Walter Cazzola, Andrea Savigni, Andrea Sosio, and Francesco Tisato. Rule-Based Strategic Reflection: Observing and Modifying Behaviour at the Architec-

tural Level. In Proceedings of 14™ IEEE International Conference on Automated Software Engineering (ASE’99), pages 263-266, Cocoa Beach, Florida,

USA, October 1999.

Rule-Based Strategic Reflection:
Observing and Modifying Behaviour at the Architectural Level

Walter Cazzola, Andrea Savigni, Andrea Sosio, Francesco Tisato
DISCO - Universita di Milano Bicocca. Milan, Italy
emails: {cazzola|savigni|sosio|tisato@disco.unimib.it}

Abstract

As software systems become larger and more complex,
a relevant part of code shifts from the application do-
main to the management of the system’s run-time archi-
tecture (e.g., substituting components and connectors for
run-time automated tuning). We propose a novel design ap-
proach for component-based systems supporting architec-
tural management in a systematic and conceptually clean
way and allowing for the transparent addition of architec-
tural management functionality to existing systems. The
approach builds on the concept of reflection, extending it
to the programming-in-the-large level, thus yielding archi-
tectural reflection (AR). This paper focuses on one aspect
of AR, namely the monitoring and dynamic modification of
the system’s overall control structure (strategic reflection),
which allows the behaviour of a system to be monitored and
adjusted without modifying the system itself.

1 Introduction

Any software system of some complexity devolves a rel-
evant part of its code to self-management activities i.e., ac-
tivities whose domain is the system itself. Examples in-
clude bootstrap, shutdown, and dynamic reconfiguration.
In most cases, the system performs these activities on its
own overall architecture, rather than its individual compo-
nents. It is widely known that implementing this kind of
functionality tends to be overly complex. We believe that
the major source of such complexity is the implicit archi-
tecture problem. This term, that we introduced in a previ-
ous paper [1], means that most architectural issues are ad-
dressed in the components’ code itself. For example, once
the system architect has designed a protocol for compo-
nents’ cooperation, this protocol will be split into a specifi-
cation of individual components’ behaviour and then imple-
mented by components’ code. This code (implementing an
architectural choice) will be intermixed with architecture-
independent, functional code, thus hindering components’

reuse.

In our previous papers [1-3], we have proposed a
novel approach to component-based software develop-
ment whereby architectures are made explicit. This
approach, termed architectural programming-in-the-large
(APIL), enforces a clean separation of concerns between
programming-in-the-small issues and programming-in-the-
large issues. In APIL connectors are designed to react to
a set of cooperation events generated by their environment
and, as a reaction, they trigger events on the components
they are connected to. The overall behaviour of the system
is defined by a strategy i.e., a plan stating which cooperation
events should be triggered, and in which order. As a side ef-
fect, APIL also supports addressing self-management activ-
ities in a clean and systematic way, which can be regarded
as an extension of the concepts and techniques of reflection
to the architectural realm.

We coined the name architectural reflection (AR) to de-
scribe this approach to dynamic self-management regarded
as the activity of a system performing computation on its
own software architecture. AR builds on APIL in that
adding architectural reflective capabilities to a system is
made feasible by the explicitation of the architecture.

This paper focuses on one aspect of AR i.e., Strategic
Reflection [2], which is the computation a system performs
on its own behaviour at the architectural level, proposing
a rule-based approach to the definition of a system’s be-
haviour (its strategy). A companion paper discussing the
other aspect of Architectural Reflection, namely Topologi-
cal Reflection, will be written in the near future.

2 Architectural Reflection

Architectural Reflection is the computation performed
by a system about its own software architecture [2]. As
opposed to classic reflection, where actions are performed
on a single entity or interaction, architectural reflection op-
erates in the large i.e., on the whole architecture and on how
components interact.

An architectural reflective system is structured into two
layers, called respectively base-layer and meta-layer. The
meta-layer is architecturally causally connected to the base-
layer i.e., in the former entities work, called architectural
meta-entities, which maintain data structures reifying the
software architecture of the underlying layer; every change
made to these data structures reflects on the underlying sys-
tem architecture, and vice versa. Therefore, according to
the concept of domain as used by Maes in [5], the applica-
tion domain of the architectural meta-entities is the software
architecture of the computational system.

We remark that both the base-layer and meta-layer en-
tities are to be meant as roles, which need not be played
by physically separate entities. This means that our model
can accommodate even “ordinary”, single-layered architec-
tures, in which case the two layers are simply coincident,
the architectural choices being dispersed among the com-
ponents and connectors themselves (thus falling back into
the IAP).

The property of transparency holds as in classical reflec-
tion i.e., the base layer is unaware of the presence and be-
haviour of the meta-layer. Based on our definition of topol-
ogy and strategy as orthogonal aspects of software archi-
tecture, we can further refine the definition of architectural
reflection by defining topological reflection (TR) and strate-
gic reflection (SR).

TR is the computation performed by a system about
its own topology. Examples of topologically reflective
actions include adding or removing components or con-
nectors. SR is the computation performed by the sys-
tem about its own computation in the large i.e., observa-
tion of the abstract state of components and connectors and
observation|manipulation of the base-layer strategy. An ex-
ample of strategically reflective action is changing prior-
ities associated to transitions in a priority-based strategy.
Clearly, every change on the system architecture must take
into account the restrictions forced by the original architec-
ture, in order to keep the system consistent. As anticipated
above, in this paper we confine ourselves to SR.

2.1 Architectural Base-Layer

Since the architectural base-layer is the “ordinary” part
of our approach, it can be described in the usual way
(see [6]) i.e., via components (the locus of computation) and
connectors (the locus of cooperation between components).
Therefore, in the sequel we will only cover those parts of
the architectural base-layer that are original with respect to
the literature, most notably strategy.

2.1.1 Strategy

The system’s strategy is described by a set of rules govern-
ing the occurrence of cooperation events. Such description

264

is actuated at run-time by a strategy actuator (SA in the fol-
lowing) that works as an inference engine interpreting rules
and thereby triggering cooperation events. A rule-based ap-
proach was chosen due to its flexibility, since our intent was
that of accommodating a wide range of global control poli-
cies.
A rule is an expression of the form:
rule <ruleName> {

<rulePreconditions> — <ruleActions> [— <rulePostconditions>]

}

The preconditions section is a boolean expression made
up of two separate subsections, which refer to the state of
connectors and the state of time respectively. Thus, we
have:

< stateOfConnectors >
< stateOfTime >
< stateOfConnectors >,

<rulePreconditions> ::
<rulePreconditions> ::
<rulePreconditions> ::

< stateOfTime >

The state of a connector can be defined as the set of co-
operation events it is ready to accept. In this way, the state
of a connector does not coincide with its internal state, but
is rather an abstraction of it. Thus, the state of a connector
is simply a list of allowed events; more formally:
< stateOfConnectors> ::=

< connectorEnabledEvents>{, <connectorEnabledEvents>}
< connectorEnabledEvents> ::=

< connectorName > < enabledCooperationEvent >
{, <enabledCooperationEvent>}

As far as time is concerned, the “state of time”
serves to express both time-related constraints and time
events. The former is a set of clauses such as “time <
2:00pm”, while the latter can be expressed in the same
fashion with expressions such as “date=today&&time
3.00pm”, where date and t ime are predefined vari-
ables that refer to the current date and time, and today is a
predefined constant. In this way, a uniform notation can be
used to express both events and constraints, which allows
the designer to build extremely diverse systems. Formally:

<stateOfTime> ::= time <relop> <timeExpression>

where <relop> is the set of the usual relational opera-
tors and <time expression> can be expressed in one of the
standard ways.

Clearly, each of the two constituents of the precondition
section can be omitted; in this way very diverse systems
can be designed, ranging from hard real-time ART systems,
in which only the state of time section exists, to rule-based
systems proper, where the order of rule activation is dictated
entirely by the built-in inference engine of the SA.

The actions section of rules is simply a list of coopera-
tion events triggered on the appropriate connectors. More
formally:
<actions> ::= <connectorAction> {, <connectorAction>}

< connectorAction> ::=
<connectorName>> < cooperationEvent>> {, <cooperationEvent>}

Note that a potential problem arises from the fact that
multiple actions can coexist in the action section of a rule.
In fact, one connectorAction might bring the system
in a state that renders the preconditions of the following
connectorAction false. In order to address this prob-
lem, essentially two approaches can be followed:

@ the SA, after executing each connectorAction,
turns back to examining the state of the system (i.e.,
the state of the connectors) and decides whether to ex-
ecute the next action;

® the SA simply ignores the problem and leaves every
such issue with the strategist (see section 2.2).

Following solution @ above, it is the task of the SA to
ensure system consistency, while adopting approach @, in-
consistencies are dealt with at the layer above.

The postconditions section is still a boolean expression
that describes that state of the system after the rule has
been executed. This state includes, as for the preconditions,
the state of connectors (defined in the usual way), and the
state of time; in this way, it is possible to specify time con-
straints on actions. To this aim, a predefined variable (called
elapsedTime) is provided, which, used in conjunction
with the usual relational operators, allows the designer to
easily specify time requirements in the form of time elapsed
from the moment the action starts to the moment the action
ends. In symbols:

<rulePostconditions> ::= <stateOfConnectors>, < stateOfTime>
<rulePostconditions> ::= <stateOfConnectors>, <elapsedTime>
<elapsedTime> ::= timeElapsed <relop> < timeExpression>

Note that organising the rules and setting the appropri-
ate priorities in order to ensure that time constraints are
respected is entirely up to the SA; under this respect, the
rules constitute a high-level specification of the system be-
haviour, which can be implemented in a number of different
ways.

The overall definition of the strategy is as follows:

<strategySpecification> ::=
strategy <strategyName> {
[<ruleDefinition> [{, <ruleDefinition>>}]]

2.1.2 The APIL Virtual Machine.

The virtual machine of the APIL language is structured into
a framework providing both a set of architectural primitives
to be used for actuating the topology and strategy (e.g., to
instantiate components and connectors, and to trigger co-
operation events), and the two actuators which execute the
topology and strategy description by using such primitives.
This structure has several purposes, one of which will be
illustrated in the next section.

265

2.2 Architectural Meta-Layer

The architectural meta-layer is the portion of an archi-
tectural reflective system devoted to observe and manipu-
late the software architecture of the underlying layer (base-
layer).

The meta-layer works as a shell which wraps the base
system. The domain on which it operates is the architec-
ture of the base-layer (just as the base-layer operates in the
application domain).

As discussed so far, in this work we only consider two as-
pects of software architecture: topology and strategy. What-
ever the implementation, the meta-layer plays two roles:
it observes/manipulates the base-layer’s topology, and it
observes/manipulates the base-layer strategy. We use the
terms topologist and strategist to refer to these two roles, re-
spectively. The topologist is whatever entity reflects on the
base-layer’s topology by using the topological primitives,
and the strategist is whatever entity reflects upon the base-
layer’s strategy using the strategic primitives (described in
section 3). The meta-layer can have any implementation (it
may be a monolithic entity or a complex system, perhaps
comprising a topologist entity and a distinct strategist en-
tity; it can be centralised or distributed, and so forth). What
actually defines AR is the fact that the strategist and topol-
ogist roles are played by entities which are distinct from
those residing in the base-layer. We term these distinct enti-
ties (architectural) meta-entities. The interested reader can
refer to [2] for a description of one possible architectural
organisation of the meta-layer.

2.2.1 Topologist and Strategist.

The topologist reifies information about topology (compo-
nents, connectors, and their attachments), while the strate-
gist relies on topological information held by the topologist
and reifies both the current state of components and con-
nectors and the specific strategy at hand. Due to the fact
that architecture is explicit, in order to access and to ma-
nipulate architectural information, the architectural meta-
entities need only interact with the actuators of the underly-
ing layer.

System bootstrap and shutdown can also be handled by
architectural reflection, since they involve topological and
strategic actions (creation and destruction of components,
activation of initialisation activities, and so on). In this case,
the entities playing the topologist/strategist roles must ex-
ist before and|or after the creation and|or destruction of the
system.

Figure 1 represents an architectural reflective system.
In the base-layer are components (grey spheres), connec-
tors (little black spheres connected by arrows, the lit-
tle spheres represent component ports), and actuators (big

Legenda

actuator, and
system state abstraction

Architectural Meta-Layer @
- VT«
R s i
T

@ architectural meta-entity

connector
between
components
--e- T actic
re

Architectural Base-Layer

Figure 1. An architectural reflective system

black spheres) that shape and activate the system. Archi-
tectural meta-entities are represented by light grey spheres.
They directly interact with the underlying actuators, which
abstract (or reify to the meta-layer) topology, strategy, and
system state. Architectural meta-entities operate on the un-
derlying system’s architecture by directing the underlying
actuators.

3 Architectural Causal Connection

As in classic reflection, an architectural reflective system
must keep, at the (n+1)-th layer, an appropriate representa-
tion of the n-th layer, and must be able to reify any changes
in the layer below into its representation and to reflect any
change in that representation into the n-th layer. In such a
system, topology and strategy are reified at the meta-layer
and any change in them is reflected in the base-layer; the
entities in charge of maintaining such description of topol-
ogy and strategy are the topologist and the strategist, respec-
tively. Both are implemented based on a set of primitives of
which, in accordance with the goals of the paper, we will
only cover the strategy-related ones.

As explained above, the system behaviour is governed
by the strategy actuator (SA), which accomplishes its task
by executing a set of rules. In this context, the goal of the
strategist is to observe the system behaviour and to modify
it as needed.

Reifying the system behaviour means essentially two
distinct things, namely knowing the rules, and observing the
state of the SA. This means that the SA must export both a
getRule and a get State primitive to the strategist.

As the system behaviour is dictated by rules, modifying
behaviour implies modifying rules. Thus, the SA exports a
set of primitives that allow the strategist to modify the rule
set; following is a minimal set of those rules:

e addRules: adds a specified set of rules;
e removeRules: removes the specified rules;

e inhibitRules: specifies a set of rules that, even
having their preconditions satisfied, should not be

266

fired;

e trigRules: specifies a set of privileged rules i.e., a
set of rules that should fire before the others (assumed,
of course, that their preconditions are met).

4 Related Work

Several works address the problem of specifying soft-
ware architectures (first of all [6]), but with no notion of
an executable architectural description. Others (such as [4])
are more close to our approach, but none of them addresses
dynamic modification of the architecture as a reflection
problem, nor do they include the idea of maintaining at run-
time a logically centralised description of the system’s ar-
chitecture.

5 Conclusions and State of the Art

This paper presents Strategic Reflection, an aspect of Ar-
chitectural Reflection, which is an extension of classic re-
flection to the software architecture level. The basic ap-
plication of this extension is to allow for a systematic and
conceptually clean approach to designing systems with self-
management functionality (such as dynamic reconfigura-
tion) which also supports such functionality to be added to
an existing system without modifying the system itself. We
are now working both on a complementary paper that de-
scribes TR and on a prototype AR environment.

References

[1] W.Cazzola, A. Savigni, A. Sosio, and F. Tisato. A Fresh Look
at Programming-in-the-Large. In Proceedings of 22nd Annual
International Computer Software and Application Conference
(COMPSAC’98), pages 502-506, Wien, Austria, on 19th-21st
Aug. 1998. IEEE.

W. Cazzola, A. Savigni, A. Sosio, and F. Tisato. Architectural
Reflection: Bridging the Gap Between a Running System and
its Architectural Specification. In Proceedings of 6th Reengi-
neering Forum (REF’98), pages 12-1-12-6, Firenze, Italia,
on 8th-11th Mar. 1998. IEEE.

W. Cazzola, A. Savigni, A. Sosio, and F. Tisato. Architectural
Reflection: Concepts, Design, and Evaluation. Technical Re-
port RI-DSI 234-99, DSI, Universita degli Studi di Milano,
May 1999. Available at http://homes.dico.unimi.
it/~cazzola/cazzolawbib-by-year.html.

S. Ducasse and T. Richner. Executable Connectors: Towards
Reusable Design Elements. In Proceedings of ESEC’97,
LNCS 1301, pages 483-500. Springer-Verlag, 1997.

P. Maes. Concepts and Experiments in Computational Reflec-
tion. In Proceedings of OOPSLA’S87, volume 22 of Sigplan
Notices, pages 147-156, Oct. 1987. ACM.

M. Shaw and D. Garlan. Software Architecture: Perspectives
on an Emerging Discipline. Prentice Hall, 1996.

(2]

(3]

(4]

(5]

(6]

http://homes.dico.unimi.it/~cazzola/cazzolawbib-by-year.html
http://homes.dico.unimi.it/~cazzola/cazzolawbib-by-year.html

	1 Introduction
	2 Architectural Reflection
	2.1 Architectural Base-Layer
	2.1.1 Strategy
	2.1.2 The APIL Virtual Machine.

	2.2 Architectural Meta-Layer
	2.2.1 Topologist and Strategist.

	3 Architectural Causal Connection
	4 Related Work
	5 Conclusions and State of the Art

