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Abstract—The purpose of this article is to show the continuity
of the value function of the sparse optimal (orL0-optimal) control
problem. The sparse optimal control is a control whose support
is minimum among all admissible controls. Under the normality
assumption, it is known that a sparse optimal control is given by
L

1 optimal control. Furthermore, the value function of the sparse
optimal control problem is identical with that of the L

1-optimal
control problem. From these properties, we prove the continuity
of the value function of the sparse optimal control problem by
verifying that of the L

1-optimal control problem.

I. I NTRODUCTION

In this article, we consider thesparse optimal control, also
known as themaximum hands-off control[6], [7]. A sparse
control is defined as a control that has a much shorter support
than the horizon length. A sparse optimal control is a control
witch has the minimum support among all admissible controls,
i.e., a sparse optimal control maximizes the time interval where
the control value is exactly zero. On such a time interval,
we can stop actuators. In automobiles, for example, we can
reduceCO2 emissions, fuel consumption, traffic noise and
so on if we can stop actuators for long periods of time.
Therefore the sparse optimal control has prospects for solving
the environmental problems [7].

This optimal control problem is however hard to solve
since the cost function is neither convex nor continuous. To
overcome this difficulty, one can adoptL1 optimality as a
convex approximation of the problem. Interestingly, undera
suitable assumption the solutions of the two problems are
equivalent [6], that is, a solution of the sparse optimal control
problem is also one of anL1-optimal control problem[1],
also known as aminimum fuel control problem[3], and vice
versa. Furthermore, the optimal values of the two problems
are the same, and hence their value functions are identical.In
this article, we investigate topological properties of thevalue
function of the sparse optimal control problem and prove its
continuity, by using these properties.

This article is organized as follows. In Section II, we
give mathematical preliminaries for subsequent discussion. In
Section III, we define the sparse optimal control problem.
In Section IV, we briefly review theL1-optimal control,
and describe the relation between the solutions of the sparse
optimal control problem and those of theL1-optimal control
problem. In Section V, we give main theorem, that is, we
prove the continuity of the value function of the sparse optimal

control problem. Section VI presents a numerical example,
and we confirm the main result. In Section VII, we offer
concluding remarks.

II. M ATHEMATICAL PRELIMINARIES

For ε > 0, a setW (x, ε) = {y ∈ R
n : ‖y − x‖ < ε} is

called theε-neighborhoodof x ∈ R
n, where‖ · ‖ means the

Euclidean norm. LetX be a subset ofRn. A vectorx ∈ X
is called aninterior point of X if there existsε > 0 such
thatW (x, ε) ⊂ X . The interior of X is the set of all interior
points ofX , and we denote the interior ofX by int X . A set
G ⊂ R

n is said to beopen if G = int G. For example, int
X is open for everyX ⊂ R

n. A vectorx ∈ R
n is called an

adherent pointof X if W (x, ε)∩X 6= ∅ for everyε > 0, and
the closureof X is the set of all adherent points ofX . A set
F ⊂ R

n is said to beclosedif F = F , whereF is the closure
of F . Theboundaryof a setX ∈ R

n is the set of all points in
the closure ofX , not belonging to the interior ofX , and we
denote the boundary ofX by ∂X , that is,∂X = X− int X ,
whereX1 −X2 means the set of all points which belong to
the setX1 but not to the setX2. In particular, ifX is closed,
then∂X = X− int X , sinceX = X.

A function f defined onRn is said to beupper semi-
continuouson R

n if for every α ∈ R the set{x ∈ R
n :

f(x) < α} is open, andf is said to belower semi-continuous
on R

n if for every α ∈ R the set{x ∈ R
n : f(x) > α} is

open. As a property,f is continuous onRn if and only if f is
upper and lower semi-continuous onRn; see e.g., [4, pp. 37].

Let T > 0 be fixed. For a continuous-time signalu(t)
over a time interval[0, T ], we define itsLp and L∞ norms
respectively by

‖u‖p ,

{
∫ T

0

|u(t)|p dt

}1/p

, ‖u‖∞ , sup
t∈[0,T ]

|u(t)|,

wherep ∈ (0,∞). Note that ifp ∈ (0, 1), then‖ · ‖p is not a
norm since it fails to satisfy the triangle inequality. We denote
the set of all signals with‖u‖p < ∞ by Lp[0, T ].

We define thesupportof u, denoted bysupp(u), as the set

{t ∈ [0, T ] : u(t) 6= 0}.

Then we define theL0 norm of a signalu as

‖u‖0 , m(supp(u)),
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wherem is the Lebesgue measure onR. Note that theL0

norm is not a norm since it fails to satisfy the positive
homogeneity. The notation‖ · ‖0 is justified from the fact
that ‖u‖0 = limp→0 ‖u‖

p
p for u ∈ L1[0, T ], which is

proved by using Hölder’s inequality and Lebesgue’s converge
theorem [4].

III. SPARSEOPTIMAL CONTROL PROBLEM

In this article, we will consider a linear and time-invariant
control system modeled by

dx(t)

dt
= Ax(t) +Bu(t), (S)

whereA, B are constantn×n andn×1 matrices respectively.
For the system (S), we call a controladmissibleif it steers a
given initiate stateξ ∈ R

n to the origin at fixed final time
T > 0 and is constrained in magnitude by

‖u‖∞ ≤ 1.

We denote byU(ξ) the set of all admissible controls for an
initiate stateξ. A sparse optimal control is a control that has
the minimum support among all admissible controls, that is,
the sparse optimal control problem for a given initiate state ξ

is given as follows:

P0 : minimize ‖u‖0 subject to u ∈ U(ξ).

As described below, under a suitable assumption the solutions
of this problem are those ofL1-optimal control problem, and
vice versa [6].

IV. SOLUTIONS OFSPARSEOPTIMAL CONTROL PROBLEM

A. L1-Optimal Control Problem

TheL1-optimal control problem for a given initiate stateξ
is described as follows:

P1 : minimize ‖u‖1 subject to u ∈ U(ξ).

This problem is also known as aminimum fuel control
problem [3]. Here we briefly review theL1-optimal control
problemP1 based on the discussion in [3, Sec. 6-13].

The Hamiltonian function for theL1-optimal control prob-
lem is defined as

H(x, p, u) = |u|+ pT(Ax+Bu), (1)

wherep ∈ R
n is the costate vector. Assume thatu∗ is anL1-

optimal control andx∗ is the resultant trajectory. According to
Pontryagin’s minimum principle, there exists a costate vector
p∗ which satisfies followings:

H(x∗, p∗, u∗) ≤ H(x∗, p∗, u), ∀u ∈ U(ξ),

dx∗(t)

dt
= Ax∗(t) +Bu∗(t),

dp∗(t)

dt
= −ATp∗(t),

x∗(0) = ξ, x∗(T ) = 0.

From (1), theL1-optimal controlu∗ is given by

u∗(t) = −dez
(

BTp∗(t)
)

, t ∈ [0, T ],

wheredez(·) is the dead-zone function, defined by

dez(r) =











1, r > 1,

0, |r| < 1,

−1, r < −1,

dez(1) ∈ [0, 1], dez(−1) ∈ [−1, 0].

If |BTp∗(t)| is equal to1 on a time interval[t1, t2] ⊂
[0, T ], t1 < t2, then theL1-optimal controlu∗(t) on [t1, t2]
cannot be uniquely determined by the minimum principle. In
this case, the interval[t1, t2] is called asingular interval, and
theL1-optimal control problem that has at least one singular
interval is calledsingular. If there exists no singular interval,
theL1-optimal control problem is callednormal:

Definition 1 (Normality): The L1-optimal control problem
P1 is said to benormal if the set

I0 , {t ∈ [0, T ] : |BTp∗(t)| = 1}

is a set of measure zero, that is,m(I0) = 0.
If the L1-optimal control problem is normal, then theL1-
optimal control is piecewise constant and takes vales only±1
or 0 at almost allt ∈ [0, T ].

B. Relation between Sparse Optimal Control andL1-Optimal
Control

The following theorem describes the relation between the
sparse optimal control problemP0 and theL1 optimal control
problemP1.

Theorem 1:Assume that theL1-optimal control problem
P1 is normal and there exists at least oneL1-optimal control
for a given initiate stateξ. Let U∗

0 (ξ) andU∗

1 (ξ) be the sets
of the optimal solutions of the problemP0 (sparse optimal
control problem) and the problemP1 respectively. Then we
haveU∗

0 (ξ) = U∗

1 (ξ). Furthermore, we have‖u0‖0 = ‖u1‖1
for anyu0 ∈ U∗

0 (ξ) andu1 ∈ U∗

1 (ξ).
Proof: By assumption, we can take anyu∗

1 ∈ U∗

1 (ξ), and
we have

‖u∗

1‖1 =

∫ T

0

|u∗

1(t)|dt =

∫

supp(u∗

1
)

|u∗

1(t)|dt

=

∫

supp(u∗

1
)

1dt = m(supp(u∗

1)) = ‖u∗

1‖0.

(2)

Sinceu∗

1 ∈ U(ξ), the setU(ξ) is not empty, and for any
u ∈ U(ξ) we have

‖u‖1 =

∫ T

0

|u(t)|dt =

∫

supp(u)

|u(t)|dt

≤

∫

supp(u)

1dt = ‖u‖0.

(3)

From (2), (3) and the optimality ofu∗

1, for anyu ∈ U(ξ) we
have

‖u∗

1‖0 = ‖u∗

1‖1 ≤ ‖u‖1 ≤ ‖u‖0.

It follows that u∗

1 ∈ U∗

0 (ξ), and hence the setU∗

0 (ξ) is not
empty andU∗

1 (ξ) ⊂ U∗

0 (ξ).



On the other hands, for anyu∗

0 ∈ U∗

0 (ξ), we have

‖u∗

1‖1 ≤ ‖u∗

0‖1 ≤ ‖u∗

0‖0 ≤ ‖u∗

1‖0 = ‖u∗

1‖1

by (2), (3) and the optimality ofu∗

0 andu∗

1. Therefore we have

‖u∗

0‖1 = ‖u∗

1‖1, (4)

‖u∗

0‖0 = ‖u∗

1‖1. (5)

It follows from (4) thatU∗

0 (ξ) ⊂ U∗

1 (ξ), and henceU∗

0 (ξ) =
U∗

1 (ξ). Also, the last statement follows from (5).

V. VALUE FUNCTION IN SPARSEOPTIMAL CONTROL

In this section, we prove the continuity of the value function
of the sparse optimal control problemP0.

For T ≥ 0, α ≥ 0, let

R(T ) ,

{
∫ T

0

e−AsBu(s) ds : ‖u‖∞ ≤ 1

}

,

Rα ,

{
∫ T

0

e−AsBu(s) ds : ‖u‖∞ ≤ 1, ‖u‖1 ≤ α

}

.

The setR(T ) is called thereachable set at timeT .
The value function of an optimal control problem is defined

as the mapping from an initiate state to the optimal value of
the cost function. The value functions for the problemsP0 and
P1 are defined as

V0(ξ) , inf
u∈U(ξ)

‖u‖0, V1(ξ) , inf
u∈U(ξ)

‖u‖1.

Note that Lemma 5 described below shows that there exist a
solution of the problemP1 for any initiate stateξ ∈ R(T ), and
henceV1(ξ) is well defined onR(T ). Moreover, by Theorem
1, if the control problemP1 is normal, thenV0(ξ) is also
well defined onR(T ) and we haveV0(ξ) = V1(ξ) for any
ξ ∈ R(T ).

From these facts, we prove the continuity ofV0(ξ) onR(T )
by proving that ofV1(ξ).

The next lemma is known as a sufficient condition for the
L1-optimal control problem to be normal [3].

Lemma 1: If the system (S) is controllable andA is non-
singular, then theL1-optimal control problemP1 is normal.
Here we add an assumption on (S) as follows:

Assumption 1:The system (S) is controllable andA is
nonsingular.

We then show thatV1(ξ) is continuous onR(T ) under
Assumption 1. To prove this, we need some lemmas.

Lemma 2:The followings are established:

1) The setsR(T ) andRα are compact forα ≥ 0.
2) Always,Rα ⊂ R(T ), with equality forα ≥ T .
3) R0 = {0}.
4) Rα ⊂ Rβ for 0 ≤ α ≤ β.

Proof: See [1, Lemma 2.1].
Lemma 3:For everyα ∈ [0, T ],

Rα = {ξ ∈ R(T ) : ∃u ∈ U(ξ) s.t. ‖u‖1 ≤ α}.

Proof: This follows immediately from the definition of
the setRα.

Lemma 4:Take anyα ∈ [0, T ]. If u∗ is an L1-optimal
control for an initiate stateξ ∈ Rα, then‖u∗‖1 ≤ α.

Proof: Fix α ∈ [0, T ]. Suppose thatξ ∈ Rα and u∗ is
an L1-optimal control for the initiate stateξ. There exists a
controlu ∈ U(ξ) with ‖u‖1 ≤ α by Lemma 3. Therefore we
have‖u∗‖1 = V1(ξ) ≤ ‖u‖1 ≤ α.

Lemma 5:For any initial stateξ ∈ R(T ), there exists an
admissible controlu steering the state fromξ to the origin at
time T with minimal L1-cost ‖u‖1. Furthermore, then,ξ ∈
∂Rθ for θ = ‖u‖1.

Proof: See [1, Lemma 3.1].
Lemma 6:For everyα ∈ [0, T ],

Rα = {ξ ∈ R(T ) : V1(ξ) ≤ α}.

Proof: Fix α ∈ [0, T ] and take anyξ ∈ Rα. Sinceξ ∈
R(T ) by Lemma 2, there exists anL1-optimal controlu∗ by
Lemma 5, andV1(ξ) = ‖u∗‖1 ≤ α by Lemma 4. It follows
that ξ ∈ {ξ ∈ R(T ) : V1(ξ) ≤ α}.

On the other hand, fixα ∈ [0, T ] and take anyξ ∈ R(T )
with V1(ξ) ≤ α. Let V1(ξ) = β. From Lemma 5, we have
ξ ∈ ∂Rβ, and it follows from Lemma 2 thatξ ∈ ∂Rβ ⊂
Rβ ⊂ Rα.

Lemma 7: If the system (S) satisfies Assumption 1, then

Rα ⊂ intRβ

whenever0 ≤ α < β ≤ T .
Proof: Let us verify only the case whenα = 0. The other

cases are proved in [1, Lemma 4.2].
SinceR0 = {0} by Lemma 2, we prove that0 ∈ int Rβ

for every β ∈ (0, T ]. Fix β ∈ (0, T ] and take an arbitrary
γ ∈ (0, β). It is already shown thatRγ ⊂ int Rβ . Since
0 ∈ Rγ , we have0 ∈ int Rβ .

Lemma 8: If the system (S) satisfies Assumption 1, then it
is necessary for everyα ∈ [0, T ] that:

1) ∂Rα = {ξ ∈ R(T ) : V1(ξ) = α},
2) intRα = {ξ ∈ R(T ) : V1(ξ) < α}.

Proof: We prove the property 1; the property 2 follows
immediately from the property 1 and Lemma 6, sinceRα is
closed for everyα ≥ 0. If α = 0, then ∂R0 = {0}, since
R0 = {0}. It follows from Lemma 6 that

{ξ ∈ R(T ) : V1(ξ) = 0} = R0 = {0} = ∂R0.

Fix α ∈ (0, T ]. We can takeξ ∈ ∂Rα, since∂Rα is not
empty. (Rn and the empty set are the only subsets whose
boundaries are empty, sinceRn is connected [5, Chapter 3].)
Since ξ ∈ Rα, we haveV1(ξ) ≤ α. If V1(ξ) < α, then
ξ ∈ ∂RV1(ξ) ⊂ RV1(ξ) ⊂ int Rα, and hence a contradiction
occurs. ThereforeV1(ξ) = α, and hence

∂Rα ⊂ {ξ ∈ R(T ) : V1(ξ) = α}

and the set{ξ ∈ R(T ) : V1(ξ) = α} is not empty for every
α ∈ (0, T ]. Then it follows from Lemma 5 that

{ξ ∈ R(T ) : V1(ξ) = α} ⊂ ∂Rα

for everyα ∈ (0, T ], and the conclusion follows.



Now, we prove the continuity of the value functionsV1(ξ) and
thenV0(ξ).

Theorem 2:If the system (S) satisfies Assumption 1, then
V1(ξ) is continuous onR(T ).

Proof: Put

V1(ξ) =

{

V1(ξ), ξ ∈ R(T ),

T, ξ /∈ R(T ).

It is enough to show thatV1(ξ) is continuous onRn.
First, we show that the set

{ξ ∈ R
n : V1(ξ) < α} (6)

is open for everyα ∈ R to prove V1(ξ) is upper semi-
continuous onRn. If α ≤ 0 or α > T , then the set (6) is
empty orRn, respectively, and if0 < α ≤ T , the set (6)
coincides with intRα by Lemma 8. Therefore, the set (6) is
open for everyα ∈ R. It follows that V1(ξ) is upper semi-
continuous onRn.

Next, we show that the set

{ξ ∈ R
n : V1(ξ) > α} (7)

is open for everyα ∈ R to prove V1(ξ) is lower semi-
continuous onRn. If α < 0 or α ≥ T , then the set (7)
coincides withRn or empty, respectively, and if0 ≤ α < T ,
from Lemma 6, we have

{ξ ∈ R
n : V1(ξ) > α} = R

n − {ξ ∈ R(T ) : V1(ξ) ≤ α}

= R
n −Rα.

Therefore, the set (7) is open for everyα ∈ R. It follows that
V1(ξ) is lower semi-continuous onRn.

Hence V1(ξ) is continuous onRn, and the conclusion
follows.

Theorem 3:If the system (S) satisfies Assumption 1, then
V0(ξ) is continuous onR(T ).

Proof: From Lemma 5,V1(ξ) is well defined onR(T ).
Since theL1-optimal control problem is normal by Lemma
1, it follows from Theorem 1 thatV0(ξ) = V1(ξ) for all ξ ∈
R(T ), and the conclusion follows from Theorem 2.

VI. EXAMPLE

In this section, we consider a simple example with a 1-
dimensional linear control system

dx(t)

dt
= ax(t) + bu(t),

wherea > 0 andb 6= 0. Let us verify the continuity ofV0(ξ)
on R(T ).

This system satisfies Assumption 1, and hence the sparse
optimal control is given by theL1-optimal control thanks to
Theorem 1. The reachable setR(T ) and the optimal control
u for an initiate stateξ 6= 0 are computed via the bang-bang
principle [2, Theorem 12.1] and the minimum principle for
L1-optimal control [3, Section 6.14] as

R(T ) = [−x1, x1], u(t) =

{

−sgn(b)sgn(ξ), t ∈ [0, τ),

0, t ∈ [τ, T ],

-3 -2 -1 0 1 2 3
0

1

2

3

4

5

6

initiate state

value function

Fig. 1. The value functionV0(ξ)

where

x1 = (1− e−aT )
|b|

a
, τ = −

1

a
log

(

1−
|ξ|

|b|
a
)

,

and if ξ = 0, then the optimal control takes value0 on [0, T ].
Then we have

V0(ξ) =























−
1

a
log

(

1 +
a

|b|
ξ

)

, ξ ∈ [−x1, 0),

0, ξ = 0,

−
1

a
log

(

1−
a

|b|
ξ

)

, ξ ∈ (0, x1].

Fig.1 shows the value functionV0(ξ) for a = 1, b = 2,
T = 5 on R(T ) = [−2(1 − e−5), 2(1 − e−5)]. Certainly, we
can see thatV0(ξ) is continuous onR(T ).

VII. C ONCLUSION

In this article, we prove the continuity of the value function
of the sparse optimal control problem under the normality
assumption by proving that of theL1-optimal control problem.
The continuity of the vale function plays an important role to
prove the stability when we extend it to the model predictive
control. An extension to the model predictive control is a
future work.
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