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Abstract—This paper studies the problem of determining the localization. The unique feature of this method is that the
sensor locations in a large sensor network using relative gtance sensor locations can be expressed as a linear system, which
(range) measurements only. Our work follows from a seminal 5 pe solved iteratively due to the desirable eigenvalue

paper by Khan et al. [1] where a distributed algorithm, known o . . .
as DILOC, for sensor localization is given using the barycetric distribution of the linear system. Their method relies o tw

coordinate. A main limitation of the DILOC algorithm is that all K€y assumptions on the network topology. First, all loaatio
sensor nodes must be inside the convex hull of the anchor nagle unknown nodes must be inside thenvex hull of the anchor

In this paper, we consider a general sensor network withoutlte nodes. Second, every node, other than the anchor nodes, must
convex hull assumption, which incurs challenges in determing be inside a triangle of three neighboring nodes. The main

the sign pattern of the barycentric coordinate. A criterion is f iring th ’ i ¢ id th
developed to address this issue based on available distancd ©2S0NS Of requinng these two assumptons are 1o avol €

measurements. Also, a new distributed algorithm is propose difficulties in determining the sign patterns of the barytcen
to guarantee the asymptotic localization of all localizat# sensor coordinate and to ensure the desired eigenvalue diswibofi

nodes. the linear system so that the iterative algorithm asymgaditi
converges. These two assumptions are kind of restrictive,
especially for a large sensor network when the sensing range
Location based service is the fundamental issue in the afeaeach node is limited and when the neighbors for each node
of sensor networks and it requires to solve the localizati@annot be arbitrarily arranged.
problem. The localization problem consists of two parts
namely, acquiring measurements and transforming them
coordinate information. In this paper, we consider theagitun
of using relative distance measurements only and focusen
localization procedure.

I. INTRODUCTION

' In this paper, we follow the work of_[1] by generalizing
thir method and eliminating the two key assumptions as
entioned above. The main idea is to employ a general
%rm of barycentric coordinate representation which afow
e L . ) the coordinate of each node to be expressed as a linear
Existing work on localization can be divided into tWognction of the coordinates of any three neighbors. A diter

classes[[2]: sequential methods and concurrent methods;Ayeyeloped, according to which the linear function can be

sequential method .beglns with a set of anchor nodes at5|1éjtermined using the relative distance measurements.alone
computes the Iocat|0ns of other_nodes one bY one or grogpe implication of this result is that all the sensor locatio

by group. A promment_ examP"? is the so_—callkedateranon_ can be expressed as a linear system, just like in the standard
me_thod. Its advantage is that it is easy to implement, bm"t_rDILOC case. However, the new linear system may not have
quires each location-unknown node to have three CONN&CtiQN yagjred eigenvalue distribution like the standard DILOC
(edges) with Iocatlop_-known nod.es, ‘,",’h'Ch is a sufficient blé‘igorithm to work. We then provide a new distributed iterati

not necessary condition for Iocal!zablhty. o _ algorithm for localization. This is done by applying a diagb

A concurrent method starts with some initial estimate f(?5re-conditi0ner to the linear system. A simulation resslt i

the coordinate of every sensor node. Each node then updaied provided to validate the effectiveness of our proposed
its coordinate in a distributed or cooperative manner us'%orithm

the relative distance measurements with its neighborstaad t .
estimates of the neighbors’ coordinates. The iterativegss  Notations: C denotes the set of complex numkgrdenotes

terminates when the estimates converge, hopefully to tree tth€ Euclidean spacd., represents the-dimensional vector
coordinates. of ones andl,, denotes the identity matrix of order. The

A novel concurrent method called distributed iterativ@0ld font of letter indicates vector and capital letter gales
localization (DILOC) was given bykhan et. al. in [I] matrix. A;;, denotes a triangle formed by nodej and k.
based on the barycentric coordinate representation faosen
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Il. PRELIMINARIES AND PROBLEM FORMULATION Saljky Saki andSa;;. If we only know the pairwise distance
A. Barycentric coordinates measurements, we can compute the square values of these

The barycentric coordinate, which was firstly introduced by cas and thus the absolute values;gfa;; anday;,. However,

) O . . : . We cannot determine the signs of these areas and thus are not

August Ferdinand Mobius in 1827][3], is a geometric notion . :
. . o . able to have the barycentric coordinate.

characterizing the relative position of one node with respe
to its several neighbor nodes. For one node, kayith its
Euclidean coordinatg;, and its three neighbor nodes, say . ) )
j andk with their Euclidean coordinates, p; andp; in the Thg common usgd trilateration scheme for computing the

kis {ayi, aj, a1 } satisfying

B. Problem formulation

dii = |lp — pil
DL = aip; + aipj + QixPr- (1) dij = |l — s (4)
dix = ||p1 — pi|l-

Especially, whem; +a;;+a;. = 1, the barycentric coordinate

is called theareal coordinate because it can be expressed Bere,p., u € {i,j,k,1}, is the Euclidean coordinate of node

a ratio of signed areas between specified triangles. As showrand d.., u,v € {i,j,k,l}, is the distance measurement
in Fig.[d, the barycentric coordinate;, a;;, ai } is given by between node: and v. These equations can be solved in
a sequential way if each node has at least three distance

_ Saujk . .
i = —smjk measurements to other nodes that know their coordinates. We
ajj = gi—l;‘k (2) call those sensor nodes, who initially know their coordisat
age = S?A# the anchor nodes. In contrast, we call the nodes, who do not
Aijk

_ know their coordinates initially, the normal sensor node or
where Saijk, Sawki, Sai; and Saqj, are the signed areasjyst sensor nodes for short. In this paper, a network under

of the corresponding trianglealjk, Alki, Alij and Aijk.  consideration is assumed to contain at least three ancdesno
These areas can be calculated with pairwise internoden@stawhich is a necessity for uniquely localizing the network.

measurements througBayley-Menger determinant [4]. For  |pstead of solving these nonlinear equations in a sequentia

instance, way, Khan et. al. provide an iterative algorithni[1], named

0 1 1 1 DILOC, to compute the coordinates of a netwaykbased
) 1|1 0 d d on the barycentric coordinate presentation.
Sk = 16 2§ 2 B  ai twork taini des, its Euclid
6|1 d 0 d& iven a networkG, containingn nodes, its Euclidean

1 2 dij 0 coordinates can be written in a form like

whered;;, d;, andd;;, are the distance measurements among 4 )

nodel, j andk, respectively. The sign afa;; is positive if b= 2p,

nodel is on the left-hand side when one moves from ngde\yherep € C" is the aggregated Euclidean coordinategof

to k, and negative otherwise. and the nonzero inputs in theth row, i € {1,2,---,n} are

the barycentric coordinate of node For example, if nodé
has three neighborg j and k, then thel-th row of A has
nonzero entries in the positions corresponding toitttg j-th
and k-th columns. The other entries in thigh row are all
zeros.

If we consider the first three rows g to represent the
positions of the three anchor nodesdnthen in terms of the
natural partition of anchor nodes and normal sensor nodes, w
can partitionA andp as

j k el el o

Fig. 1. An illustrative example for the barycentric coomtie

7

where p, and ps correspond to the aggregate positions of
anchor nodes and other normal sensor nodes, respectively.
To avoid the case thaia;;x = 0, we need an assumptionThe nonzero entries of thieth row can be recognized as the
on the configuration of nodes three neighbors as below.  weights of its three neighbors. So, all diagonal input§'cdre
AO: For each node in the network, its three neighbors are rmros. The matrix4 is often treated as thadjacency matrix
collinear. of the network. Thus, the representationpaf can be written
Note that, the computation of the coefficients in terms &
@). i.e., ai;, a;; and a;;, depends on the signed value of pPs = Cps + Bpa @)



and lies on the line aligned with one of three edges of the triangl
(I — C)ps = Bpa. (8) formed by its three neighbors, according o (2). Withouslos

) ) ) ) . of generality, say;; = 0. For this caseg;; can be either
According to eq.[{l7), we could obtain an iterative algorithrg, — 1 But the other two signs;; anday;, can be determined

to solvep, under certain conditions, according to the following criterion.

zs(t + 1) = Czs(t) + Bpa(t) 9) (o, 1,1} it Jaiy), lam] < 1,
wherez, € C"~3 represents the estimate of the coordinate {0ui, 015, 0} = ¢ {ou, 1, =1} if Ja;| > 1, ay] > |awl,
of the normal sensor nodes ¢h {ow, 1,1} if |ae| > 1, lage| > |agy].
In [1], a sensor network to be localized is assumed to satisfy (13
the following two assumptions. If node! does not lie on the boundary lines, there are totally

g possible sign patterns as the pattgral, —1, —1} is not
possible due td{12). According ] (2) and the definition @ th
signed areas, the seven possible sign patterts;ofo;;, oy }

are shown in Fig]2. In the following lemma, we characterize

A1: All sensor nodes lie inside a convex hull formed by th
anchor nodes.

A2: Each sensor nodklies inside a convex hull formed by
its three neighbors.

In the 2D case, a convex hull is actually a triangle formed
by three nodes. Thus, assumptid@ leads to two constraints
of the barycentric coordinate, i.e.,

ap + ayj +ap =1, (10)
0< g, g, alg < 1. (11)

In [1], Khan et. al. proved that the spectral radius 6f is
less than 1 wher (10) an@_{11) hold. Thus, the estimate of
the coordinate in[{9) can converge to the true value in th
Euclidean coordinate system.

In this paper, we will relax the assumptioAd andA2 and
address a distributed algorithm to compute the locations of Fig. 2. Seven possible sign patterns {er;;, 015, o1k }-
sensor nodes no matter whether they lie inside a convex hull

or not. After relaxing these two assumptions, two problerr%%
o

need to be addressed. First, how to determine the sign second case when the sign pattern can not be uniquely

the barycentric coordinate when one node lies outside tﬁ%ved fron.1 [(1_2)-

convex hull of its neighbors. Second, when the convex hyll Lemma 1: Given fay;| # 0, |ay;| # 0, and |ay| # 0,
assumption is dropped, the mat¢ikin system[(B) might not be the solution O_f (1) does_ not result in a unique sign pattern
Schur. Then, how to provide a convergent iterative algmith{a”’ o1, 01¢} if and only if one of them, saying,;, satisfies

to compute the coordinate. |ai| = 1, and ay;| = |a|-

Proof: (Sufficiency) If [a;;| = 1 and |aj;| = |awl, it
1. SIGN PATTERN DETERMINATION FOR THE can be inferred from(12) th&toy;, 04,00} = {1,1,—1} or
BARYCENTRIC COORDINATE {01, 01,01} = {1,—1,1}. That is, [I2) does not result in a

Foru,v € {i,j,k,1}, we useo,, € {1,—1} to indicate the UNIque sign pattern. _ _
sign of a.,. Suppose nodé is localizable. It is known that (Necessity) Suppose there are two sign patterns both satis-
no matter a nodé lies inside the convex hull of its threefying (I2). That is, it holds that
neighbors or not, the barycentric coordinafte;;, a;;, aix }

obtained from eq[{2) must satisfy; + a;; + a;x = 1. Thus, _ _ Vi _
given |az|, |ay], |aix|, which can be calculated fronfi](3), the [lauillagi| - lau] ZQ =t 1 (14)
3

problem of determining the sign pattern of the barycentric
coordinate is equivalent to solve the following equation  wherev,, vy, v € {[1 1],[-1 1],[-1 —1],[1 —1]}. This

means a positive combination of , vo, vs equals tdl 1] (see
Fig.[3). Consequently, there must Be1] for one of vy, v,
whereoy;, 0;; andoy;, take values eithet or —1. and v;. Without loss of generality, we assumg = [1 1].
In the following we will discuss whethef (IL2) has a uniquélext, we consider different choice of. If v, equals to[1, 1]
solution. Moreover, ifg;;,0;; and o, can not be uniquely or [-1,—1], we will havevs equal to[-1 — 1] or [1 1]. In
solved from|[(IR), we then explore other range based comditicthis way, two solutiongcy;, 015, o1 } are actually identical. If
to determine the sign pattern. vy equals to[—1 1] or [1 — 1], v must equal tgl — 1] or
The first case thaf{12) does not have a unique solution[is1 1]. Then according to[(12), we know that;;| = 1 and
that one of|a;;l, |ai;|, |aix| equals to zero. That is, a node |a;;| = |au|. [ |

ouilai| + oijlay| + owlaw| =1 (12)



Fig. 3. An illustration for the necessity proof. Y,

l

Fig. 4. An example ofAijk and nodd.
Next, we present a result on how to determine the sign
pattern using the range based information when it can not be
uniquely solved from[{12). 2) If o = —1, then{ou, oy, 00} = {~1,1,1}, which is
Lemma 2: Given |ay;| =1 and |ai;| = |ai| # 0, SUPPOSE gp v i ‘the necessity proof of 1).
Zijk IS an acute an .
) . 3) If oy; = 1, then we havey; = 1. For this caseSax =
1) o = ~1if and only if Snaijr according to[(R). Therefore, nodenust be on the line
dji = dig, diy = dij, anddy = 2d3; + 2d3, — dy,. that is parallel to the edggk and crosses node On this line,
2) If o = —1, then{ou, o1y, o0} = {—1,1,1}. there are two nodes, saying nadend! as shown in Fig.14,

hose distances to nodeare equal tad;.
3) If oy = 1 andd?, < d2 + d2, then {oy;, 01, =W ) , _ i .
) 1T o i< i {ou, o3, 0w} For the triangleAi;jl’, according to the cosine law, it holds

{1517_1} that
4 If o, =1 and d?l > dgj +d121’ then {O'li,Uljaalk} = o o ) o
{1,-1,1}. d5y = dij + dy — 2dijd;y cos Zjil .
Proof: 1) (Necessity) Ifoy; = —1, then we haveu; = = gjnee))” i parallel with jk, we haveZjil' = Zijk. Then
—1. Moreover, sincela;;| = |au|, it follows from (I2) that o 0w a2, < @2 & a2, because/ijk is an acute angle.
a;; = ai = 1. Thus, Saiix = —Saije, Saii; = Saije @n 7t ol

. . . - . 2
Sami = Sair. Comparing the sign pattern with the One§2|m|lar;y, for the triangleAijl , we could obtain thadijl,, >
described in Fig:l2, we know that the only optionia$ at the di; + d7- .
location of!” in Fig.[d, which forms a parallelogram together Therefore, ifd, < d7; + d}, then nodel must be at the

with nodesi, j andk. Hence, we can obtain directly théf, = locatio of /. Thus, according to the sign patterns described in
dix, dy = dj;. Furthermore, according to the parallelograrfrig.[d, we obtain tha{ou;, 015, o} = {1,1, -1}
law, we have 4) Following the argument in 3), we know that df?l >
43 = 2d3; + 2d2, — d%. (15) d? + d2, then nodel must lie at the location of". Then
again from the sign patterns described in Eify. 2, we obtain

(Sufficiency) If d;; = d;;; anddy; = d;;, we can draw two
circles centered gtandk with radiusd;;, andd;;, respectively.
These two circles will have two intersection points. Onehaf t
two intersection points i$" and we denote the other 3y.

that{dli,alj,dlk}: {1,—1,1}. [ |
Finally, we summarize the above results to provide an
algorithm of determining the sign pattern based on the range

From the necessity proof, it is known that when ndds at measurement information. The pseudo code is given in Algo-

the location of ", it satisfies[(I5). On the other hand, we will "™ -
shqw that when nodé_is _at the _Iocation ofi*, it does not IV. DISTRIBUTED LOCALIZATION ALGORITHM
satisfy [15). (To see this, it remains to show tHat: # dj-.

Suppose by contradiction thdt.» = d;;-. Then, recalling the e i .
PP y al ! ¢ for localization, that is, to solve, from (). Notice that for a

factd.,» = d;+~ andd,,» = di;~, we have that nodeg j ¢ ) g
1 J Kl )
and k& are on the perpendicular bisector of the line segme%neral barycentric coordinate, the spectral radius ofay b.e
ger than 1. It means that the iterative form presentefin (

I"”'1* and so they are colinear, a contradiction to assumptiéH

AO0.) Therefore, it can be concluded that due to the conditigRdy not converge. In_ the Seq?‘e" we will modify it to ha_ve a
2 = 242, + 242, — d2,, nodel must lie at the location of” new convergent iterative algorithm to compute the cooréima
7 1] () jk? .

Thus, according to the sign patterns described in [Hig. 2, W localizable sensor nodes.
can obtain thatgi — 1 anp Fig Pre-multiplying a diagonal matri¥" on both sides of[{7),

we can obtain

Lif Zijk is not acute, therrikj must be acute and the conditions in the
lemma can be modified accordingly. Kps = KCps + KBp,.

In this section, we develop a convergent iterative algarith



Algorithm 1 Determining the sign pattern of node barycen-  For each clusteg,, s = 1,...,m, we propose a scheme

tric coordinate. to designK, (the corresponding block ok for the cluster
Input: [ail, ai|, lawl, dis, dij, dir, dij, dig, djg. G,). The idea is inspired by the work dfl[5] and [6] using the
Output: {o;, 015, our }- continuity property of eigenvalues with respect to the galu
Solve eq.[(IP) of K. Denote byL, the square block submatrix ih — C
if the solution is uniquéhen corresponding to the clustéf; (taking the rows and columns
Return oy, 045, o, of I—-C indexed by the nodes ifi;). Suppose the total number
else ifone of |a;;|, |ai;|, |aix| equals to Othen of nodes ing; is n,. We denoteX, = diag(ks, , ks, .. -, ks, )
Determine{oy;, 01;, 01} according to[(I13) and denote by/, j = 1,...,n,, the jth principal submatrix
else if dj = dig, du = dij andd;; = 2d3; + 2d3, — d3,  of L,. The procedure of designing, for each clusted; is
then summarized in Algorithnh]2.
{a'li7 015, a'lk} = {—1, 1, 1}
else if d3, < d; + dj, then Algorithm 2 Finding the diagonal pre-conditiondk, for
{o1i, 005,01} = {1,1,—-1} clusterd,.
else ifd3, > d; + dj; then 1 Input: L
{oui, 05,00} = {1, -1, 1} 2: Output: K, = diagks,, ksy, - - -, ks,,.)
end if 3. for j =1:n4 do
4 Find &, ~such that the eigenvalues of
diag{k;,,...,k;,} L, lie in the open right-half-
Adding p, on both sides of the above equation and packing plane.
the terms, we have 5: end for
6: Find sufficiently small: > 0 to make the eigenvalues of
ps = (I = K(I = C))ps + KBpa. ediag{ky,, ..., k;, }Ls inside the unit circle centered at
Recall thatp,, is constant. So we could consider the following (1,0). ;.
iterative algorithm rorewumn kg =ckg, j=1,...,ns.

z:(t+1) = (I = K(I = C))z(t) + KBpa,  (16) Next, we discuss why Algorithral 2 can succeed in finding

where z, is the estimate of the coordinates of the normdhe diagonal pre-conditionéf’,. According to the loop in the
sensor nodes. Here, the key is to find an appropriate diagoiglorithm, it is certain that an appropriatg, can be found

matrix K so that/ — K(I — C) is Schur. first o) thatk;lLi is in the open right-half-plane. Thus, the
The above iterative form of localization can be implementeigenvalues of ,
in a distributed way, that is, [k(sjl 8] I

zi(t+1) = zi(t) — k (Zi(t) — 2 %% (t)> (17) arek, L! and0. By the continuity property of eigenvalues,
T we can then find:,, in the neighborhood of the origin such
where z; is the estimate of sensor node coordinatek; is that the eigenvalues of
theith diagonal entry of<’, anda;;, j € N;, is the barycentric 1 0
coordinate of nodeé with respect to its three neighbors. [ suo } L?
However, finding a diagonal pre-condition&r in a com- 0 &
pletely distributed way to maké — K (I — C) Schur is a both lie in the open right-half-plane. Repeating the arguime

challenging task. Next we introduce a cluster-based approdeads to the finding of a set da‘;j, j=1,...,ns such that
for the design of(, which is partially distributed and doesthe eigenvalues of didg, ,.. .,k:gns}Ls all lie in the open
not require to collect all the information of the whole neto right-half-plane, for which, a smal > 0 can then be chosen
For a sensor networg, if the anchor nodes are not far awayo shrink the eigenvalues efliag{%;, ,...,k; }L, inside the
from each other, then supposk can be partitioned into a unit disk centered a1, 0). ’

set of clustersGy, Gi, ..., Gn such thatG, is the cluster To implement the algorithm of finding a diagonal pre-
of anchor nodes, and for any clustét, s € {1,---,m}, conditioner for the clustegs, a randomly selected node in

the neighbors used to define the barycentric coordinate thé cluster acts as a cluster head and collects the baricentr
any node inG, belong toGy U --- U G,. This is the case coordinates of nodes in the same cluster, ig.,It computes
when the set of clusters is sequentially localizable. It @n appropriate, according to Algorithnl 2 and then sends
common in practice as the neighboring topology is usualky, to the individual nodes in the cluster. If the cluster size is
dependent on the configuration in the Euclidean space ameédium, the required communication cost is acceptable.
limited communication ranges. How to detect such a set of After obtaining the diagonal pre-conditioners for all ¢krs,
sequential clusters is of independent interest. Readefs ntlae localization algorithm[{16) is fully distributed, rdqu
refer to [8] and[[9]. ing only the exchange of the estimate from the neighbors.



Moreover, it can be known that the iterative algoritHm](16)
is globally asymptotically convergent due to its linearnfior
while most existing localization work (e.gl/[7]) based tudb-
gradient method only ensures local convergence.

V. SIMULATION

In this section, a sensor network with 12 nodes is consid-
ered. As shown in Fid. 5(p), three anchor nodes are connected
by black lines and other nine sensor nodes are marked by red
stars. The blue lines with arrows represent the neighboring
topology in localization. In this example, both assumpiion
Al and A2 are not satisfied.

The 12 nodes are grouped into four clusters, i®., =
{1,2,3}, G1 = {4,5,6}, Go» = {7,8,9}, and G5 =

{10,11,12}. The barycentric coordinate of each node is ] 1 . |
calculated according to Algorithil 1 based on the range |t
measurement information. The diagonal pre-conditiolgr 1 f l

s =1,2,3, is obtained utilizing Algorithni 2. The coordinate
of each node is then iteratively calculated in termdof (b73 i
distributed way. The trajectories of the estimates are shiow o
Fig.[5(b}, from which it is seen that the estimates asymptoti
cally converge to the true coordinates from an arbitrariahi

guess. |
The residual error defined a :S((é)):fj” is plotted in

Fig. with respect to the iteration steps. Though the ™, . . .
localization algorithm is executed in parallel, the comgesrce o
process takes three stages, as being observed if Fi. B¢c), b

cause the localization of a cluster depends on the locidizat 1 ‘
of the cluster closer to the anchor nodes. 1

VI. CONCLUSION ]

In this paper, we develop a distributed algorithm to com-  ° 7
pute the locations of sensor nodes based on the barycentric ot 1
coordinates. Two critical problems are solved, leadinght® t i

success of globally convergent localization. First, foeaegral
configuration that does not require every node to be inside
a convex hull of its neighbors, a range information based
algorithm is proposed to determine the signs of the baryient

coordinates and therefore the barycentric coordinaterigh s e E £ o % %
a distributed iterative algorithm is obtained with the gibb (©) fz=td=Pell wrt ¢

convergence ensured diagonal pre-conditioner designestiba

on a partially distributed cluster scheme. Future workudeks Fig. 5. A simulation result.
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