} if |alj |, |alk| < 1,
{σli, 1,−1} if |alj | > 1, |alj | > |alk|,
{σli,−1, 1} if |alk| > 1, |alk| > |alj |.

(13)
If nodel does not lie on the boundary lines, there are totally

7 possible sign patterns as the pattern{−1,−1,−1} is not
possible due to (12). According to (2) and the definition of the
signed areas, the seven possible sign patterns of{σli, σlj , σlk}
are shown in Fig. 2. In the following lemma, we characterize

c
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{1, 1, 1}

{−1, 1, 1} {−1,−1, 1}

{1,−1, 1}

{1,−1,−1}

{1, 1,−1}

{−1, 1,−1}

Fig. 2. Seven possible sign patterns for{σli, σlj , σlk}.

the second case when the sign pattern can not be uniquely
solved from (12).

Lemma 1: Given |ali| 6= 0, |alj | 6= 0, and |alk| 6= 0,
the solution of (12) does not result in a unique sign pattern
{σli, σlj , σlk} if and only if one of them, sayingali, satisfies
|ali| = 1, and |alj | = |alk|.

Proof: (Sufficiency) If |ali| = 1 and |alj | = |alk|, it
can be inferred from (12) that{σli, σlj , σlk} = {1, 1,−1} or
{σli, σlj , σlk} = {1,−1, 1}. That is, (12) does not result in a
unique sign pattern.

(Necessity) Suppose there are two sign patterns both satis-
fying (12). That is, it holds that

[

|ali| |alj | |alk|
]





v1

v2

v3



 =
[

1 1
]

(14)

wherev1,v2,v3 ∈ {[1 1], [−1 1], [−1 − 1], [1 − 1]}. This
means a positive combination ofv1,v2,v3 equals to[1 1] (see
Fig. 3). Consequently, there must be[1 1] for one ofv1,v2,
and v3. Without loss of generality, we assumev1 = [1 1].
Next, we consider different choice ofv2. If v2 equals to[1, 1]
or [−1,−1], we will havev3 equal to[−1 − 1] or [1 1]. In
this way, two solutions{σli, σlj , σlk} are actually identical. If
v2 equals to[−1 1] or [1 − 1], v3 must equal to[1 − 1] or
[−1 1]. Then according to (12), we know that|ali| = 1 and
|alj | = |alk|.



PSfrag replacements
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Fig. 3. An illustration for the necessity proof.

Next, we present a result on how to determine the sign
pattern using the range based information when it can not be
uniquely solved from (12).

Lemma 2: Given |ali| = 1 and |alj | = |alk| 6= 0, suppose
∠ijk is an acute angle1.

1) σli = −1 if and only if

djl = dik, dkl = dij , andd2il = 2d2ij + 2d2ik − d2jk.

2) If σli = −1, then{σli, σlj , σlk} = {−1, 1, 1}.
3) If σli = 1 and d2jl < d2ij + d2il, then {σli, σlj , σlk} =

{1, 1,−1}.
4) If σli = 1 and d2jl > d2ij + d2il, then {σli, σlj , σlk} =

{1,−1, 1}.
Proof: 1) (Necessity) Ifσli = −1, then we haveali =

−1. Moreover, since|alj | = |alk|, it follows from (12) that
alj = alk = 1. Thus,S∆ljk = −S∆ijk, S∆lij = S∆ijk and
S∆lki = S∆ijk. Comparing the sign pattern with the ones
described in Fig. 2, we know that the only option ofl is at the
location ofl

′′′

in Fig. 4, which forms a parallelogram together
with nodesi, j andk. Hence, we can obtain directly thatdjl =
dik, dkl = dij . Furthermore, according to the parallelogram
law, we have

d2il = 2d2ij + 2d2ik − d2jk. (15)

(Sufficiency) If djl = dik anddkl = dij , we can draw two
circles centered atj andk with radiusdik anddij , respectively.
These two circles will have two intersection points. One of the
two intersection points isl

′′′

and we denote the other byl∗.
From the necessity proof, it is known that when nodel is at
the location ofl

′′′

, it satisfies (15). On the other hand, we will
show that when nodel is at the location ofl∗, it does not
satisfy (15). (To see this, it remains to show thatdil′′′ 6= dil∗ .
Suppose by contradiction thatdil′′′ = dil∗ . Then, recalling the
fact djl′′′ = djl∗ and dkl′′′ = dkl∗ , we have that nodesi, j
and k are on the perpendicular bisector of the line segment
l
′′′

l∗ and so they are colinear, a contradiction to assumption
A0.) Therefore, it can be concluded that due to the condition
d2il = 2d2ij +2d2ik − d2jk, nodel must lie at the location ofl

′′′

.
Thus, according to the sign patterns described in Fig. 2, we
can obtain thatσli = −1.

1If ∠ijk is not acute, then∠ikj must be acute and the conditions in the
lemma can be modified accordingly.
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2) If σli = −1, then{σli, σlj , σlk} = {−1, 1, 1}, which is
shown in the necessity proof of 1).

3) If σli = 1, then we haveali = 1. For this case,S∆ljk =
S∆ijk according to (2). Therefore, nodel must be on the line
that is parallel to the edgejk and crosses nodei. On this line,
there are two nodes, saying nodel

′

andl
′′

as shown in Fig. 4,
whose distances to nodei are equal todil.

For the triangle∆ijl
′

, according to the cosine law, it holds
that

d2
jl

′ = d2ij + d2
il

′ − 2dijdil′ cos∠jil
′

.

Since l
′

l
′′

is parallel with jk, we have∠jil
′

= ∠ijk. Then
we know d2

jl
′ < d2ij + d2

il
′ because∠ijk is an acute angle.

Similarly, for the triangle∆ijl
′′

, we could obtain thatd2
jl

′′ >

d2ij + d2
il

′′ .
Therefore, ifd2jl < d2ij + d2il, then nodel must be at the

locatio of l′. Thus, according to the sign patterns described in
Fig. 2, we obtain that{σli, σlj , σlk} = {1, 1,−1}.

4) Following the argument in 3), we know that ifd2jl >

d2ij + d2il, then nodel must lie at the location ofl
′′

. Then
again from the sign patterns described in Fig. 2, we obtain
that {σli, σlj , σlk} = {1,−1, 1}.

Finally, we summarize the above results to provide an
algorithm of determining the sign pattern based on the range
measurement information. The pseudo code is given in Algo-
rithm 1.

IV. D ISTRIBUTED LOCALIZATION ALGORITHM

In this section, we develop a convergent iterative algorithm
for localization, that is, to solveps from (7). Notice that for a
general barycentric coordinate, the spectral radius ofC may be
larger than 1. It means that the iterative form presented in (9)
may not converge. In the sequel, we will modify it to have a
new convergent iterative algorithm to compute the coordinates
of localizable sensor nodes.

Pre-multiplying a diagonal matrixK on both sides of (7),
we can obtain

Kps = KCps +KBpa.



Algorithm 1 Determining the sign pattern of nodel’s barycen-
tric coordinate.
Input: |ali|, |alj |, |alk|, dli, dlj , dlk, dij , dik, djk.
Output: {σli, σlj , σlk}.

Solve eq. (12)
if the solution is uniquethen

Return σli, σlj , σlk

else if one of |ali|, |alj |, |alk| equals to 0then
Determine{σli, σlj , σlk} according to (13)

else if djl = dik, dkl = dij and d2il = 2d2ij + 2d2ik − d2jk
then

{σli, σlj , σlk} = {−1, 1, 1}
else if d2jl < d2ij + d2il then

{σli, σlj , σlk} = {1, 1,−1}
else if d2jl > d2ij + d2il then

{σli, σlj , σlk} = {1,−1, 1}
end if

Adding ps on both sides of the above equation and packing
the terms, we have

ps = (I −K(I − C))ps +KBpa.

Recall thatpa is constant. So we could consider the following
iterative algorithm

zs(t+ 1) = (I −K(I − C))zs(t) +KBpa, (16)

where zs is the estimate of the coordinates of the normal
sensor nodes. Here, the key is to find an appropriate diagonal
matrix K so thatI −K(I − C) is Schur.

The above iterative form of localization can be implemented
in a distributed way, that is,

zi(t+ 1) = zi(t)− ki

(

zi(t)− Σ
j∈Ni

aijzj(t)

)

(17)

wherezi is the estimate of sensor nodei’s coordinate,ki is
theith diagonal entry ofK, andaij , j ∈ Ni, is the barycentric
coordinate of nodei with respect to its three neighbors.

However, finding a diagonal pre-conditionerK in a com-
pletely distributed way to makeI − K(I − C) Schur is a
challenging task. Next we introduce a cluster-based approach
for the design ofK, which is partially distributed and does
not require to collect all the information of the whole network.
For a sensor networkG, if the anchor nodes are not far away
from each other, then supposeG can be partitioned into a
set of clustersG0, G1, . . . , Gm such thatG0 is the cluster
of anchor nodes, and for any clusterGs, s ∈ {1, · · · ,m},
the neighbors used to define the barycentric coordinate of
any node inGs belong toG0 ∪ · · · ∪ Gs. This is the case
when the set of clusters is sequentially localizable. It is
common in practice as the neighboring topology is usually
dependent on the configuration in the Euclidean space and
limited communication ranges. How to detect such a set of
sequential clusters is of independent interest. Readers may
refer to [8] and [9].

For each clusterGs, s = 1, . . . ,m, we propose a scheme
to designKs (the corresponding block ofK for the cluster
Gs). The idea is inspired by the work of [5] and [6] using the
continuity property of eigenvalues with respect to the values
of Ks. Denote byLs the square block submatrix inI − C

corresponding to the clusterGs (taking the rows and columns
of I−C indexed by the nodes inGs). Suppose the total number
of nodes inGs is ns. We denoteKs = diag(ks1 , ks2 , . . . , ksns

)
and denote byLj

s, j = 1, . . . , ns, the jth principal submatrix
of Ls. The procedure of designingKs for each clusterGs is
summarized in Algorithm 2.

Algorithm 2 Finding the diagonal pre-conditionerKs for
clusterGs.

1: Input: Ls

2: Output: Ks = diag(ks1 , ks2 , . . . , ksns
)

3: for j = 1 : ns do
4: Find k′sj such that the eigenvalues of

diag{k′s1 , . . . , k
′
sj
}Lj

s lie in the open right-half-
plane.

5: end for
6: Find sufficiently smallε > 0 to make the eigenvalues of

εdiag{k′s1 , . . . , k
′
sns

}Ls inside the unit circle centered at
(1, 0).

7: return ksj = εk′sj , j = 1, . . . , ns.

Next, we discuss why Algorithm 2 can succeed in finding
the diagonal pre-conditionerKs. According to the loop in the
algorithm, it is certain that an appropriatek′s1 can be found
first so thatk′s1L

1
s is in the open right-half-plane. Thus, the

eigenvalues of
[

k′s1 0
0 0

]

L1
s

are k′s1L
1
s and 0. By the continuity property of eigenvalues,

we can then findk′s2 in the neighborhood of the origin such
that the eigenvalues of

[

k′s1 0
0 k′s2

]

L2
s

both lie in the open right-half-plane. Repeating the argument
leads to the finding of a set ofk′sj , j = 1, . . . , ns, such that
the eigenvalues of diag{k′s1 , . . . , k

′
sns

}Ls all lie in the open
right-half-plane, for which, a smallε > 0 can then be chosen
to shrink the eigenvalues ofεdiag{k′s1 , . . . , k

′
sns

}Ls inside the
unit disk centered at(1, 0).

To implement the algorithm of finding a diagonal pre-
conditioner for the clusterGs, a randomly selected node in
the cluster acts as a cluster head and collects the barycentric
coordinates of nodes in the same cluster, i.e.,Ls. It computes
an appropriateKs according to Algorithm 2 and then sends
ksj to the individual nodes in the cluster. If the cluster size is
medium, the required communication cost is acceptable.

After obtaining the diagonal pre-conditioners for all clusters,
the localization algorithm (16) is fully distributed, requir-
ing only the exchange of the estimate from the neighbors.



Moreover, it can be known that the iterative algorithm (16)
is globally asymptotically convergent due to its linear form,
while most existing localization work (e.g., [7]) based thesub-
gradient method only ensures local convergence.

V. SIMULATION

In this section, a sensor network with 12 nodes is consid-
ered. As shown in Fig. 5(a), three anchor nodes are connected
by black lines and other nine sensor nodes are marked by red
stars. The blue lines with arrows represent the neighboring
topology in localization. In this example, both assumptions
A1 and A2 are not satisfied.

The 12 nodes are grouped into four clusters, i.e.,G0 =
{1, 2, 3}, G1 = {4, 5, 6}, G2 = {7, 8, 9}, and G3 =
{10, 11, 12}. The barycentric coordinate of each node is
calculated according to Algorithm 1 based on the range
measurement information. The diagonal pre-conditionerKs,
s = 1, 2, 3, is obtained utilizing Algorithm 2. The coordinate
of each node is then iteratively calculated in terms of (17) in a
distributed way. The trajectories of the estimates are shown in
Fig. 5(b), from which it is seen that the estimates asymptoti-
cally converge to the true coordinates from an arbitrary initial
guess.

The residual error defined as||zs(t)−ps||
||zs(0)−ps||

is plotted in
Fig. 5(c) with respect to the iteration steps. Though the
localization algorithm is executed in parallel, the convergence
process takes three stages, as being observed in Fig. 5(c), be-
cause the localization of a cluster depends on the localization
of the cluster closer to the anchor nodes.

VI. CONCLUSION

In this paper, we develop a distributed algorithm to com-
pute the locations of sensor nodes based on the barycentric
coordinates. Two critical problems are solved, leading to the
success of globally convergent localization. First, for a general
configuration that does not require every node to be inside
a convex hull of its neighbors, a range information based
algorithm is proposed to determine the signs of the barycentric
coordinates and therefore the barycentric coordinates. Second,
a distributed iterative algorithm is obtained with the global
convergence ensured diagonal pre-conditioner designed based
on a partially distributed cluster scheme. Future work includes
analysis of localizability and convergence rate of the proposed
approach, and localization performance in the presence of
measurement noises.
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(a) Original network topology.
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(b) Trajectories of the coordinate estimates.
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