
Automatic Generation of Test Oracles

- From Pilot Studies to Application

Martin S. Feather

Jet Propulsion Laboratory,

California Institute of Technology

4800 Oak Grove Drive

Pasadena, CA 91109, USA

+1 818354 1194

Martin.S.Feather @Jpl.Nasa.Gov

Ben Smith

Jet Propulsion Laboratory,

California Institute of Technology

4800 Oak Grove Drive

Pasadena, CA 91109, USA

+1 818 353 5371

Ben.D.Smith @ Jpl.Nasa.Gov

ABSTRACT

There is a trend towards the increased use of automation in

V&V. Automation can yield savings in time and effort. For

critical systems, where thorough V&V is required, these
savings can be substantial.

We describe a progression from pilot studies to

development and use of V&V automation. We used pilot

studies to ascertain opportunities for, and suitability of,
automating various analyses whose results would
contribute to V&V. These studies culminated in the

development of an automatic generator of automated test
oracles. This was then applied and extended in the course

of testing an AI planning system that is a key component of
an autonomous spacecraft.

Keywords

Test Oracles, Verification and Validation, Analysis,
Planning, NASA

1 INTRODUCTION

Cost, performance and functionality concerns are driving a
trend towards use of self-sufficient autonomous systems in
place of human-controlled mechanisms. Verification and

validation (V&V) of such systems is particularly crucial
given that they will operate for long periods with little or
no human supervision. Furthermore, V&V must itself be

done at low cost, rapidly and effectively, even as the

systems to which it is applied grow in complexity and
sophistication.

Spacecraft - especially deep space probes - exemplify
these concerns. We have been involved in V&V of an AI

planner that is a key component of a spacecraft's
autonomous control system. In [Feather & Smith 1997] we

report our use of an automated generator of automated test

oracles to support these V&V activities. The paper is
organized to show the progression of steps we followed
leading up to this application, and the lessons we have

learnt by reflecting upon our experience:

• First pilot study: rapid automated analysis (Section 2).

In this study we determined the viability of a rapid
analysis approach. We did ease studies of two kinds of

traditior.al design information, yielding confirmation
of the viability of the analysis method for this kind of
information.

• Second pilot study: application to an autonomous.-

planner (Section 3). We needed this second study to

determine suitability of the rapid analysis approach to,
specifically, checking plans generated by an AI

planner. Particular concerns were scalability of the

approach, and investment of domain experts' time. The
pilot study produced instances of automatic test
oracles.

• Development of automated generator of planner test
oracles (Section 4). Based on the lessons learned from

the second pilot study, we committed to developing a
tool to be used in actual spacecraft testing. The tool

would go beyond the capabilities of the second pilot
study by both extending aspects of the analyses

performed, and automating the generation of the test
oracles themselves.

• Application to V&V of spacecraft planner (Section 5).

We applied the tool during spacecraft planner testing.
Using it, we checked thousands of test cases for

adherence to hundreds of flight rules. Additionally, we
extended it to perform additional validation checks of
particularly complex rules.

• Lessons learned (Section 6). We describe lessons

learned for both software engineering:

• Our experience re-iterates several well-

understood virtues of pilot studies as a precursor
to actual development.

• When domain experts" time is a critical resource,
follow an "on-demand" policy of knowledge

acquisition.

and V&V:

• V&V can make good use of redundancy and

The architecture of the system developed in this phase is
shown in Figure 3. For the remainder of this paper we will

ret'cr to this system as the "planchecker". It has the same
stages as the second pilot study, but with some additional

capabilities:

• Additional analyses: the planner experts asked for

further analyses beyond temporal constraints, notably
typechecking of plan elements, and cross-checking of

plan activities against their rationale (information on
which is included in the generated plans). These

required loading additional information from plans into

the database, and development of additional database
queries.

• Automatic translation: there were over 200 temporal

planner constraints (counting each lowest-level clause
as one constraint). Based on the observations of the

second pilot study, we recognized that manual
translation of the whole set would be a tedious task.

Worse yet, we expected the set of planner constraints

to grow and change over time. In keeping with our
overall goal of judicious use of automation, it was
decided build an automatic translator that would take

any constraint expressible in the planner language and

generate the equivalent database query.

• Extended output: the planner experts wanted the

query results to report more than simply "OK" when a
plan passed the checks. In essence, they wanted a

justification for why a temporal constraint was
satisfied. For example, a constraint that says every
SEP-thrusting interval is followed by an SEP-idle

interval would be justified by listing, for each SEP-
thrusting interval, the specific SEP-idle interval found

to satisfy the constraint.

• Coverage analysis: the planner experts also wanted to

know which of the planner constraints had been
exercised in the plan. For example, only plans that

involved intervals of SEP thrusting would exercise a

constraint of the tbrm "every thrusting interval must

Insights gained from development experience
The development effort did indeed culminate in the

planchecker tool (use of which is discussed in the next
section). We therefore confirmed the validity of the

conclusions drawn from the second pilot study. We also

gained some further insights. These fell into two key areas:

• The second pilot study had suggested that the
translation from planner constraints to database queries

would be straightforward. In practice, automating the

translation of the full planner language turned out to be
more complex than the pilot study had indicated (see

Appendix B for examples). While a procedural

approach to programming the planchecker's translator
sufficed to meet the development goals, we concluded
that translation warrants further attention. We will

return to this in Section 6, Lessons Learned.

• In practice, testers need analysis results with more

content and structure than simply "pass" or "fail".

Again, details can be found in Appendix B, and
discussion is deferred to Section 6. Lessons Learned. "-

5 USE OF ANALYSIS TOOL

The ptanchecker was used by the second author (a planning

expert) during testing. Interaction with the V&V expert was
not required during this phase.

The planchecker was applied to check each plan generated.
Its results were accumulated alongside other statistics about

the plan generation, e.g., how long it took to generate the
plan, how much memory was required to do so. It was easy
to apply in "batch mode" to a whole series of plans. It was

tolerably efficient, taking on the order of 2 minutes to

complete the checking of a typical plan.

Over the course of use, several sets of changes were made

Goals & initial

Manual conditions PLANNER
Conceptual decomposition

constraint and expression [
(natural _, Constraints

language) Database schema

expression

I Database query]

Figure 4 - Extended use of Planchecker (extensions shown in bold)

activides

f plan

Automatic

loading of
database

_m
DATABASE data

Automatic analysis

Query results

out to be a driving concern. Our database-based approach
to analysis sufficed. More important to us was the

investment of effort that would be required of our domain

experts, whose time was in short supply. This led us to
automate the generation of test oracles from a domain-

specific representation. Thus the domain experts' effort it
would take to construct that generator became out dominant
concern. Approaches that could reduce this kind of effort

include the parameterized tableaus of [Dillon &

Ramakrishna 1996], or the algebraic-signature based
mappings of {Reyes & Richardson 1998]. We found,
however, the need to yield needed test results with finer

distinctions than simply "passed" or "failed." Information

about "passed" cases was useful to for test coverage
analysis, and for ascertaining that the test had been passed
"for the fight reasons". Information about "failed" cases

was useful to locate the relevant portions of the plan

contributing to those failures, and so speed the domain
expert in debugging what was going wrong in the planner.

We are not aware of work on automatic generation of test
oracles that supports this capability. Based on our practical

experience of application of test oracle generation, we see
the need for further investigation of this area.

ACKNOWLEDGEMENTS

The research described in this paper was carried out by the
Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National Aeronautics

and Space administration. Reference herein to any specific
commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not constitute

or imply its endorsement by the United States Government
or the .let Propulsion Laboratory, California Institute of
Technology.

The authors thank the other members of the DS-1 planner

team, Nicola Muscettola and Kanna Rajah, for their help.

REFERENCES

[Allen 1983] J.F. Allen. Maintaining Knowledge about
Temporal Intervals. Communications of the ACM,
26(11):832-843, 1983.

[Andrews 199.8] J.H. Andrews. Testing using Log File
Analysis: Tools, Methods, and Issues. Proceedings of
the 13 'h IEEE International Conference on Automated
Software Engineering (Honolulu, Hawaii, October

1998), IEEE Computer Society, 157-166.

[Cohen 1989] D. Cohen. Compiling Complex Database

Transition Triggers. Proceedings of the ACM SIGMOD

International Conference on the Management of Data
(Portland, Oregon, 1989), ACM Press, 225-234.

[Dillon & Ramakrishna 1996] L.K. Dillon & Y.S.
Ramakrishna. Generating Oracles from Your Favorite

Temporal Logic Specifications. Proceedings 4 'h ACM
SIGSOFT Symposium Foundations of Software

Engineering (San Francisco: October 1996), ACM
Press, 106- I 17.

[Dillon & Yu 19941 L. Dillon & Q. Yu. Oracles for

checking temporal properties of concurrent systems.
Proceedings 2"a A CM SIGSOFT Symposium

Foundations of Software Engineering (New Orleans,
December 1994), ACM Press, 140-153.

{DS I 1998] http://nmp.jpl.nasa.gov/ds 1/

{Feather1998] M.S. Feather. Rapid Application of

Lightweight Formal Methods for Consistency Analyses.
IEEE Transactions on Software Engineering, 24(1 I):
949-959, Nov 1998.

[Feather & Smith 1998]. M.S. Feather & B. Smith. V&V of

a Spacecraft's Autonomous Planner through Extended

Automation. Proceedings of the 23 "dAnnual Software
Engineering Workshop (NASA Goddard, MD,
December 1998).

[.lagadeesan et al 1997] L.J. Jagadeesan, A. Proter, C,

Puchol, J.C. Ramming & L.G.Votta. Specification-
based Testing of Reactive Software: Tools and

Experiments. Proceedings of the 19th International

Conference on Software Engineering (Boston, MA,"
May 1997), 525-535.

[Pell 1996] B. Peil, D.E. Bernard, S.A. Chien, E. Gat, N.

Muscettola, P.P. Nayak, M.D. Wagner & B.C.

Williams. A Remote Agent Protoype for Spacecraft
Autonomy. Proceedings of the SPIE conference on
Optical Science, Engineering and Instrumentation,
1996.

{Pell 1997] B. Pell, D.E. Bernard, S.A. Chien, E. Gat, N.

Muscettola, P.P. Nayak, M.D. Wagner & B.C.

Williams. An Autonomous Spacecraft Agent Prototype.
Proceedings First International Conference on
Autonomous Agents. ACM Press, 1997.

[PAX 19981
http://rlmp.jpl.nasa.gov/dsl/tech/autora.html

[Reyes & Richardson 1998] A.A. Reyes & D.J.
Richardson. Specification-Based Testing of Ada Units

with Low Encapsulation. Proceedings of the 13's IEEE

International Conference on Automated Software
Engineering (Honolulu, Hawaii, October 1998), IEEE
Computer Society, 22-31.

[Richardson, Aha & O'Malley 1992] D.J. Richardson, S.L.

Aha & T.). O'Malley. Specification-based Test Oracles

for Reactive Systems. Proceedings of the 14th
International Conference on Software Engineering
(Melbourne, Australia, May 1992), 105-118.

[SOHO 1998] SOHO Mission lnterr,_ption Preliminary.

Status and Background Report - July 15. 1998
http://umbra.nascom, nasa.gov/soho/prelim_and backgr

ound_rept.html

[Wasscrman & Blum 1997] H. Wasserman & M. Blum.

Software Reliability via Run-Time Result-Checking.

JACM 44(6): 826-845, 1997.

[Wile 1997] D. Wile. Abstract Syntax from Concrete

Syntax. Proceedings of the 19th International

Conference on Software Engineering (Boston, MA,

May 1997), 472-480.

APPENDIX A - DETAILS OF THE SECOND PILOT
STUDY

Example of planner constraint

The following example of one of the simpler plan

constraints, as expressed in the planner's special purpose

language, will convey a feel for the challenges faced in this

pilot study:

(De fine_Compa tibi ii ty

;;

;; Idle_Segment

;;

(SINGLE ((SEP_Schedule SEP_Schedule_SV))

(Idle Segment))

:duration_bounds [i _plus infinity_]

:compatibility_spec
(AND

;; Thrust and Idle segments must all

meet--no gaps
(meets

(S INGLE

((SEP_Schedule SEP_Schedule_SV))

((Thrust Segment (? any_value_

?_any_value_)))))
(me t_by

(S INGLE

((SEP_Schedule SEP_Schedule_SV))

((Thrust_Segment (?_any value_

?_any_value_)))))))

This illustrates several areas where knowledge held by the

planner experts had to be acquired by the V&V expert:

• Overall application domain knowledge: "SEP" is an

acronym for "Solar Electric Propulsion," the

innovative engine that provides thrust to DS-1.

"Thrust" and "Idle" are the two main states this

engine cab be in.

Knowledge such as this of the spacecraft domain

provided useful intuition to the V&V expert, and this

second pilot study warranted a deeper level of

understanding than had been necessary for the first

pilot study.

• Problem-specific terminology: "SINGLE" has a

connotation specific to DS-l's planner. It introduces a

description that matches a single interval. (One

alternatives is "MULTIPLE," introducing a description

that matches a contiguous sequence of intervals).

• Terminological variants: The overall definition is of

a "compatibility." The V&V expert preferred to think

of this as a "constraint," in keeping with the

terminology of the database tool. Another example is

the "?_any_value" term, which serves as a wildcard,

indicating any acceptable parameter value may occur

in the corresponding parameter position. Again, the

V&V expert had the exact same concept, but preferred

a different syntax.

• Confirmation of shared understanding: there were

some areas of shared understanding, but these had to

be confirmed, not taken for granted. A trivial example

is "AND", which in the above is used to indicate that the

constraint [compatibility] holds if all of the clauses of

this AND hold. More interesting are the terms "meets"

and "met-by," which are binary temporal relations

between intervals, drawn from the work by Allen

[Allen 1983].

The net result was that the V&V expert required an

intensive session of coaching on the meaning of the planner

notations (plans and constraint language) at the start of this

pilot study, and incremental assistance at various points

throughout. Overall this did not amount to an undue

consumption of planner experts' time.

Example of Translation from Planner Constraint to

Database Query

Consider the Idle_Segment constraint given earlier. Its

essential core is the following:

(SINGLE ((SEP_Schedule . . . (Idle_Segment))

:compa t ibi iity_spec
(AND

(meets (SINGLE ((SEP_Schedule ...

(Thrust_Segment (?,?)))

(met_by (SINGLE ((SEP_Schedule . . .

(Thrust_Segment (?,?))))

The fragments (SINGLE ((SEP_Schedule . .. introduce

descriptions that are to match to activities of the SEP

scheduled in the plan. The first such description is of an

Idle_Segment activity. For every instance of an activity

in the plan matching that description, the constraint

requires that the logical condition (AND ...) is true. The

logical condition is the conjunct of two clauses. The first

says that the matching instance meets a Thrus t_Segment

activity, i.e., the end-point of the Idle_Segment activity

exactly coincides with the start point of some

Thrust_Segment also in the plan. The second says that

the matching instance is met_by a Thrust_Segment

activity, i.e., the start point of the former exactly coincides

with the end point of the latter Pictorially,

7_azust__t I I d.l.e...Segre,at I_arust_SeOrmat I

For translation, this is split into two separate constraints,

All the DS-I planner constraints take the overall form:

for every activity-I that matches description-I there

exists an activity-2 that matches description-2. A

constraint of this form is trivially satisfied if the plan
contains no activities matching description-l. The

planchecker separates trivial and non-trivial cases in its
reports of constraint satisfaction.

The DS- 1 planner generates plans for a segment of the

entire mission (e.g., one week). Thus a plan is bounded
within some "horizon"- it has a start and an end. Yet,

the constraints may extend across this planning
horizon. Such an instance is reported as a special kind
of constraint satisfaction in which the plan satisfies the
constraint within its horizon, but defers some residual

checking for the next plan. The details of all such

deferred checks are included within the planchecker's
report.

In an early version of theplanner, a few of the

constraints referenced information that is not stored in
plans. In essence, this external information directed

which one of several constraints is to apply. The
planchecker's constraint translations handle these

circumstances by checking each alternative. If all fail,

it is an anomaly. If the plan is found to satisfy one of
the alternatives, again, a special kind of constraint

satisfaction is reported, which included the deduction
of what the external information must he to direct the
choice of the satisfied constraint.

The details are domain-specific, but we see a recurring
need to make distinctions among classes of "pass" reports,
and structure the analysis results accordingly.

II

