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Physical Interpretations of Negative Imaginary Systems Theory

Ian R. Petersen

Abstract— This paper presents some physical interpretations
of recent stability results on the feedback interconnection
of negative imaginary systems. These interpretations involve
spring mass damper systems coupled together by springs or
RLC electrical networks coupled together via inductors or
capacitors.

I. I NTRODUCTION

In recent years the theory of negative imaginary systems
has emerged as a useful complement to positive real theory
and passivity theory; e.g., see [1]–[3]. It is well known that
linear mechanical systems with force inputs and collocated
velocity outputs lead to positive real transfer functions;e.g.,
see [4]. Similarly, linear mechanical systems with force
inputs and collocated position outputs lead to negative imag-
inary transfer functions; e.g., see [2]. In this paper we extend
these ideas to consider mechanical interpretations of the main
negative imaginary stability results and compare them with
corresponding interpretations of positive real stabilityresults.
The negative imaginary stability results involve the positive
feedback interconnection between two negative imaginary
system, one of which is regarded as the controller and one
of which is regarded as the plant; e.g., see [5], [6]. In
our mechanical interpretation of these results, the plant is
a spring mass damper system and the controller is another
spring mass damper system which is coupled to it via a
spring. This is similar to the behavioural systems theory
notion of control by interconnection; e.g., see [7]. This paper
also presents similar RLC electrical circuit interpretations of
the negative imaginary stability results in which the coupling
between the plant RLC circuit and the controller RLC circuit
is via capacitive or inductive coupling.

The mechanical interpretations presented in this paper may
help to better understand the negative imaginary stability
results and motivate extensions to these results. Also, the
mechanical interpretation of the controller may be useful in
controller design and tuning.

II. N EGATIVE IMAGINARY AND POSITIVE REAL

SYSTEMS THEORY

Negative imaginary and positive real systems.Stability re-
sults about the positive feedback interconnection of negative
imaginary systems take their simplest form in the case in
which none of the systems have poles at the origin. Hence,
we will consider this case first along with a stardard positive
real stability result. In the sequel, we will look at the more
general case in which poles at the origin are allowed.

Definition 1 (See [5]):A square real-rational proper
transfer function matrixG(s) is termednegative imaginary
(NI) if

1) G(s) has no poles at the origin and inℜ[s] > 0;
2) j[R(jω)−R∗(jω)] ≥ 0 for all ω ∈ (0,∞) except values

of ω wherejω is a pole ofG(s);
3) If jω0, ω0 ∈ (0,∞), is a pole ofG(s), it is at most a

simple pole, and the residue matrixK0 , lims→jω0
(s−

jω0)jG(s) is positive semidefinite Hermitian.
Definition 2 (See [1]):A square real-rational proper

transfer function matrixG(s) is termed strictly negative
imaginary (SNI) if

1) G(s) has no poles inℜ[s] ≥ 0;
2) j[G(jω)−G∗(jω)] > 0 for ω ∈ (0,∞).
In addition to looking at physical interpretations of nega-

tive imaginary stability results, we will also compare these
interpretations with physical interpretations of positive real
stability results. Hence, we introduce the corresponding
notions of positive real and weakly strictly positive real
transfer functions.

Definition 3 (See [8]):A square real-rational transfer
function matrixG(s) is termedpositive real(PR) if

1) No element ofG(s) has a pole inℜ[s] > 0;
2) G(s) +G∗(s) ≥ 0 for ℜ[s] > 0.
Definition 4 (See [4]):A non-zero square real-rational

transfer function matrixG(s) is weakly strictly positive real
(WSPR) if

1) G(s) has no poles inℜ[s] ≥ 0;
2) G(jω) +G∗(jω) > 0 for ω ∈ (−∞,∞).
The following lemma makes clearer the relationship be-

tween negative imaginary and positive real transfer functions.
Lemma 1 (Theorem 2.7.2 of [8]):Let G(s) be a square

real-rational transfer function matrix. ThenG(s) is positive
real if and only if

1) No element ofG(s) has a pole inℜ[s] > 0;
2) G(jω) +G∗(jω) ≥ 0 for all realω except values ofω

wherejω is a pole ofG(s);
3) If jω0 is a pole of any element ofG(s), it is at

most a simple pole, and the residue matrix,K0 ,

lims→jω0
(s− jω0)G(s) in caseω0 is finite, andK∞ ,

limω→∞

G(jω)
jω

in caseω0 is infinite, is positive semidef-
inite Hermitian.

Now we recall a stability result for the positive feedback
interconnection of two negative imaginary systems, denoted
by [G(s), Ḡ(s)], as shown in Figure 1.

Theorem 1 (See [5]):Given a negative imaginary transfer
function matrixG(s) and a strictly negative imaginary trans-
fer function matrixḠ(s) that also satisfyG(∞)Ḡ(∞) = 0
and Ḡ(∞) ≥ 0. Then the positive feedback interconnection
[G(s), Ḡ(s)] is internally stable if and only if

λmax(G(0)Ḡ(0)) < 1. (1)
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Fig. 1: Positive feedback interconnection

Also, we recall a stability result for the negative feedback
interconnection of two positive real systems, denoted by
[G(s),−Ḡ(s)], as shown in Figure 2.
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Fig. 2: Negative feedback interconnection

Theorem 2 (See for example Lemma 3.37 in [4]):Given
a positive real transfer function matrixG(s) and a weakly
strictly positive real transfer function matrix̄G(s) such
that their negative feedback interconnection is well posed.
Then the negative feedback interconnection[G(s),−Ḡ(s)]
is internally stable.
Negative imaginary systems with poles at the origin.
We now recall some recent stability results for the feed-
back interconnection between negative imaginary systems
containing poles at the origin. This situation may arise in
control systems in which the plant has free body motion
or the controller contains integral action. The complexityof
these results depends on the special cases being considered.
For the purposes of this paper, we will present two of the
simplest results.

We begin with a generalized definition of the negative
imaginary property.

Definition 5 (See [6]):A square transfer function matrix
G(s) is NI if the following conditions are satisfied:

1) G(s) has no pole inℜ[s] > 0.
2) For all ω > 0 such thatjω is not a pole ofG(s),

j (G(jω)−G(jω)∗) ≥ 0.

3) If s = jω0 with ω0 > 0 is a pole ofG(s), then it is
a simple pole and the residue matrixK = lim

s−→jω0

(s−

jω0)jG(s) is positive semidefinite.
4) If s = 0 is a pole ofG(s), then lim

s−→0
skG(s) = 0 for

all k ≥ 3 and lim
s−→0

s2G(s) is positive semidefinite.

Then, we define the following matrices which will be used
in the stability conditions to be presented:

G2 = lim
s−→0

s2G(s), G1 = lim
s−→0

s

(

G(s)−
G2

s2

)

. (2)

Roughly speaking, transfer function matricesG(s) with
only single poles at the origin haveG2 = 0 and transfer
function matrices with only double poles at the origin have
G1 = 0.

Theorem 3 (See [6]):Suppose that the transfer function
matrix Ḡ(s) is SNI and the strictly proper transfer function
matrix G(s) is NI with G2 = 0 andG1 invertible. Then, the
closed-loop positive-feedback interconnection[G(s), Ḡ(s)]
is internally stable if and only if

Ḡ(0) < 0. (3)
Theorem 4 (See [6]):Suppose that the transfer function

matrix Ḡ(s) is SNI and the strictly proper transfer function
matrix G(s) is NI with G1 = 0 and G2 > 0. Then,
the closed-loop positive-feedback interconnection between
[G(s), Ḡ(s)] is internally stable if and only if

Ḡ(0) < 0. (4)

III. M ASS SPRING DAMPER SYSTEM INTERPRETATIONS

We first consider a physical interpretation of Theorem 2
for the case in which the controller transfer functionḠ(s) =
d > 0 is a constant and the plant transfer functionG(s)
is a scalar transfer function corresponding to a spring mass
damper system in which the plant input is the force applied
to a given mass and the plant output is the corresponding
velocity of that mass. The equations of motion for such a
plant can be written in the form

Mẍ+Dẋ+Kx = Lu, y = LT ẋ

whereM > 0, D ≥ 0, K > 0, x ∈ R
n corresponds to the

vector of mass positions,u ∈ R corresponds to the force
input andy ∈ R corresponds to the velocity output; e.g., see
[4], [9]. The corresponding plant transfer function is then
G(s) = sLT

(

s2M + sD +K
)

−1
L. It is straightforward to

verify thatG(s) is PR andḠ(s) is WSPR. In this case, the
negative feedback interconnection betweenG(s) and Ḡ(s)
can be interpreted as shown in Figure 3. Thus in this case, the
positive real stability theorem, Theorem 2 can be interpreted
as saying that the addition of a damper to a spring mass
system will lead to the overall system being internally stable.
We can think of the damper as a static velocity feedback
controller; e.g., see [10]. This interpretation can be extended
to allow for a more general dynamic controller with a WSPR
controller transfer function̄G(s) as illustrated in Figure 4.
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Fig. 3: Spring mass damper interpretation of the PR stability
theorem

From this figure, we can write down the equations of
motion as follows:

m1ẍ1 = F − k1x1 − d1ẋ1,

m2ẍ2 = −k2x2 − d2ẋ2 − d(ẋ2 − ẋ1).

The input to the plant is the forceF and the output of
the plant is the velocitẏx1. Taking Laplace transforms, we
obtain the plant transfer functionG(s) = s

m1s2+d1s+k1

.

If we assumem1 > 0, d1 ≥ 0 and k1 > 0, it is
straightforward to verify thatG(s) is PR. For a negative
feedback interconnection, the input of the controller is the
output of the plantẋ1 and the output of the controller is
minus the input of the plant−F = −d(ẋ2 − ẋ1). Taking
Laplace transforms, we obtain the controller transfer function
Ḡ(s) = d m2s

2+d2s+k2

m2s2+(d+d2)s+k2

which is WSPR form2 > 0,
d > 0, d2 > 0 andk2 > 0. Thus, the PR stability result in
this case can be interpreted as simply ensuring the stability of
the complete spring mass system shown in Figure 4. The fact
that the PR stability result can be used to ensure stability is
directly related to the fact that the plant subsystem is coupled
to the controller subsystem via a damper for which the force
is proportional to velocity. Note that in this example, the
condition d2 > 0 is required for the controller transfer
function Ḡ(s) to be WSPR. Ifd2 = 0 then Ḡ(s) will have
a pair of complex zeros on the imaginary axis. Also,G(s)
is never WSPR since it always has a zero at the origin.

We will now see that the NI stability result, Theorem 1,
corresponds to the case in which the plant subsystem is
coupled to the controller subsystem via a spring in which
the force is proportional to displacement. Indeed, consider
a physical interpretation of the Theorem 1 for the case in
which the controller transfer function̄G(s) = −k < 0 is
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Fig. 4: Spring Mass Damper illustration of the PR stability
theorem with dynamic plant and controller

a constant and the plant transfer functionG(s) is a scalar
transfer function corresponding to a spring mass damper
system in which the plant input is the force applied to a
given mass and the output is the corresponding displacement
of that mass. The equations of motion for such a system can
be written in the form

Mẍ+Dẋ+Kx = Lu, y = LTx

whereM > 0, D > 0, K > 0, x ∈ R
n corresponds to the

vector of mass positions,u ∈ R corresponds to the force
input andy ∈ R corresponds to the displacement output;
e.g., see [4], [9]. The corresponding transfer function is then
G(s) = LT

(

s2M + sD +K
)

−1
L. It is straightforward to

verify that G(s) is SNI andḠ(s) is NI. In this case, the
positive feedback interconnection betweenG(s) and Ḡ(s)
can be interpreted as shown in Figure 5. Note that in this
case, we have reversed the strict and non strict transfer
functions compared to the PR case. Also, in this case, we
do not actually need to assume thatk > 0 in order to ensure
stability. Indeed according to Theorem 1, we only require the
DC gain condition (1) which isG(0)Ḡ(0) = −LTKLk < 1.
This will be automatically satisfied ifk > 0. However, it will
also be satisfied ifk < 0 and−k < 1

LTKL
. That is, the NI

stability theorem can allow for the situation in which the
controller corresponds to a negative spring provided it is not
too large.

From the above example, we can see that the application
of the NI stability result Theorem 1 arises when the plant is
coupled to the controller via a spring. This interpretationcan
be extended to allow for a more general dynamic controller
with an NI transfer function̄G(s) as illustrated in Figure 6.
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Fig. 5: Spring mass damper illustration of the NI stability
theorem

From this figure, we can write down the equations of
motion as follows:

m1ẍ1 = F − k1x1 − d1ẋ1

m2ẍ2 = −k2x2 − d2ẋ2 − k(x2 − x1).

The input of the plant is the forceF and the output of the
plant is the displacementx1. Taking Laplace transforms, we
obtain the plant transfer function̄G(s) = 1

m1s2+d1s+k1

. If
we assumem1 > 0, d1 > 0 andk1 > 0 it is straightforward
to verify that Ḡ(s) is SNI. For a positive feedback inter-
connection, the input of the controller is the output of the
plant x1 and the output of the controller is the input of the
plantF = k(x2−x1). Taking Laplace transforms, we obtain
the controller transfer functionG(s) = −k m2s

2+d2s+k2

m2s2+d2s+k+k2

which is NI for m2 > 0, d2 ≥ 0 andk + k2 ≥ 0. Thus, the
NI stability result in this case can be interpreted as simply
ensuring the stability of the complete spring mass system
shown in Figure 6. The fact that the NI stability result can be
used to ensure stability is directly related to the fact thatthe
plant subsystem is coupled to the controller subsystem via a
spring for which the force is proportional to displacement.

Note that in this case, since the controller is only required
to be NI, we can allowd2 = 0 and also, we can allowk
or k2 to be negative provided thatk + k2 ≥ 0 and the DC
gain condition (1) is satisfied. For this example, the DC gain
condition (1) isḠ(0)G(0) = 1

k1

(− kk2

k+k2

) < 1. If both k and
k2 are positive, this condition will be automatically satisfied.
However, if one ofk andk2 is negative, this condition will
require an additional restriction of1

k
+ 1

k2

< − 1
k1

. In this
case, this condition will in fact imply that the conditionk+
k2 ≥ 0 is satisfied.
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Fig. 6: Spring mass damper illustration of the NI stability
theorem with dynamic plant and controller

A distinction between the use of the PR stability theorem
and the NI stability theorem is that the PR stability theorem
requires that all components of the controller to be passive
whereas the NI stability theorem allows for non-passive
spring components in the controller. However, since the
application of the NI stability theorem requires that the plant
be SNI this means that in this example, the plant dampingd1
was required to be positive whereas in the the application of
the PR stability theorem, the plant damping could be zero.

We now consider a mass spring damper interpretation
of Theorems 3 and 4 corresponding to a plant transfer
function with poles at the origin. In our mass spring damper
interpretation, this will correspond to a plant with free body
motion such as shown in Figure 7.

From this figure, we can write down the equations of
motion as follows:

m1ẍ1 = F − d1ẋ1,

m2ẍ2 = −k2x2 − d2ẋ2 − k(x2 − x1).

The input of the plant is the forceF and the output of the
plant is the displacementx1. Taking Laplace transforms, we
obtain the plant transfer function

G(s) =
1

m1s2 + d1s
. (5)

If we assumem1 > 0 and d1 ≥ 0 it is straightforward
to verify that G(s) is NI according to Definition 5. For a
positive feedback interconnection, the input of the controller
is the output of the plantx1 and the output of the controller
is the input of the plantF = k(x2 − x1). Taking Laplace
transforms, we obtain the controller transfer functionḠ(s) =
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Fig. 7: Spring mass damper illustration of the NI stability
theorem with free body plant and a dynamic controller

−k m2s
2+d2s+k2

m2s2+d2s+k+k2

which is SNI form2 > 0, d2 > 0, k 6= 0,
k2 6= 0 andk + k2 > 0.

If we assumed1 > 0, then the conditions of Theorem 3
will be satisfied provided the DC gain condition (3) holds:

Ḡ(0) = −
kk2

k + k2
< 0. (6)

This condition will be satisfied ifk > 0 andk2 > 0 and in
fact it can only be satisfied ifk > 0 andk2 > 0. Thus, in
this case, we cannot allow the use of active components in
the controller.

Note that this example can also illustrate the use of
Theorem 3 when the controller includes integral action. In
this case, we reverse the role of the plant and the controller
in Figure 7. In this case, the plant is a spring mass damper
system which is coupled via a spring such that the input to
the plant is the displacement of the string and the output of
the plant is the corresponding force provided by the spring.
Also, the controller with integral action is given as in (5).

In the case thatd1 = 0 then the conditions of Theorem
4 will be satisfied provided the same DC gain condition (6)
is satisfied. This corresponds to the case in which the plant
transfer function has a double pole at the origin.

Note that in this section, we have restricted attention to
spring mass damper systems operating in one dimension and
such that all transfer functions are SISO. However, it would
be straightforward to construct similar examples involving
spring mass damper systems operating in two or three
dimensions. Also, it would be straightforward to construct
examples involving multiple spring couplings between the
plant and controller which would correspond to MIMO

transfer functions.

IV. ELECTRICAL CIRCUIT INTERPRETATIONS

We now consider electrical circuit interpretations of the NI
stability result Theorem 1. We first consider an RLC circuit
interpretation of Theorem 1 as shown in Figure 8 where
the plant inputu corresponds to the chargeq =

∫

idt on
the controller coupling capacitorC and the plant outputy
corresponds to the voltageV on the plant circuit. To find the
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Fig. 8: RLC circuit illustration of the NI stability theorem

plant transfer function, we first write down the impedance of
the plant circuit:Z1(s) =

1
1

R1
+ 1

sL1
+sC1

. Then

V = −iZ1 = −sqZ1 = −
sq

1
R1

+ 1
sL1

+ sC1

.

Hence, the plant transfer function is̄G(s) = − s2

s2C1+
s

R1
+ 1

L1

which is SNI.
Also, to find the controller transfer function, we write

down the impedance of the controller circuit:Z2(s) =
1

1

R2
+ 1

sL2
+sC2

. Then,

V2 = iZ2 = sqZ2 =
sq

1
R2

+ 1
sL2

+ sC2

.

Hence,q = C(V −V2) = CV − Cs2q

s2C2+
s

R2
+ 1

L2

and therefore

q =
CV

1 + Cs2

s2C2+
s

R2
+ 1

L2

= C
s2C2 +

s
R2

+ 1
L2

s2(C + C2) +
s
R2

+ 1
L2

V.

That is,G(s) = C
s2C2+

s

R2
+ 1

L2

s2(C+C2)+
s

R2
+ 1

L2

which is NI provided

C ≥ 0, C + C2 > 0, R2 > 0 andL2 > 0.
In this case, the DC gain condition (1) of Theorem 1 is

Ḡ(0)G(0) = 0 × C < 1 which is automatically satisfied.
Thus, in this case, Theorem 1 can be interpreted as saying
that the coupling of the two RLC circuits via a capacitor
will lead to the overall system remaining internally stable.
In addition,G(s) will retain the NI property even ifC2 is
negative provided thatC + C2 > 0. Thus, in this case, we
can also allow for controllers with active elements.



An alternative RLC circuit interpretation of Theorem 1
involves inductive coupling rather than capacitive coupling.
To illustrate this, consider the RLC circuit shown in Figure
9. In this circuit, the plant inputu corresponds to the flux
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Fig. 9: RLC circuit illustration of the NI stability theorem

φ =
∫

V dt on the controller coupling inductor and the plant
output y corresponds to the currenti1 of the plant circuit.
To find the plant transfer function, we first write down the
impedance of the plant circuit:Z1(s) = R1 + sL1 + 1

sC1

.

ThenV = −i1Z1 implies

i1 = −
V

Z1
= −

sφ

R1 + sL1 +
1

sC1

.

Hence, the plant transfer function is̄G(s) = − s2

s2L1+sR1+
1

C1

which is SNI providedL1 > 0, R1 > 0 andC1 > 0.
Also, to find the controller transfer function, we write

down the impedance of the controller circuit:Z2(s) =
R2 + sL2 +

1
sC2

. Then,

i2 =
V

Z2
=

sφ

R2 + sL2 +
1

sC2

.

Also, i = V
sL

= φ
L

. Hence,

i1 = i+ i2 =
φ

L
+

sφ

R2 + sL2 +
1

sC2

=
s2(L+ L2) + sR2 +

1
C2

L(s2L2 + sR2 +
1
C2

)
φ

and thereforeφ =
L(s2L2+sR2+

1

C2
)

L(s2(L+L2)+sR2+
1

C2
)
i1 That is,G(s) =

L(s2L2+sR2+
1

C2
)

L(s2(L+L2)+sR2+
1

C2
)

which is NI providedL ≥ 0, L+L2 >

0, R2 > 0 andC2 > 0.
In this case, the DC gain condition (1) of Theorem 1 is

Ḡ(0)G(0) = 0× L < 1

which is automatically satisfied. Thus, in this case, Theorem
1 can be interpreted as saying that the coupling of the two
RLC circuits via an inductor will lead to the overall system
remaining internally stable.

V. CONCLUSIONS

In this paper we have presented a number of physical
interpretations of stability results for feedback interconnec-
tions of negative imaginary systems and compared these with
stability results for positive real systems. The physical inter-
pretations have involved both spring mass damper systems
and RLC electrical networks. The results may be useful in
gaining a better understanding of these stability results and
motivating new extensions to the existing results. Also, the
interpretations of a controller as a physical system may be
useful in robust controller design and tuning even in the case
when the controller is actually implemented using actuators,
sensors and computers; e.g, see [11].
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