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Abstract— In this paper, we report some results on a matrix-
weight consensus algorithm. Specifically, the leader-following
graph is studied in detail. We study conditions for reaching
a consensus in two types of leader-following graphs using the
matrix-weighted consensus algorithm. The results will be used
to interpret several social behaviors. Simulation results are also
provided to vindicate the mathematical analysis.

I. INTRODUCTION

The consensus problem is a study of how multiple agents
interact and exchange information in order to reach an
agreement on one or more variables of interest. The problem
of reaching a consensus has received sustained research
attention from different communities over many years. In
the control systems society, the consensus algorithm has
received significant attention in the past 2 decades thanks
to its ubiquitous applications in cooperative coordination
of multi-agent systems [1]–[3]. Consensus may be applied
to formation control of multiple autonomous vehicles [4],
network synchronization [5], or distributed coordination of
power networks [6], etc. In sociology, the consensus process
[2], [7] has been closely linked to opinion dynamics [8]–
[11]. Here, the variable of interest is the opinion value, on a
given topic/issue, for individuals in a social network.

The usual consensus protocol successfully explained the
process of reaching a consensus in one variable of interest,
or on multiple unrelated variables of interest via the use
of Kronecker products [2], [7], [10]. A recent extension
has been to consider matrix-weighted graphs [12] to model
the information flow. In short, a matrix-weighted graph is a
graph with matrix weights, as compared to scalar weights,
associated with each edge. The matrices are all square, with
the same dimension, and each vertex is assumed to be storing
a vector, rather than a scalar variable, of dimension consistent
with the matrix dimension. Using matrix-weighted graphs,
the authors in [12] introduced a matrix-weighted consensus
algorithm and provided a necessary and sufficient condition
for reaching a consensus with undirected graphs.

Several reasons motivate matrix-weighted consensus al-
gorithms, and we briefly introduce them here. Consider
firstly that exchanges of opinions between people are often
complicated, especially if multiple related topics are being
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discussed. Matrix weights are used to describe the interde-
pendency of the related topics [13], [14]. In addition to this
interdependency, matrix weights can also be used to describe
topic-dependent interactions; depending on the topic being
discussed, an individual may be experts or have only limited
knowledge. The matrix weights then reflect how others in the
social network perceive this individual on different topics.

Besides opinion dynamics on social networks, other prob-
lems involving coordination of multiple autonomous agents
have used matrix-weighted consensus algorithms. Existing
works include synchronizing coupled-oscillator networks [5],
[15], bearing-based formation control and network localiza-
tion [16], [17]. However, these require specific forms for
the matrix weight, relevant only to the given problem. For
example, the matrix weights in [16], [17] are orthogonal
projection matrices obtained from bearing measurements. In
this paper, we provide a result for a general class of matrix
weights.

In the literature, leader-following interaction topologies
have been well-studied in the context of the usual scalar-
weighted consensus algorithm [18], [19]. The authors in [20]
studied leader-following graphs with communication delays.
Consensus under fixed and switching leader-following graphs
was investigated in [18], [21]. A treatment on consensus
and clustering behaviors in leaderless and leader-following
graphs for agents with double-integrator dynamics was pro-
vided in [19]. In this paper, we study matrix-weighted con-
sensus algorithm with leader-following interaction topolo-
gies. The leader-following graphs may be used to model how
information disseminates from a source (leader) to a network
of followers. Two types of leader-following graphs will be
investigated, namely (i) graphs having a leader connected
to an undirected graph, and (ii) directed acyclic graphs. In
each case, we derive sufficient conditions for the followers
to reach a consensus with the leader’s states. Due to the
applicability of matrix-weighted consensus algorithms in
opinion dynamics processes, we then interpret the results in
the context of social behaviors.

The rest of this paper is organized as follows. Section
II briefly recalls some background on a matrix-weighted
consensus algorithm and formulates the problem. In Section
III, we present the theoretical analysis of the proposed con-
sensus protocol under two types of leader-following graphs.
In addition, we discuss and interpret these results in the
context of social networks carrying out opinion dynamics
processes. Section IV contains some simulations to validate
the mathematical analysis. Finally, we summarize the paper
and discuss further research directions in Section V.
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II. PRELIMINARIES AND PROBLEM FORMULATION

Consider a system of n agents (followers) and a single
leader. The dynamics of each agent is given by

ẋi = ui, ∀i = 1, . . . , n, (1)

where xi ∈ Rd and ui ∈ Rd are agent i’ state vector
and control input, respectively. The control input of each
agent is influenced by its neighbors’ states and the matrix
weights, but is not influenced by any external input. The
leader, labeled as i = 0, has a constant state x0 ∈ Rd, i.e.,

ẋ0 = 0. (2)

We use a matrix-weighted graph [12] to characterize
the information flow in the system. The information flow
between the n followers is described by a matrix-weighted
graph G = (V, E ,A). Here, V = {1, . . . , n} is the set of
vertices representing n followers, E ⊆ V × V is the set of
edges in the graph. An edge of G between two vertices i and
j, i 6= j, denoted by (i, j), indicates that information passes
from agent i to agent j, in at least one state variable. In this
paper, we assume there are no self-loops, i.e. @i : (i, i) ∈ E .
The connection between i and j are characterized by a
symmetric positive semidefinite matrix Aij ∈ Rd×d. For
an undirected graph, if (i, j) ∈ E then (j, i) ∈ E and
it is further assumed that Aij = AT

ij = Aji ≥ 0 and
A = {Aji : (i, j) ∈ E} is referred to as the matrix-weight
set corresponding to the edge set E . For a directed graph, an
edge (i, j) is represented by an arrow from vertex i to vertex
j, indicating that agent j receives information from agent i.
If there is an edge (i, j), agent j is called a neighbor of i,
and we have Aji = A>ji ≥ 0. Because the graph is directed,
(i, j) ∈ E does not imply (j, i) ∈ E , and Aij , Aji are not
necessarily equal. The set of neighbors of agent i is denoted
by Ni = {j ∈ V : (i, j) ∈ E , j 6= i}. A (directed) path
P = i1 . . . ik (ij ∈ V) is a sequence of edges (ik, ik+1) in
the graph. A graph is semipositively connected if there is
a path between every pair of vertices (note that graphs with
scalar edge weights are referred to as being “connected”. The
semipositivity arises because we have assumed Aij ≥ 0.). A
directed path P forms a directed cycle if i1 ≡ ik. A directed
acyclic graph is a directed graph that has no cycles [22].

Corresponding to a graph G, we define the matrix-
weighted adjacency matrix A = [Aij ] ∈ Rdn×dn [5].
For any undirected graph G, the matrix-weighted adjacency
matrix A is symmetric. Let Di =

∑
j∈Ni

Aij be the degree
matrix of the vertex i and define D = blkdiag(Di) as the
degree matrix of the graph G. The matrix-weighted Laplacian
is defined as L = D −A. The matrix-weighted consensus
protocol defined on graph G (without a leader) is given by

ẋi =
∑
j∈Ni

Aij(xj − xi), ∀i = 1, . . . , n. (3)

A cluster of a graph G is a set of vertices V ′ ⊆ V such that
under the matrix-weighted consensus protocol (3), xi → xj
as t→∞ for all i, j ∈ V ′. The following result is useful in
later analysis:

Lemma 1: [12, Theorem 5] The undirected graph G has
a cluster containing all vertices of V if and only if the
left nullspace of the matrix-weighted Laplacian L of G is
N (L) = R := Range(1n ⊗ Id).

We study consensus problems with two types of leader-
following graphs denoted by Ḡ. Each graph Ḡ has a single
leader and is defined as follows. Beginning with the graph
G, we add a vertex 0 (representing the leader), a set of
directed edges E0 from vertex 0 to some vertices i ∈ V , and
a corresponding set of matrix weights A0 = {Ai0,∀ i ∈ V}.
The matrix-weight Ai0 is positive semidefinite if agent i
has access to the leader’s state, i.e. (0, i) ∈ E0; otherwise,
Ai0 = 0. The graph Ḡ = {V̄, Ē , Ā} is directed, with
V̄ = {0}∪V , Ē = E0∪E , and Ā = A0∪A. For problem 1, we
assume the follower graph G is undirected, and for problem
2, we assume the follower graph G is directed. Specifically,
the following system will be studied for problems 1 and 2:

ẋ0 = 0, (4a)

ẋi =
∑
j∈Ni

Aij(xj − xi) + Ai0(x0 − xi), (4b)

where i = 1, . . . , n. The leader-following system (4) is said
to achieve leader-follower consensus if, for any initial state
xi(0) ∈ Rd, i = 1, . . . , n, there holds limt→∞ xi(t)→ x0.

A. Opinion Dynamics on Multiple Interdependent Topics

Here, we give one motivating application of matrix-
weighted consensus algorithms (among many others). In
the context of opinion dynamics, the matrix weight Aij

describes 1) the logical interdependence between multiple
topics, and 2) interpersonal relationships that depend on the
topics being discussed. The well known consensus algorithm

ẋi =
∑
j∈Ni

aij(xj − xi), ∀i = 1, . . . , n. (5)

where xi ∈ Rd is the opinion of individual i on d unrelated
topics and aij > 0 is a scalar, is also known as the Abelson
model [11]. The Abelson model is a continuous-time coun-
terpart to the seminal discrete-time French-DeGroot model
for opinion pooling [10], [23].

The consensus algorithm (3) represents discussion on d
different topics which are logically interdependent. Consider
two topics being simultaneously discussed; 1) your favourite
sport and 2) the world’s most famous/successful athlete.
Clearly an individual’s opinion on topic 2 is dependent on
his/her opinion on topic 1; a person who enjoys basketball
is more likely to believe Michael Jordan is the most famous
athlete in contrast to someone who closely follows golf and
may choose Tiger Woods. The matrix weight Aij enables
an individual to simultaneously adjust his/her opinions on
interdependent issues in order to maintain consistency in
his/her set of attitudes and beliefs [13], [14], [24].

In the scalar case (5), aij can be considered as the
strength of the interpersonal relationship between individual
i and individual j, i.e. how much individual i takes into
account the opinion of individual j. Notice that for a given
individual vi with two different neighbors vj , vk, we allow



Fig. 1: Leader-follower graph, with undirected follower
graph.

Aij 6= Aik. That is, we allow different matrix weights for
different neighbors of vi. Suppose that individuals vj , vk
are neighbors of individual vi, and individual vk is a keen
follower of many different sporting codes whereas individual
vj seldom watches sports. Then Aik 6= Aij enables us to
model individual vi’s relationship strengths with vj , vk which
differ due to the topics being discussed, i.e. topic-dependent
interaction topology.

III. ANALYSIS AND DISCUSSION

In this section, we study two common leader-following
graphs. We give conditions for reaching a consensus on
each type. These conditions are then used to discuss related
phenomena in social networks.

A. Undirected Follower Interaction Topology

Before studying the system (4), we state the following
assumptions:

Assumption 1: The graph G has a cluster containing all
vertices in V , or equivalently, N (L) = R.

Assumption 2:
∑n
i=1 Ai0 is positive definite.

Denote zi = xi − x0, for i = 1, . . . , n, and define z :=
[zT1 , . . . , z

T
n ]T ∈ Rdn as the stacked error vector. Equation

(4b) can be rewritten as follows:

żi =
∑
j∈Ni

Aij(zj − zi)−Ai0zi, i = 1, . . . , n. (6)

In compact form, the dynamics (6), for the entire follower
network, can be expressed as

ż = −Lz− blkdiag(Ai0)z = −(L + blkdiag(Ai0))z. (7)

We state the following lemmas.
Lemma 2: Let Bi, i = 1, . . . , n, be n positive semidef-

inite matrices and B =
∑n
i=1 Bi. Then, N (B) =⋂n

i=1N (Bi) and N (B) ⊆ N (Bi).
Proof: The proof follows by straightforward linear

algebra [25].
Lemma 3: Under Assumption 1, the matrix H = (L +

blkdiag(Ai0)) is positive definite if and only if
∑n
i=1 Ai0

is positive definite.
Proof: Under Assumption 1, the matrix-weighted

Laplacian L is positive semidefinite and N (L) = span{1n⊗
Id} [12, Theorem 2]. Since blkdiag(Ai0) is positive
semidefinite, it follows from Lemma 2 that

N (H) ⊆ N (L). (8)

Let {ek}k=1,...,d be the standard basis of Rd, that is, ek ∈

Fig. 2: Leader-follower graph, with directed acyclic follower
graph.

Rd is a vector whose k-th entry is equal to 1 and other entries
are all zero. For any vector v ∈ N (L), we can express v as
a linear combination as follow,

v =

d∑
k=1

vk(1n ⊗ ek) = 1n ⊗ (

d∑
i=1

vkek), (9)

where vk ∈ R, k = 1, . . . , d, are scalars. For any v ∈ N (L),

vTHv = vT (L + blkdiag(Ai0))v

= (1Tn ⊗ (

d∑
k=1

vke
T
k ))blkdiag(Ai0)(1n ⊗ (

d∑
k=1

vkek))

=

n∑
i=1

(

d∑
k=1

vke
T
k )Ai0(

d∑
k=1

vkek)

=

(
d∑
k=1

vke
T
k

)(
n∑
i=1

Ai0

)(
d∑
k=1

vkek

)
. (10)

Suppose that
∑n
i=1 Ai0 is positive definite. Then it follows

from (10) that vTHv > 0, ∀v ∈ N (L). Therefore, (8)
implies that N (H) = {0}, i.e., H is positive definite.

On the other hand, if
∑n
i=1 Ai0 is positive semidefinite

but not positive definite, then we can always choose vk, k =
1, . . . , d, such that v′ =

∑d
k=1 vke

T
k 6= 0 is an eigenvector

of
∑n
i=1 Ai0 corresponding to a zero eigenvalue. Also, v =

1d ⊗ v′ is an eigenvector of H corresponding to a zero
eigenvalue. Thus, H is positive semidefinite, but singular,
in this case.

We can now state the main result for the undirected
follower topology problem in the following theorem.

Theorem 1: Under Assumptions 1 and 2, the leader-
following system (4) achieves leader-follower consensus, for
all initial conditions xi ∈ Rd, i ∈ V̄ , exponentially fast.

Proof: Under Assumptions 1 and 2, it follows from
Lemma 3 that H = (L + blkdiag(Ai0)) is positive definite.
Because (7) is a linear system (ż = −Hz) and H is positive
definite, zi → 0, as t→∞. It follows from the definition of
zi that the system (4) achieves a leader-follower consensus
exponentially fast.

Remark 1: The convergence rate of (7) depends on the
smallest eigenvalue of H, λ1(H). Further, it is easy to see
that λ1(H) ≤ λd+1(L) + λ1(

∑n
i=1 Ai0).

Theorem 1 implies that clustering behavior happens when
either the graph G does not have a spanning cluster or the
communication from the leader to the follower agents in G
is incomplete, i.e.,

∑n
i=1 Ai0 is not positive definite.



B. Directed Follower Interaction Topology

In this scenario, we state the following assumption on the
system (4):

Assumption 3: The matrix Mi =
∑n
j=0 Aij is positive

definite for all i = 1, . . . , n.
Let zi = xi − x0, i = 1, . . . , n, and z = [zT1 , . . . , z

T
n ]T ∈

Rdn. From (1), we can write the z−dynamics as follows:

ż = −Hz, (11)

where H = L + blkdiag(Ai0) is the matrix given by

H =



A10 0 · · · 0

−A21

1∑
l=0

A2l · · · 0

...
...

. . .
...

−An1 −An2 · · ·
n∑
l=0

Anl


.

The following theorem is the main result for the directed
follower topology problem:

Theorem 2: Under Assumption 3, the leader-following
system (4) achieves leader-follower consensus, for all initial
conditions xi ∈ Rd, i ∈ V̄ , exponentially fast.

Proof: Under Assumption 3, we have

det(λIdn −H) =

n∏
i=1

det(λId −
n∑
l=0

Ail)

=

n∏
i=1

det(λId −
n∑

l∈Ni

Ail). (12)

Since Mi =
∑
l∈Ni

Ail, i = 1, . . . , n is positive definite,
it follows from (12) that all eigenvalues of H are strictly
positive and real, or i.e., −H is Hurwitz stable. Thus, the
origin z = 0 is a globally exponentially stable equilibrium
of the system (11). The definition of zi then implies that
leader-follower consensus is achieved.

The following question naturally arises from considering
the result in Theorem 2: “What happens if, for one or more
i, Mi is positive semidefinite and singular?” The overall
system will not achieve a consensus to the leader’s states
in this case. However, all follower agents can reach partial
agreement on some states.

Since Mi is symmetric, it is always diagonalizable. Let
uik ∈ Rd, be an eigenvector of Mi corresponding to
eigenvalue ξk, where k = 1, . . . , d. Then, vd(i−1)+k =[
0Td(i−1) (uik)T 0Td(n−i)

]T
∈ Rdn is a right eigenvector

of L corresponding to the eigenvalue λd(i−1)+k = ξk
(i = 1, . . . , n, and k = 1, . . . , d). Let rd(i−1)+k be the
corresponding left eigenvector of H. Since {vl}l=1,...,n is
a basis consisting of eigenvectors of H, it follows L is
diagonalizable. From linear systems theory [26], solutions

of (11) are given by

z(t) =

n∑
i=1

d∑
k=1

(vTd(i−1)+kz(0))rle
−λd(i−1)+kt

=

n∑
i=1

d∑
k=1

((uik)T zi(0))rle
−λd(i−1)+kt. (13)

Thus, as t→∞, states corresponding to λd(i−1)+k = 0 are
invariant while other states converge to zero. The existence of
some zero eigenvalues implies that a consensus is achieved
if zi(0) ⊥ N (Mi), for all i = 1, . . . , n, otherwise clustering
phenomena occurs.

Clustering has been observed in different variations of
the consensus algorithm, but most existing results focus
on algorithms concerning scalar edge weights. Negative
weights were used to achieve bipartite consensus in [27],
and to achieve cluster consensus in [19]. Bounded-confidence
algorithms achieved clustering in [28], while individual
stubbornness explained clustering phenomenon in [14]. To
the authors’ knowledge, this paper and the paper [12] are
the first to obtain clustering behavior using matrix-weighted
consensus algorithms.

C. Interpreting the results with application to social behav-
iors

In this section, we provide more discussion on the two
above problems in the context of behavior in social net-
works. The leader-follower topologies studied are reflective
of structured communities with a clear leader. The leader is
responsible for deciding how the whole community reacts
to the outside environment which might include outside
information. Our first observation is that a decision or
piece of information from the leader can disseminate to
the community via several information channels, e.g., doc-
uments, rules, or announcements, etc. Thus, matrix weights
can describe the mixing of dissemination methods in those
information channels. Having matrix weights enables us to
capture an individual’s ability to place different weights
on difference information sources. Allowing Aij to vary
between individuals allows for modeling of individual i
allocating different trusts for different neighbor j.

The undirected follower topology models a general social
network. The leader sends pieces of information to a subset S
of its followers (i ∈ S implies Ai0 is positive semidefinite).
In such a social structure, people can exchange information
with friends, neighbors, and thus eventually the information
from the leader passes to the whole network. The result in
Section III-A suggests that the followers can reach a con-
sensus to the leader’s states if and only if (i) the network is
spanned by a cluster (the community is well organized); and
(ii)
∑
i∈SAi0 is positive definite (the aggregated information

the leader sent is complete). Information disseminates as fast
as the convergence rate of the undirected network.

The second topology is more reflective of a rigid hier-
archical society, e.g. a military chain of command. Each
follower i (i = 1, . . . , n) has at least one parent individual
(an immediate leader). In turn, i may be the immediate leader



of several other followers. Information can only pass in one
direction, from leaders to followers. In this structure, the
speed of information spreading to an agent depends on how
close it is to the leader. For an agent to reach a consensus
with its leader’s state, it is required that the connection to
its leader, characterized by Mi =

∑
j∈Ni

Aji, be positive
definite. Since communication is unidirectional, in general,
this type of network has faster response and requires less
communication cost. However, when an agent i does not have
enough communication from its leader, or i.e., Mi is only
positive semidefinite, then i may not consent with its leader
on some states. Consequently, agent i’s followers will also be
affected by this misconnection. Thus, the top-down structure
is less robust against failure/corruption in the network.

IV. SIMULATIONS

In this section, we provide numerical simulations to illus-
trate the analysis in Section III. Each simulation consists
of two setups, one corresponding to a case where the
system reaches a consensus, and the other to the case where
clustering behavior is present.

A. Simulation 1: Undirected follower graph
Consider a system consisting of eight agents in R2 with

the interconnection graph as depicted in Fig. 1. The leader
states are given as x0 = [0, 2]T . The initial conditions of
the follower agents in the simulation are arbitrarily chosen.

Simulation 1a: In this simulation, the set of matrix
weights are given as follows: A10 =

[
1 0
0 0

]
, A20 = 2I2,

A40 =

[
0 0
0 1

]
, A13 =

[
2 −1
−1 2

]
, A25 =

[
0.45 0.6
0.6 0.8

]
, A45 =[

1 1
1 1

]
, A46 =

[
9 3
3 1

]
, A56 =

[
4 6
6 9

]
, and A12 = A34 =

A67 = I2. It is easy to verify that (A10+A20+A40) is pos-
itive definite. Further, the matrix weights A12, A13, A34,
and A67 are positive definite, while A45, A46, A25, A56

are positive semidefinite. The fact that the graph G is
spanned by a cluster (Assumption 1) can be verified either
by computing the rank of L as in Lemma 1, or by using [12,
Corollaries 4 and 5].

Simulation results are shown in Fig. 3. It can be observed
that all agents asymptotically reach a consensus. The con-
sensus value is precisely the leader’s states.

Simulation 1b: In this simulation, we remove the edge
(5, 6) from G and keep other edges and their matrix weights
unchanged. According to [12, Theorem 3], the graph G has
two clusters: the first cluster contains agents 1, . . . , 5, and
the other cluster contains agents 6 and 7.

Simulation results in this case are shown in Fig. 4. Figure 4
shows that agents 1, . . . , 5 asymptotically reach the leader’s
states while agents 6 and 7 reach a consensus on values
different from the leader’s states. Thus, the simulation result
is consistent with the analysis in III-A.

B. Simulation 2: Directed acyclic follower graph
Consider a system consisting of eight agents in a two-

dimensional space with the interconnection graph as depicted
in Figure 2. The leader states are again given as x0 = [0, 2]T .

(a) The x-axis dynamics. (b) The y-axis dynamics.

Fig. 3: Simulation 1a: The agents reach a consensus with the
leader’s states.

(a) The x-axis dynamics. (b) The y-axis dynamics.

Fig. 4: Simulation 1b: Agents 1, . . . , 5 reach a consensus
with the leader while agents 6 and 7 reach a consensus to
values different from the leader’s states.

Simulation 2a: In this simulation, the set of matrix
weights are given as follows: A10 = A34 = A67 = I2, A20 =[
1 0
0 0

]
, A12 =

[
0 0
0 2

]
A40 =

[
0 0
0 1

]
, A13 =

[
2 −1
−1 2

]
,

A25 =

[
0.45 0.6
0.6 0.8

]
, A45 =

[
1 1
1 1

]
, A46 =

[
9 3
3 1

]
, and A56 =[

4 6
6 9

]
. Note that A20, A12, , A25, A40, A45, A46, and

A56 are positive semidefinite. Also, it is easy to verify that
Assumption 3 is satisfied.

Simulation results are shown in Fig. 5. All agents asymp-
totically reach a consensus with the leader as expected. Note
that the speed of reaching consensus in this simulation is
faster than in Simulation 1a, which is consistent with the
discussion in III-C.

Simulation 2b: In this simulation, we remove the edge
(3, 4) from G and keep other edges unchanged. After re-
moving (3, 4), the rank condition on Assumption 3 is only
satisfied for agents 1, 2, and 3.

The results are depicted in Fig. 6. It can be observed from
Figs. 6a and 6b that four clusters appear in this case. Three
agents 1, 2, and 3 reach a consensus to the leader’s states.
Agents 4, 5 converge to a different cluster. The last cluster
contains agents 6 and 7. The states of agents 6 and 7 converge
to a common value due to the fact that the matrix weight A67

is positive definite. Simulation results in this case are also
consistent with the analysis in III-B.

V. CONCLUSIONS

In this paper, we studied a matrix-weighted consensus al-
gorithm on undirected and directed leader-following interac-



(a) The x-axis dynamics. (b) The y-axis dynamics.

Fig. 5: Simulation 2a: The agents reach a consensus with the
leader’s states.

(a) The x-axis dynamics. (b) The y-axis dynamics.

Fig. 6: Simulation 2b: Agents 1, 2, 3 reach a consensus with
the leader’s states while other agents reach a consensus on
some different values.

tion graphs. Conditions for reaching consensus or clustering
were investigated in both cases. Furthermore, we interpreted
algorithms and results in the context of social networks.
Finally, simulations were given to validate the analytical
results.

For further studies, it is of interest to find conditions for
reaching a consensus in leader-following graphs with fixed
or dynamic multiple leaders. Study of the matrix-weighted
consensus protocol under switching leader-following graphs,
or in the presence of communication delays/random per-
turbations are also possible extensions. These extensions
may lead to a deeper understanding on how information is
disseminated in social networks.
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