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Abstract—The purpose of this article is to show the continuity control problem. Sectiob VI presents a numerical example,
of the value function of the sparse optimal (orL"-optimal) control  and we confirm the main result. In Sectibn VII, we offer
problem. The sparse optimal control is a control whose suppt concluding remarks
is minimum among all admissible controls. Under the normalfy ’
assumption, it is known that a sparse optimal control is giva by
L' optimal control. Furthermore, the value function of the sparse Il. MATHEMATICAL PRELIMINARIES
optimal control problem is identical with that of the L'-optimal Fore >0, asetW(z,¢) ={y e R": |y — | < e} is

control problem. From these properties, we prove the continity e n )
of the value function of the sparse optimal control problem ly called thes-neighborhoodf = € R", where|| - | means the

verifying that of the L'-optimal control problem. Euclidean norm. LetX be a subset oR". A vectorx € X
is called aninterior point of X if there existse > 0 such
. INTRODUCTION that W («, €) C X. Theinterior of X is the set of all interior

) ) ) ) points of X, and we denote the interior f by int X. A set
In this article, we consider thgparse optimal controlalso  » ~ r» is said to beopenif G = int G. For example, int

known as themaximum hands-off contrd], [7]. A sparse x ig open for everyX C R". A vectorz € R™ is called an
control is defined as a control that has a much shorter suppQfit,erent poindf X if W(z, £)NX # 0 for everye > 0, and
than the horizon length. A sparse optimal control is a cdntrgya closureof X is the set of all adherent points &f. A set
witch has the minimum support among all admissible controlg c R” is said to beclosedif F — F. whereF is the closure
i.e., a sparse optimal control maximizes the time intervedre ¢ o Theboundaryof a setX € R is the set of all points in

the control value is exactly zero. Qn such a time intervahe closure ofX, not belonging to the interior ok, and we
we can stop ac_tua_ltors. In automoblles_, for exa_lmple_, We C38note the boundary of by 9X, that is,dX = X— int X,
reduce_COQ emissions, fuel consumption, traff_lc noise _an%hereXl — X, means the set of all points which belong to
so on if we can stop actuators for long periods of timgne setx, but not to the sefX,. In particular, if X is closed,
Therefore the sparse optimal control has prospects fom8pIVihangx — X — int X, sinceX = X.

the environmental problems|[7]. A function f defined onR™ is said to beupper semi-
This optimal control problem is however hard to solve,ntinuouson R™ if for every a € R the set{z € R" :

since the cost function is neither convex nor continuous. 'IR:B) < a} is open, andf is said to bdower semi-continuous
overcome this difficulty, one can adopt' optimality as a on R” if for every a € R the set{z € R" : f(z) > a} is
convex approximation of the problem. Interestingly, underopen' As a propertyf is continuous orR” if and only if f is
suitable assumption the solutions of the two problems &iBper and lower semi-continuous &; see e.g.[[4, pp. 37].
equivalent|[6], that is, a solution of the sparse optimaltoan | o 7 ~ 0 be fixed. For a continuous—time‘signa(t)

problem is also one of ad'-optimal control problem[1], over a time interval0, T, we define itsL? and L> norms
also known as aninimum fuel control problen], and vice respectively by

versa. Furthermore, the optimal values of the two problems

are the same, and hence their value functions are ideniical. A T 1/p

this article, we investigate topological properties of tlaue l[ull, = {/ u(t)P dt} ’

function of the sparse optimal control problem and prove its

continuity, by using these properties. wherep € (0, c0). Note that ifp € (0, 1), then|| - ||, is not a
This article is organized as follows. In Sectid I, weorm since it fails to satisfy the triangle inequality. Wendee

give mathematical preliminaries for subsequent discassio the set of all signals withjul|, < co by L?[0, T7.

Section[Tll, we define the sparse optimal control problem. We define thesupportof «, denoted byupp(u), as the set

In Section[TV, we briefly review theL!'-optimal control,

and describe the relation between the solutions of the spars {t €10, 7] : u(t) # 0}.

optimal control pr_oblem and t_hose of the -optimal conFroI Then we define thd.’

problem. In Section V, we give main theorem, that is, we

prove the continuity of the value function of the sparseropti lullo = m(supp(u)),

ulloo 2 sup |u(t)],
te[0,7)

norm of a signalu as
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wherem is the Lebesgue measure @ Note that theL’ wheredez(-) is the dead-zone function, defined by
norm is not a norm since it fails to satisfy the positive

homogeneity. The notatiof} - [|o is justified from the fact L r>1
that [Jullo = lim,oul for u € L0, T], which is dez(r) = 40, [r] <1,
proved by using Holder’s inequality and Lebesgue’s cogeer -1, r< -1,

theorem [[4]. dez(1) € [0, 1], dez(-1) € [-1, 0].

[1l. SPARSEOPTIMAL CONTROL PROBLEM If |BTp*(t)| is equal tol on a time intervallt;, t,] C

In this article, we will consider a linear and time-invatian[0, T, t; < t, then theL!-optimal controlu*(t) on [ty, t2]

control system modeled by cannot be uniquely determined by the minimum principle. In
da(t) this case, the intervdl,, t-] is called asingular interval and
= Az(t) + Bu(t), (S) the L'-optimal control problem that has at least one singular

. ) interval is calledsingular. If there exists no singular interval,
whereA, B are constant x n andn x 1 matrices respectively. e L'-optimal control problem is calledormat

For the systemi(S), we ‘ia" a contratimissibleif it steers @ pefinition 1 (Normality): The L'-optimal control problem
given |n|t|a'Fe stateg € R _to the origin at fixed final time P, is said to benormalif the set
T > 0 and is constrained in magnitude by

In2{tel0,T]:|BTp*(t) =1
il <1 0 & {te (0, 7] B (1) = 1}

o is a set of measure zero, thatis(l,) = 0.
We denote byU(£) the set of all admissible controls for anf the L'-optimal control problem is normal, then thi'-

initiate state¢. A sparse optimal control is a control that ha%ptimal control is piecewise constant and takes vales erily
the minimum support among all admissible controls, that i§; ( at aimost allt ¢ [0, T

the sparse optimal control problem for a given initiateesgat
is given as follows: B. Relation between Sparse Optimal Control dndOptimal
Control

Py : minimize ||u|lg subjectto w € U(£). . i i
The following theorem describes the relation between the

As described below, under a suitable assumption the sakitiGparse optimal control proble®, and theL'! optimal control
of this problem are those df*-optimal control problem, and problem ;.

vice versal[B]. Theorem 1:Assume that thel'-optimal control problem
P, is normal and there exists at least abk-optimal control

IV. SOLUTIONS OF SPARSEOPTIMAL CONTROL PROBLEM for a given initiate state. Let UEI(S) and U7 (€) be the sets

A. L'-Optimal Control Problem of the optimal solutions of the probler, (sparse optimal

The L!-optimal control problem for a given initiate stage Ccontrol problem) and the problerf; respectively. Then we
is described as follows: haveU; (&) = Uy (€). Furthermore, we havguollo = [lu1l|x

o _ for anyuy € Uj(€) anduy € Uy (€).
Pr: minimize ||uly subjectto u € U(§). Proof: By assumption, we can take any € U; (£), and

This problem is also known as ainimum fuel control we have
problem [3]. Here we briefly review thel'-optimal control L T B .
problem P, based on the discussion inl [3, Sec. 6-13]. el = 0 Jur(®)ldt = supp(u?) [ur (®)ldt

The Hamiltonian function for thé '-optimal control prob- ! )
lem is defined as = / - Ldt = m(supp(uy)) = [luf]lo.

supp(uy
H(z, p, u) = u] + p" (Az + Bu), 6y

Sinceuj € U(€), the setU(€) is not empty, and for any
wherep € R" is the costate vector. Assume thatis anL!- u € U(§) we have
optimal control andc* is the resultant trajectory. According to

T
Pontryagin’s minimum principle, there exists a costatetmec lu|ly = / lu(t)|dt = / |u(t)|dt
p* which satisfies followings: 0 supp(u) A3)
H(z*, p*,v*) < H(z", p*, u), YueU(E), < /Supp(u) 1dt = ||ullo.
= Ax*(t) + Bu*(t), = —A'p*(t), From [2), [3) and the optimality of}, for anyu € U(§) we

have
X [uillo = lluills < flullx < [lullo.
From (1), theL"-optimal controlu* is given b .
@ P weg y It follows that u} € Uj (&), and hence the séf; (&) is not

u*(t) = —dez(B"p*(t)), tel0,T], empty andU; (&) C Ug (€).



On the other hands, for any; € U (€), we have Lemma 4:Take anya € [0, 7). If u* is an L'-optimal
control for an initiate stat€ € R, then|ju*||; < a.
Proof: Fix « € [0, T]. Suppose thag € R, andu* is
by (2), (3) and the optimality ofi;; andu}. Therefore we have an L'-optimal control for the initiate staté. There exists a
. . controlu € U (&) with ||u]l; < a by Lemmd38. Therefore we
luglly = [luill, @) have|lu*|: = Vi(€) < |[u]: < a. -
lugllo = [luill1. (5) Lemma 5:For any initial state¢ € R(T), there exists an
it follows from (@) thatU (¢) C U7 (€), and hencdl (€) — a_ldmlssml.e cor_ltrloh ste?rmg the state frorh to the origin at
. time 7' with minimal L*-cost ||u||;. Furthermore, then{ €
U; (€). Also, the last statement follows frorl (5).
ORy for 0 = ||ul|1.
V. VALUE FUNCTION IN SPARSEOPTIMAL CONTROL Proof: See [1, Lemma 3.1]. [ |
In this section, we prove the continuity of the value functio Lemma 6:For everya € [0, T,

of the sparse optimal control probleRy. Ry ={£€ R(T): Vi(¢) < al.
ForT >0, a >0, let N

luille < lluglh < flugllo < lluillo = [luill

T Proof: Fix o € [0, T] and take any € R,. Since¢ €
R(T) £ {/ e A*Bu(s)ds : ||ul|oo < 1}, R(T) by Lemmda2, there exists ab!-optimal controlu* by
0 Lemmal®, andV; (¢) = |lu*|l; < o by Lemmal#. It follows

T thaté € {¢€ € R(T) : V1(€) < a}.
R, = {/ e M Bu(s)ds : |[ulloe < 1, Jull < a}. On the other hand, fix: € [0, T] and take any € R(T)
0 with V1(€) < a. Let V1(&) = 8. From Lemmdb, we have
The setR(T) is called thereachable set at timé&". ¢ € ORp, and it follows from Lemmdl2 that € IR C
The value function of an optimal control problem is definegk, - R, . m

as the mapping from an initiate state to the optimal value of Llemma 7:1f the system[(B) satisfies Assumption 1, then
the cost function. The value functions for the problefysand

P, are defined as R, Cint Rg
Vo(&) 2 inf |jullo, Vi(€) 2 inf |jul;. whenever) < a < 8 < T.
u€U(€) u€U(€) Proof: Let us verify only the case when = 0. The other

Note that Lemm&l5 described below shows that there exist@ses are proved inl[1, Lemma 4.2].

solution of the problen®; for any initiate stat& € R(T),and  Since Ry = {0} by Lemmal2, we prove thal € int 13
henceV; (¢) is well defined onR(T). Moreover, by Theorem for every 8 € (0, T]. Fix 8 € (0, T] and take an arbitrary
[@, if the control problemP; is normal, thenV;(¢) is also 7 € (0, B). It is already shown thaf?, C int 123 Since

well defined onR(T) and we haveV,(¢) = V;(¢) for any 0 € Ry, we haveO € int Rg. u

¢ e R(T). Lemma 8:If the system[(B) satisfies Assumption 1, then it
From these facts, we prove the continuityla{£) on R(T) is necessary for every € [0, 7] that:

by proving that ofV; (&). 1) OR, ={&£ € R(T): V1(€) = a},
The next lemma is known as a sufficient condition for the 2) intR, = {£ € R(T) : V1(€) < a}.

L'-optimal control problem to be normall[3]. Proof: We prove the property 1; the property 2 follows

Lemma 1:If the system [IB) is controllable and is non- immediate|y from the property 1 and Lem[ﬁh 6, 5"1@@ is
singular, then thel'-optimal control problenP; is normal.  ¢losed for everya > 0. If a = 0, thendR, = {0}, since

Here we add an assumption @4 (S) as follows: Ry = {0}. It follows from Lemmd® that
Assumption 1:The system[{]S) is controllable and is
nonsingular. {€ € R(T): V1(¢) =0} = Ry = {0} = ORy.
We thgn show thatVl(g)_ is continuous onR(T) under gy ¢ (0, T]. We can taket € AR, sincedR, is not
Assumptior{1L. To prove this, we need some lemmas. empty. R and the empty set are the only subsets whose
Lemma 2:The followings are established: boundaries are empty, sin@" is connected [5, Chapter 3].)
1) The setsR(T') and R, are compact forx > 0. Since¢ € R,, we haveV;(¢) < a. If Vi(€) < a, then
2) Always, R, C R(T), with equality fora > T € € ORy,(¢) C Ry, (g) C int R, and hence a contradiction
3) Ry = {0}. occurs. Thereford; (£) = a, and hence
4) Ro, CRgfor0<a<p.
Proof: See [[1, Lemma 2.1]. N ORo C {€ € R(T): Vi(§) = o}
Lemma 3:For everya € [0, 77, and the sef¢ € R(T) : Vi(€) = a} is not empty for every

Ro = {£ € R(T): 3u e UE) st |uli < al. € (0, T]. Then it follows from Lemm&l5 that

Proof: This follows immediately from the definition of {£e R(I): Vi(§) = a} C ORa
the setR,,. B for everya € (0, T, and the conclusion follows. |



Now, we prove the continuity of the value functiovig(£) and value function
then 1, (&).

6
Theorem 2:If the system[(B) satisfies Assumption 1, the
V1(€) is continuous onR(T). 5
Proof: Put 4
— Vi(§), &< R(T), 37
e - {1, €€ R
T, §¢ R(T). 27
It is enough to show thal; (£) is continuous orR”. 1
First, we show that the set 0

-3 -2 -1 0 1 2 3

{€€R": Vi(€) < a} (6) o
. _ ) ) initiate state
is open for everya € R to prove V;(£) is upper semi-
continuous onR™. If o < 0 or « > T, then the set[{6) is Fig. 1. The value functioip(¢)

empty orR", respectively, and i) < a < T, the set[(b)
coincides with intR, by Lemmal8. Therefore, the séf (6) is
open for everya € R. It follows that Vi (£) is upper semi- where

continuous oriR™. o 1] 1 €]
Next, we show that the set m=(1=e ) 7= log(l - ma)’
{€eR": Vi(€) > a} (7) and if ¢ = 0, then the optimal control takes valgeon [0, 77.

is open for everya € R to prove V(&) is lower semi- Then we have

co_ntir_luous an"_ If « < 0 or« z T, then the set[{7) —llog<1+ ig) €€ [—z1,0),
coincides withR™ or empty, respectively, and if < o < T, a ||
from Lemma$, we have Vo(§) =10, £=0,
_ 1
{EeR": V(&) >a}=R"—{&€e€ R(T): V1(&) < a} —510g<1 - %5), &€ (0, z1].
=R"— R,.

Fig[d shows the value functioby(§) for a = 1, b = 2,
Therefore, the sef]7) is open for everye R. It follows that 7 _ 5 gn R(T) = [-2(1 — e7?), 2(1 — e~5)]. Certainly, we

V1(€) is lower semi-continuous oR™. can see that}y(¢) is continuous onR(T).

Hence V;(£) is continuous onR™, and the conclusion
follows. m VIl. CONCLUSION

Theorem 3:If the system|[(B) satisfies Assumption 1, then In this article, we prove the continuity of the value functio
Vo(€) is continuous onR(T). of the sparse optimal control problem under the normality

Proof: From Lemmd bVi(§) is well defined onR(T'). assumption by proving that of thie'-optimal control problem.

Since theL!-optimal control problem is normal by LemmaThe continuity of the vale function plays an important rae t
[, it follows from Theorenil that, (&) = Vi (&) for all £ €  prove the stability when we extend it to the model predictive
R(T), and the conclusion follows from Theoréh 2. B  control. An extension to the model predictive control is a

VI. EXAMPLE future work.

In this section, we consider a simple example with a 1- REFERENCES
dimensional linear control system [1] O. Hajek, L-optimization in linear systems with bounded controls,
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dt ’ Control, Academic Press, 1969.

. Lo [3] M. Athans and P. L. FalbOQptimal Contro] Dover Publications, 1966.
wherea > 0 andb # 0. Let us verify the continuity o4 (§) [4] W. Rudin, Real and Complex AnalysiscGraw-Hill, New York, 1987.

on R(T). [5] T.B. Singh,Elements of TopologyCRC Press, 2013.
This system satisfies Assumption 1, and hence the spafeM. Nagahara, D. E. Quevedo, and D. NeSi¢, Maximum hapftisontrol
. | i . by the.! . | | thank and L' optimality, Proc. of 52nd IEEE CD{2013.
optimal control Is given by t -optima COI’]tI’Q thanks to [7] M. Nagahara, D. E. Quevedo, and D. NeSi¢, Hands-offtrabras green
Theoren{dL. The reachable sB{T") and the optimal control control, SICE Control Division Multi Symposiun2014.
u for an initiate state£ # 0 are computed via the bang-bang
principle [2, Theorem 12.1] and the minimum principle for

L'-optimal control [3, Section 6.14] as

—sgn(b)sgn(f), le [Oa T)v

R(T) = [_xla xl]’ u(t) = {0 te [T T]
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