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Abstract—This paper is concerned with an energy 

consumption scheduling problem for consumers in smart grid, 

based on a real time pricing strategy. Firstly, the energy 

consumption scheduling problem is cast into a non-

cooperative energy consumption game, where consumers 

compete with each other in order to minimize their electricity 

usage cost. Secondly, we prove that the non-cooperative energy 

consumption game has a unique Nash equilibrium point, i.e., 

optimal energy consumption solution. Thirdly, the 

energy consumption solution is obtained by a discrete iterative 

algorithm. Simulation results show that the energy 

consumption scheduling scheme is effective in matching the 

varying generation capacity in a day.  

Keywords—smart grid; energy consumption scheduling; non-

cooperative game; Nash equilibrium; real time pricing 

I.  INTRODUCTION  

Matching supply with demand has been a hot topic in 
operating electricity networks. Traditionally, we have to 
provide enough generation capacity to meet the peak load, 
requiring substantial infrastructure that is idle for all but a few 
hours a year. Smart grid applications are being developed to 
deal with steadily increasing future demand. Energy 
consumption scheduling can induce consumers to shift their 
loads away from peak times [1-3]. Recently, various pricing 
schemes have been discussed for implementing energy 
scheduling in smart grid, such as Time of Use (TOU), Critical 
Peak Pricing (CPP), Extreme Day CPP (ED-CPP), Extreme 
Day Pricing (EDP) and Real Time Pricing (RTP) [4]. Recently, 
with the development of smart metering technologies, which 
will enable reliable, real-time, two-way information exchange 
between consumers and electricity energy providers, RTP can 
be provided to consumers multiple times daily, hourly, or in 
even shorter intervals. Many economists are convinced that 
RTP programs are the most direct and efficient scheduling 
programs suitable for competitive electricity markets [5]. In an 
RTP program, the energy provider announces electricity prices 
on a rolling basis, i.e., the price for a given time period (e.g., an 
hour) is determined and announced before the start of that 

period (e.g., 15 minutes beforehand). 

To handle the two-way information exchange and decision 
making, consumers will rely on energy management controllers 
(EMCs), which can modify electricity usage across a home or 
building based on electricity prices and consumer preferences. 
From the energy provider’s perspective, providing high 
frequency pricing updates will enable better load shaping and 
thus result in better matching of supply and demand. For 
consumers, RTP will provide new opportunities to lower cost 
by making smart usage decisions. 

Rich literature exists on energy scheduling schemes based 
on RTP, see e.g. [6-10]. In [6] and [7] the main objective is to 
reduce the total energy cost to consumers without directly 
addressing the matching of the distributed loads to the available 
generating capacity. Whereas, in order to match the loads to the 
supply, [8] proposed a novel RTP algorithm to obtain optimal 
energy consumption for each consumer by maximizing the 
social welfare. However, the consumers within a smart grid are 
selfish, thus they will not cooperate with each other in order to 
maximize the social welfare. To deal with this problem, [9] 
gives time-varying prices that can align individual optimality 
with social welfare maximization. That is to say, social welfare 
can be implemented by optimizing individual consumers’ 
utilities. In addition, a distributed scheduling mechanism is 
presented to reduce peak demand within a neighborhood of 
households [10], without addressing an optimal scheduling 
strategy. Since the DR system is a distributed feedback system, 
a distributed energy consumption control mechanism and 
pricing are necessary. Then a question arises naturally: how 
should the consumers choose their energy consumption in a 
distributed dynamic fashion and how should the energy 
provider set the electricity price, such that the total energy 
consumption can match the available supply? 

In this paper, we attempt to shed some lights on the above 
question, and present an energy consumption scheduling 
scheme based on a non-cooperative game, which is suitable for 
analyzing distributed strategy design problems in Economics. 
The main contributions are as follows. We formulate the 
energy scheduling problem as a non-cooperative game, in 
which consumers act as players, and then prove the existence 
and uniqueness of Nash equilibrium in the energy consumption This research is funded by the Republic of Singapore’s National Research 
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game. Meanwhile, a distributed, discrete energy consumption 
control is presented.  

The rest of the paper is organized as follows. In Section II, 
we describe the system model, and formulate the energy 
scheduling problem as a non-cooperative game. Section III 
presents the distributed energy consumption scheduling 
algorithm and numerical results are shown in section IV. 
Finally, we draw conclusions in section V. 

II. PROBLEM FORMULATION 

A. System Model 

As shown in Fig. 1, we consider a residential power system 
consisting of one energy provider and N consumers. The 

energy provider buys the electricity from the wholesale market 
and sells it to the consumers. We assume there is an EMC in 
each household. The role of the EMC is to interact with the 
energy provider through two-way communication network and 
schedule the energy usage among the smart appliances, such as 
Dish washer, Clothes washer, and Air condition.  

 

Here, we assume that the intended operation cycle is 

divided into K time slots. In each time slot k ( {1 2 }k , ,...,K ), 

energy provider receives energy consumption from consumers 
and sets the electricity price based on the total energy 
consumption, while consumers decides on their energy 
consumption by minimizing their electricity usage cost. In this 

paper, the set of consumers is denoted by {1 2 }, ,...,N  , and 

the electricity price is 

   
1

( ) = k

k k

i

i

p
L l




l                             (1) 

where 
k

il  is the energy consumption of consumer i in time slot 

k , 1=( ,... )k k k k

i Nl ,...,l ,ll , and   is a constant parameter 

determined by energy provider to implement elastic pricing. 
kL denotes the generating capacity so that 

 {1 2 }k k

i

i

L l ,k , ,...,K


                             (2) 

From (1), we see that the electricity price is increasing with 
the total energy consumption of consumers. Specifically, the 
energy provider will set a high price in order to reduce the peak 
energy consumption, and shift the energy consumption to the 

valley time by lowering the price. The role of electricity price 
is similar to the lever principle of economics.  

Each consumer tends to minimize its electricity usage cost, 
consisting of two components. One is the payment for 
electricity usage; the other is the cost of dissatisfaction for 

deviating from nominal energy consumption
k

id . In time slot k , 

the payment of consumer i  is denoted by ( )k k

ip ll , and 

consumer i ’s cost of dissatisfaction is (1 )k k

i i ia l d , which is 

decreasing with the energy consumption of consumer i . Thus, 

the total cost of consumer i in time slot k  is denoted by 

( ) ( ) (1 )
k

k k k i

i i k

i

l
C p l a

d
  l l                        (3) 

The minimization of ( )kC l is equivalent to the 

maximization of ( )= ( )= ( 1) ( )k k k k k k

i i i iU C a l d p l  l l l , which 

is the payoff of consumer i . From (1) and (3), we see that the 

payoff of each consumer is affected by the electricity price, 
which is the function of energy consumption of all consumers. 
That is to say, energy consumption of each consumer can affect 
the payoff of other consumers. It is noted that we omit the time 

slot index k  for convenience in the following. 

Here, each consumer is actually selfish and rational, and 
tries to maximize its own payoff, but not at the expense of 
others. In this situation, is the system able to reach an 
equilibrium wherein no consumer is interested in varying its 
parameters since each action it takes would lead to a decrease 
in its own payoff? Game theory provides the means to study 
these interactions and to solve the problem well. 

B. Energy Consumption Game 

In this section, we begin by introducing a non-cooperative 
energy consumption game in which each consumer aims to 
maximize its own payoff. Then, the competition among 
consumers can be cast into the following non-cooperative game.  

Definition 1 A non-cooperative energy consumption 

game G is defined as a triple: : { ( ) ( ( )) }i i i iG , S , U   l , 

where  is the set of active consumers participating in the 

game, 

 : 0 max

i i iS l l ,l                                 (4) 

is the set of possible strategies (energy consumption level) that 
consumer i  can take, and 

( ) ( 1)i i

i i

i i

i

l l
U a

d L l


  


l                  (5) 

is the payoff (utility) function. 

Note that, 1 2 1 1:=( )i i i Nl ,l ,...,l ,l ,...,l  l  denotes the set of 

strategies selected by all consumers, except for consumer i and 

the strategy profile is denoted 

by 1 2 1 1( ):=( )i i i- i i Nl , l ,l ,...,l ,l ,l ,...,l l . 

 
 

Fig. 1: A residential power system 



Before proceeding further, we need to analyze the Nash 
equilibrium1 of the non-cooperative energy consumption game 
G  [11], which is based on the concept of a best response 

correspondence as follows. 

Definition 2 For the non-cooperative energy consumption 

game G , the best response correspondence ( )ir l  is defined by, 

 *( )={ ( ) | ( , ) ( , )}i i i i i i i i ir S U l U l  
 l l l l          (6) 

Then, a vector of energy consumption 1 2( )Nl ,l ,...,l   l  is a 

Nash equilibrium of the non-cooperative energy consumption 

game if and only if ( )i il r  l  for all consumers i , that is 

to say, ( ) ( )i i -i i i -iU l , U l ,  l l  for any other i il S , where 

( )i i -iU l ,l  is the resulting payoff for the consumer i given the 

other consumers’ energy consumption -il . 

We see that the Nash equilibrium is a set of strategies 
where no layer has an incentive to change his action strategy 
unilaterally given the strategies of the other players. In the 
following, we first analyze the existence and uniqueness of 
Nash equilibrium points in the non-cooperative energy 
consumption game. To prove the existence of Nash equilibrium, 
we first give the following lemma obtained from [12]. 

Lemma 1 A Nash equilibrium exists in 

game : { ( ) ( ( )) }i i i iG , S , U   l , for all i : 

  1) iS  is a nonempty, convex, and compact subset of some 

Euclidean space N , 

  2) ( )iU l  is continuous in l  and quasi-concave in il , 

then, we have the following theorem. 

Theorem 1 There exists a Nash equilibrium point for non-
cooperative energy consumption game G . 

Proof: Given the strategy space defined by (4), iS  is a 

nonempty, convex and compact subset of the Euclidean 

space N . From (5), ( )iU l  is obviously continuous in l . Now 

we take the second order derivative of ( )iU l  with respect to il , 

and we have 

,2 2

3
( ) 2

( )

j

j j i

i i

j

j

l L

U l
l L





 





   





l                           (7) 

Since demand cannot exceed supply as expressed in (2), the 

second order derivative of ( )iU l  with respect to il  is always 

less than 0, therefore, ( )iU l  is concave in il .□ 

According to Lemma 1, we conclude that non-cooperative 
energy consumption game G  has a Nash equilibrium point, but 

its uniqueness needs to be addressed. Next we will prove the 
uniqueness of Nash equilibrium in non-cooperative energy 
consumption game G . 

                                                           
1 Given than our space is constrained by the inequality depicted in Eq. (2), we 

will be concerned with an inner Nash Equilibrium point. 

According to Definition 2, the best-response 

correspondence ( )ir l  is achieved when the first derivative of 

( )iU l  with respect to il  equals to 0, i.e., 

2
( ) = ( ) 0

( )

j

j , j ii

i i i

i i

i

l L
a

h U l
d l L





 




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




l l                 (8) 

Denote i ia d as ib , and we have the following quadratic 

function of il : 

2 22 ( ) ( )

0

i i i j i i j j

j , j i j , j i j , j i

b l b l L l b l L l L  
     

     



  
              

(9) 

Solving (9), we have 

2 ( ) 4 ( )

2

i j i j

j , j i j , j i

i

i

b L l b L l

l
b

 
   

  



 
            (10) 

To satisfy the constraints
i

i

l L


 , the best-response 

correspondence is denoted by 

2 ( ) 4 ( )

( )=
2

i j i j

j , j i j , j i

i i

i

b L l b L l

r l
b

 
   
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

 
l      (11) 

Next we employ a standard function similar to the 
definition in [13].  

Definition 3 A function ( )r l  is standard if for all l 0 , the 

following properties are satisfied: 

1) Positivity: ( )r l 0 . 

2) Monotonicity: If l l' , then ( ) ( )r r l l . 

3) Scalability: For some 1 j

j , j i

L l 
 

   , there is 

( )< ( )r r l l . 

Lemma 2 The best-response correspondence ( )ir l  is 

standard if the following constraints are satisfied. 

( ) 1i j

j , j i

b L l
 

                        (12) 

Proof:  

1) Positivity. In order to ensure ( )>0ir l , we have the 

following inequality, 

2 ( )> 4 ( )i j i j

j , j i j , j i

b L l b L l 
   

             (13) 

which is equivalent to (12). 



Since 0a   and 0j

j , j i

L l
 

  , we can conclude that 

( ) 0ir l  under constraint (12). Then, we have 

1 2( ) ( ( ) ( ) ( )) > Nr r ,r ,...,r 0l = l l l . 

2) Monotonicity. Suppose l > l  are different energy 

consumption vectors. Here, the vector inequality l > l  means 

that i il l , i  . If i j, i, j   , 

     1 1j i N j i Nr l ,...,l ,...,l r l ,...,l ,...,l            (14) 

and 

     1 1i i N i i Nr l ,...,l ,...,l r l ,...,l ,...,l             (15) 

Therefore the problem reduces to proving ( ) 0j ir l  l  

and ( ) 0i ir l  l . The first order partial derivative of ( )jr l  

with respect to il  is  

1
( ) 1

4 ( )
j i

i j

j , j i

r l
b L l

 

   
 

l                      (16) 

From (11), we see ( ) 0j ir l  l . 

It is easy to see that 

 ( ) 0i ir l  l                                (17) 

Combining (15) and (16), the monotonicity is proved. 

3) Scalability. Comparing ( ) 0ir l  and ( ) 0ir l  in an 

element-wise manner, we have 

( )= ( ) ( )

2 ( 1) 4 ( ) 4 ( )

2

i i

i i j i j

j , j i j , j i

i

f r r

b L b L l b L l

b

  

     
   



    



 

l l

(18) 

The first order derivative of ( )f   is denoted by 

( )
2 ( )

j j

j , j i j , j i

ii j

j , j i

l L l

f L
bb L l



  
 

   

 



    


 


 

(19) 

where 1 j

j , j i

L l 
 

   . There exists a threshold   , 

( )< ( )i ir r l l  is satisfied when   . Therefore, the 

scalability is proved. □ 

It has been pointed out in [13] that the fixed point of 

( )irl = l  is unique if ( )ir l  is a standard function. Then, we 

have the following theorem. 

Theorem 2 The non-cooperative energy consumption game 
G  has a unique Nash equilibrium if (12) is satisfied. 

Proof: Suppose l  and l  are distinct fixed points. Since 

( ) > 0r l , we must have >0jl  and >0jl  for all j . Without loss 

of generality, we can assume there exists a j such that < j jl l . 

Hence, there exists   such that  l l  and that for 

some j , j jl l  . The monotonicity and scalability properties 

imply 

( ) ( )> ( )=j j j j j jl r r r l    l l l                  (20) 

Since j jl l  , we have found a contradiction, implying the 

fixed point must be unique. □ 

Remark 1: In practical, the condition (12) is equivalent to  

( )< ip bl when the number of consumers is very large, which 

indicates that the provider should set the electricity price larger 
than the willingness parameter of each consumer. 

III. ENERGY CONSUMPTION SCHEDULING 

In this section, we consider the dynamic energy 
consumption control algorithm, aiming to reach the unique 
Nash equilibrium. According to [14], we have the discrete-time 
iterative algorithm denoted by 

 
max max

max

0 0

,

02

( 1) [ ( )] [ ( ) ]

( )

[ ( ) ( )]
( ( ) )

l l

i i i i i

j

j j i li

i

i i

i

l m G l m U l

l m L
a

l m
d l m L








 



     



  






l l

      (21) 

Theorem 3 Suppose the energy consumption game G  has a 

unique inner Nash equilibrium point 
l , the gradient iteration 

of (21) converges to the unique Nash equilibrium, if the 
following condition is satisfied. 

3

,

,

2( )

3 3

j

j j i

i j

j j i

L l

L l l





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


 




                      (22) 

Proof: Firstly, define a mapping    : 0,1i   for 

each consumer i  by 

*( ) (1 ) ( (1 ) )i i i il l h       l l                  (23) 

where ( )ih   is defined in (8). By (21) and (23), we have 

* *

1 1

0 0

0 1

( 1) ( ) (1) (0)

( ) ( )

max ( )

i i i i i i

i i

i

l m l G l

d d d d d d

d d
 

      

   

 

 

l



     

 

   (24) 

where the first inequality is due to the fact that 

 
max

0
( ) ( )

l

i i i iG l G l   l l , when 
max0,il l    , for all i . 

Let  ˆ= + 1-  
l l l , and then  id d    can be further 

bounded by 



 * 2 2 * 2

,

( )

ˆ ˆ ˆˆ ˆ(1 )( ) ( ) ( ) )

i

i i i i j j i i j

j j i

d d

l l U l l l U l l

 


 

 

        l l

2 2 2

,

ˆ ˆ ˆˆ ˆ1 ( ( ) ( ) )i i i i j

j j i

U l U l l 


 

         l l l l   (25) 

where : maxi il
l . Note that 

2 2 2

,

,

3

,

1 ( ( ) ( ) )

3 3

1
( )

i i i i j

j j i

i j

j j i

j

j j i

U l U l l
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l L








 

 

 

      

 

 








l l

       (26) 

To guarantee  

2 2 2

,

0 1 ( ( ) ( ) ) 1i i i i j

j j i

U l U l l
 

        l l , 

there is 

,

3

,

3 3

1 1 1
( )

i j

j j i

j

j j i

L l l

l L






 

 

 

   
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
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Then, we obtain the condition in (23), under which, there is 

 

 
0,1

max
id

d






  l l






                   (28) 

where 

2 2 2

,

0 1 ( ( ) ( ) ) 1i i i i j

j j i

U l U l l
 

          l l  (29) 

Combining with (24), it has been proved that the discrete-
time iterative algorithm (21) converges to the unique inner 
Nash equilibrium as m .□ 

Remark 2: One of the requirements in implementing the 
energy consumption scheduling strategy in (21) is to estimate 

the derivative of the payoff function ( )i iU l l . Based on (5), 

the derivative ( )i iU l l  is  

,

2

( )
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where the term i
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d
 can be independently determined by each 

consumer. However, the term 
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depends on the values of  L  and ( )i

i

l m


 . The energy 

provider shall be able to collect all the load estimates by 
polling the consumers and it can then broadcast L  and 

( )i

i

l m


  to the consumers and iterate in order to schedule their 

strategies during each RTP period.  

Remark 3: In a practical system, if the energy consumption 
of each consumer is much smaller than the total energy 

consumption of a group of consumers, i.e., ( ) ( )i i

i

l m l m


 , 

then, the term 
,
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 can be approximately 

estimated as 
1

( )i

i

l m L



. The energy provider can broadcast 

this term to the consumers instead of broadcasting the terms 

L  and ( )i

i

l m


 . Please note that 
1

( )
( )i

i

p
l m L



 


l  

where ( )p l is the real-time electricity price as defined in (1). 

IV. NUMERICAL RESULTS 

In the simulations, the entire time cycle is divided into 24 
time slots representing the 24 hours of the day, and a  of all 

users vary from 0.8 to 1.3 in each time slot. Here, the number 
of consumers is 10, and the average nominal residential energy 

consumption 
k

id  is obtained from [15]. The varying generation 

capacity values
kL are estimated from

k

id . 

 

Fig. 2 shows the varying generation capacity and total 
energy consumption with different   across 24 hours in a day. 

It can be seen that the total energy consumption approaches the 
generation capacity when   increases. The total energy 

consumptions can match the generation capacity 
when 1.15 . 
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Fig. 2: The total energy consumption (TEC) in a day 



 

Fig. 3 shows the convergence of the energy consumption 
scheduling algorithm (21) in time slot 24. Here,   is set to be 

1.15. All of the consumers get to the optimal energy 
consumption by participating in the non-cooperative energy 
consumption game. 

From Fig. 2, we find that the total energy consumption is a 
little smaller than the generating capacity. To characterize the 
mismatch of the generating capacity and the total energy 
consumption, we calculate the supply surplus defined as 
follows 

24

1

24

1

( ( ) )k k

i

k i

k

k

L l

r

L



 






 


                        (30) 

 

Then, we show the supply surplus versus   in Fig. 4. It can 

be seen that the supply surplus is decreasing with the value 
of  . That is to say, we can match the total energy 

consumption with the generating capacity by increasing  , 

while minimizing the electricity usage cost. 

V. CONCLUSIONS 

In this paper, energy consumption scheduling based on 
non-cooperative game is considered, and an iterative energy 

consumption algorithm is presented. We find that the energy 
consumption scheduling with real time pricing can match with 
the supply across the time slots in a day, and the proposed 
energy consumption scheduling algorithm is stabilized at the 
Nash equilibrium. 
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Fig. 4: Supply surplus v. s.   
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Fig. 3: Convergence of energy scheduling algorithm 




