Deviation Analysis Through Model Checking

Mats P.E. Heimdahl, Yunja Choi, Mike Whalen
Department of Computer Science and Engineering, University of Minnesota
200 Union Street S.E., 4-192, Minneapolis, MN 55455, USA
{heimdahl,yuchoi,whalgi@cs.umn.edu

Abstract One system is provided with absolutely accurate input data
from the environment, and the other is provided with a
Inaccuracies, or deviations, in the measurements of mon-slightly inaccurateleviation modebf the environment, cre-
itored variables in a control system are facts of life that con- ated by an analyst. Deviation analysis can be distinguished
trol software must accommodate—the software is expectedrom standard verification and validation activities in that
to continue functioning correctly in the face of an expected the control system in question, given correct inputs, is al-
range of deviations in the inputs. Deviation analysis can be ways assumed to be correct—we are not interested in look-
used to determine how a software specification will behaveing for faults in the model under perfect operating condi-
in the face of such deviations in data from the environment. tion. Instead, it is a mechanism for determining the robust-
The idea is to describe the correct values of an environmen-ness of the control system in the face of expected inaccura-
tal quantity, along with a range of potential deviations, and cies in input data.
then determine the effects on the outputs of the system. The
analyst can then check whether the behavior of the software
is acceptable with respect to these deviations.
In this report we wish to propose a new approach to

This idea has been explored in previous work [9, 10, 11]
using symbolic execution and partial evaluation. Given
gualitative descriptions (e.g. “very high”, “low”) of devi-
. . :) X ._ations on system inputs, this work allows open-ended ex-
deviation analysis using model checking techniques. Th'sploratory analysis of effects on system outputs. For exam-
appro_ach allows for more preci_se_ analysis t_han previous ple, using the symbolic execution technique, one can ask:
techniques, and. refocuse§_dey|at|on analyqs from an eXwwhat are the possible effects on the primary flight display
ploratory analysis to a verification task, allowing us to in- if the altitude reading is deviated so that it is ‘higher’ than
vestigate a different range of questions regarding a system’sthe correct value?” Unfortunately, the qualitative abstrac-

response to deviations. tions used in this approach lead to situations where it is dif-
ficult to determine how a deviation will affect the value of
an output.

1. Introduction In this paper, we describe an alternate approach to devia-

tion analysis. Our approach works by restating exploratory

Often, because of inherent limitations in sensors, a con-deviation analysis questions as verification tasks suitable for
trol system is presented with slightly inaccurate information model checking [3]. For example, the flight display ques-
about its environment. These inaccuracies are deviationgion can be restated as follow&will the correct and de-
from the actual value of an environmental variable. These viated primary flight displays always match if the altitude
deviations can stem from a number of sources: inaccuratereading is high by 0 to 100 feet?"This approach is more
sensors, electrical interference on a wire, a garbled messaggrecise than previous approaches and supports an alternate
over a bus, etc. Frequently, control software must continueverification style. We have defined the mechanism for per-
to function correctly within an expected range of deviations forming this analysis and implemented a prototype tool.
in the inputs.

Deviation analysis is concerned with discovering and
classifying any changes in system behavior between two
identical control systems in slightly different environments.

In the next section we describe previous approaches to
deviation analysis in more detail. Sections 3 and 4 describe
how deviation analysis questions are formulated as verifi-
cation problems and implemented using a model checker.

*This work has been partially supported by NASA grant NAG-1-224 Sect?on S pres_ents asmall examplt_e of the approac_h. Fi.nally,
and NASA contract NCC-01-001. Section 6 provides a short discussion and future directions.

2. Background tion of a software requirements model including the devia-
tions in the evaluation.

To represent the deviations, Reese and Leveson use qual-
itative mathematics—a branch of mathematics that operates
on categories of numbers rather than the numbers them-

ful procedure used in the chemical and nuclear industries.S€IVes- For |Estance, Ia negative numl:t))er rT_ll_ur:tlpllgd by a
This section gives the reader an overview of the evolution "€9atlve number equals a positive number. The advantage

of software deviation analysis and the developments that ledt® d€viation analysis is that general results (whole classes of
to the approach described in this paper. deviations) can be propagated quickly and clearly. In [11],
Reese developed a calculus of deviation that formed the ba-

sis for their tools—a sample expression from the calculus
Hazard and Operability analysis (HAZOP): Devel- is “Very High-Positive x Normal-Negative= Very Low-
oped for the British chemical industry in the 1950’s, HAZ- Negative.” With this calculus and the deviation analysis
ard and OPerability analysis (HAZOP) [2, 5] is a manual tools, an analyst can pose a questions such as “If the alti-
analysis technique in which a HAZOP leader directs a group tude altitude reading on altimeter 1 is ‘Very-High-Positive’,
of domain experts to consider a list déviations.In HA- what will be the effect on the pitch command?”
ZOP, a deviation is the combination ofgaide word such In an attempt to implement this analysis procedure in the
as “too-high,” with a system variable,g, “expansion tank ~ NimBUS tool at the University of Minnesotawe came to
pressure,” yielding a questiof#Vhat is the potential effect the conclusion that the qualitative mathematics used in soft-
of the pressure in the expansion tank being too high@e ware deviation analysis did not provide the analysis accu-
answer to the question is now used to pose additional quesracy that we required. Therefore, we developed a related
tions (following the same “guide-word/system variable” ap- approach based on interval calculus as opposed to qualita-
proach) about the effect of the result of the first question. In tive mathematics.
this way, the deviations are propagated through the system

in an attempt to discover hazardous resullts. Perturbation Analysis: Perturbation analysis is an adap-
There have been some attempts to adapt the manual HAtation and simplification of Reese’s deviation procedure for
ZOP technique to include software [6], but these techniquesihe RSMLE language. RSMI€ [12, 13] is a synchronous
are essentially identical to a standard manual HAZOP ex- yataflow language in which the specification state is com-
cept that the guide-words are changed and the model of thgyrised of a set oftate variableseach describing a portion
system may differ from the original plant diagrams from the ¢ the specification behavior.
chemical processing industry (pipes, tanks, and valves) used | perturbation analysis, the user specifies a state vari-
in the original approach. Because of the complexity of con- gpje of interest (VOI), and we construct a partial machine
trol software (as compared to the pipe diagrams of the past)sate containing perturbed values of input variables that we
and the lack of a formalism for propagating the deviations |;se to compute the nominal and perturbed values of the
through the software, these techniques are largely infeasi+/o|. \We can then study these values to determine if the
ble in practice. To address these problems and bring HA'perturbation is within acceptable limits.
ZOP related techniques to the safety critical software field, o example, suppose we have a state varigtdefined
Reese and Leveson developsdtware deviation analysis as follows (using the textual RSME syntax):

Reese and Leveson introduced the notiogsaftware de-
viation analysisin 1996 [11]. The method is based on the
Hazard and Operability (HAZOP) analysis [2, 5], a success-

_ . . STATE_VARIABLE z: INTEGER
Software Deviation Analysis: Software Deviation Anal- PARENT : NONE

ysis [9, 10, 11] overcomes some deficiencies with HAZOP. INITIAL_VALUE : 0

Software Deviation Analysis is based on the same underly- ¢ ASSIFICATION : State

ing idea as HAZOP—accidents are caused by deviations in

system parameters. Using a blackbox software or systemre- EQUALS x * 2 IF b

guirements specification, the analyst provides assumptions EQUALS y IF not (b or c)

about particular deviations in software inputs and hazardous EQUALS x * 2 - y IF not b and ¢

states or outputs, and the software deviation analysis auEND STATE_VARIABLE

tomatically generates scenarios in which the analyst’s as- _ . i
sumptions lead to deviations in the specified outputs. A From the definitionz references two input variables,
scenario is a set of deviations in the software inputs plus@ndy. Perturbations inc andy will manifest themselves
constraints on the execution states of the software that ardn Perturbations oz. Therefore, we must prompt the user
sufficient to lead to a deviation in a safety-critical software ~ 1y,ygus is a execution, analysis, and code generation environment for
output; in a sense, deviation analysis is a symbolic execu-the sate-based, fully formal specification language RSML

to decide to what extent andy are perturbed. The user Finally, the perturbation analysis was originally defined
provides a range of correct values and also a range of peris a ‘one-step’ analysis; it does not record how a series of

turbation. perturbations affects the specification over time. Unfortu-
For our example, a user could definandy as follows: nately, many of the properties that one is interested in (e.qg.
Variable | Correct Rangd Perturbation] Range stgbility) can.only l:_)e check_ed over _muItipIe steps. The devi-
X [0..10] [1.3] [1.13] aupn analysis, while allowing multiple steps, requires user
y [5..60] [10..20] [15..80] guidance to successfully explore a multi-step state space.

While pondering these drawbacks, the solutions started to
look more and more like some variant of temporal logic
i model checking. This fact led to our investigation of alter-
be perturbed anywhere from 1 less than its true value toaive approaches to symbolic execution and was the gen-

3 greater than its true value. Thus, the potential range ofggjs of the model checking ideas presented in the next sec-
perturbed values is from [-1..13]. We compute both the po- i,

tential correct values of the VOI and a range of perturbed
values given perturbed inputs. . . e e
Because we are describing variable ranges, several dif—3' Deviation analysis as a verification problem

ferent assignment conditions could hold for a given state

variable. Therefore, we output of the analysis results a set Because of the issues with the symbolic execution ap-
of (condition, correct, perturbed tuples, where if con- Proach discussed above, we developed a novel technique to
dition condition holds, thencorrect describes the possible Uuse model-checking techniques to perform deviation anal-
correct range of values angbrturbeddescribes the maxi- ysig. As mentioned above, deviation analysis is intended

In this scenario, the correct valuetould range from
[0..10], but because of sensor errors, each valueasiuld

mum perturbation possible. to answer'What if?” questions such @&Vhat is the ef-
In our example, given perturbationssirandy, the tuples fect on the output DOI-Command if the altitude reading is
are as follows: ‘high’?”. This question can be explored with the techniques
Condition | CorrectzRange| Deviatedz Range discu_ssed in the previous section. By restating the quesFion
b [0..20] [—2..26] to “Will thgre pe an effect on the DOI-Command if the a|.tl-
~(bVe) [5..60] [15..80] tude reading is off by 0 to 10_0 feetAle (_:han_ge the analy5|s
“bAe [~60..15] [-82..11] from an exploratory analysis to a verification task suitable

- — - . - for model checking.

This analysis is appealing since it helps answer many consider the example with y, andz introduced above.
guestions @rmg safety analysis that can be very difficult to |, the original statement, we are simply interested in com-
address without tool support. puting all variables that are data dependent andy in any

way. We would then investigate the result and see if any of
Issues with Existing Approaches: These analyses, while the affected variables had a deviation that was unacceptably
useful, have issues that must be resolved before they ardarge. If we restate our problem &Siven a deviation of x
applicable in realistic applications. The most serious issueand y, will the deviation of z be within an acceptable mar-
involves the interplay between intervals (whether numeric gin?”, we can formulate it as a temporal logic property and,
or qualitative) and Boolean conditions within the specifica- with creative use of a model checker, verify that the devia-
tion. The intervals are often too large to accurately partition tion is acceptable or provide an example (counter example)
the conditions into cases in which the deviated specificationof how the deviation oz may become too large.
behaves differently than the non-deviated specification. For ~ The general approach to deviation analysis using model
example, given the definition of, a useful question might checking is to represent the system under investigation with
be: “Are there any circumstances when the non-deviated two models, one representing the behavior of the system
is greater than 18 but the deviated value is less than 18?” with no deviation and the other representing the deviated
For this question, the output of the deviation analysis as well system (Figure 1 outlines the general approach). We want
as perturbation analysis provides no help. The user must gdhe two models to operate on exactly the same inputs, ex-
back and describe smaller correct intervals in order to im- cept for the input variables that are deviated—we can then

prove the accuracy of the analysis. compare the computed states of the two systems and see if
Also, given the interval procedure above, we can deter- any critical deviations are present.
mine the maximum and minimum of the deviatadge but To assure that the discrepancy of computed states of the

it is not as straightforward to determine the maximum and two systems are purely due to the given deviation, we im-
minimum deviation Slm"arly' with qua“tatlve methods, 2We will use Reese’s and Leveson’s original name of the analysis since

the Ou.tpl.Jt of the analysis describes only qualitative ranges,ye ahandoned perturbation analysis before it was fully implemented in a
of deviations. usable tool.

" s

original system
model
input A;

The deviation is

original system model tolerable

"y

System Environment &

" 4

model checking :‘,: .
e
duplicated system model 4

model
input A; & 1
deviation pi
1 kA duplicated system
model
System Environment input A;

The deviation is not
tolerable original system

L

Figure 1. General approach of the deviation s
analysis using model checking.

System Environment

Aof system

A of original system +
deviation

Figure 2. Modelling Scheme 1—simple dupli-

pose two types of constraints on input variables; (1) for non- cation

deviated input variables, both system models must receive

the same values in each step, (2) for deviated input variables

(only existing in the deviated system model), all deviated . . .

variables have exactly the value of the corresponding in-4- Deviation analysis using a model checker
put variables in the original system plus possible deviations.

The two system models are tied together through these con- The analysis ideas outlined above can be realized by ei-
straints on the input variables. ther (1) providing two models of the original system and

tie the input variables together with constraints, or (2) pro-
As an example, let us use thgzexample from above. yiding one model that is instantiated twice under the same

We would provide two system models; one expressed insystem environment. We will discuss these approaches and
terms of the variables, y, andz, and the other (deviated tneijr pros and cons in some detail below.

system) in terms of the variablesd, y_d, andzd. Note
that the models would be identical except for the names of
the variables. We can now tie the ‘correct’ and ‘deviated’
system together with constraints on the input variables. Let
us assume that we want to investigate hoiw affected by
a[0..10] deviation ofx. By defining the constraintg d=y
andx_d=x+[0..10] we have stated that there is no deviation
in the variabley and a deviation 0f0..10] in variablex. If

we want to investigate if is affected by the deviation, we
can state that it is globally true thatz d. If this property
can be verified, the deviation idoes not propagate

If verification fails, we will get an example of a situation
when the deviation irx shows up as a deviation m We
can also capture the notion of acceptable deviations usin
this approach. For instance,xfis deviated, an acceptable
deviation ofz might bee. This can be stated as it is globally INvARY ;=Y

true that(zd -e< z< zd+e). INVAR X 4 = X + deviation

System model duplication: As shown in Figure 2, we
can simply duplicate the original system model and check
for critical discrepancies between the behavior of the origi-
nal system and that of the duplicated system with deviation
introduced.

The constraints between input variables of the original
system and the duplicated system can be imposed outside
of the two models as invariants. For example, suppose the
original system has two input variablésand Y and we
want to perform a deviation analysis on the input variable
X. The constraints would be imposed in NuSMV [8] as fol-
lows (variables with & subscript represents the variables in
%he deviated system):

The greatest challenge of using model checking for de- The benefit of using this approach is mainly its simplic-
viation analysis is in dealing with the state space explosionity; once we have an automated translation between a pro-
problem. Since we are duplicating the system model, thegram or a specification, and a target input language of a
number of system variables may be doubled and, conseimodel checker, no extra work is required for this approach
qguently, the size of the state space may explode. Also, sinceother than duplicating the system and imposing constraints
we are often interested in the actvaluesof data variables, between the input variables. This approach, however, is in-
dealing with data variables ranging over large domains is anefficient since it duplicates all variables (and thus, increas-
issue that must be overcome. We will discuss these issues inng the state space when model checking) and it requires
Section 4 where we discuss the implementation of deviationcostly computations during model checking such as invari-
analysis using a model checker. ant assignments and computations.

" o 5. A small example
® P voaon 5
original system
wgur C} We will use a very simple system from the avionics do-
vz % main to illustrate our approach to deviation analysis. The
o B ~ " Altitude Switch (ASW) is a (somewhat) hypothetical device
System Environment

that turns power on to another subsystem, the Device of In-
) _) terest (DOI), when the aircraft descends below a threshold
Figure 3. Modelling Scheme 2—embedding. altitude and turns the power off again after we ascend over
the threshold plus some hysteresis factor (the example is

. . . adopted from [7, 12]). The robustness to deviations in the
System model embedding: An alternative approach is to L .
altitude measures is the subject of interest in this section.

embed the original system and the deviated system inside
of a common environment and check the outputs of both
embedded systems. As shown in Figure 3, we use a two
level model hierarchy. The top level is responsible for mod- The ASW: The version of the ASW used in this paper re-
elling the input variables to the system. The ‘correct’ and ceives altitude information from some number of radio al-
‘deviated’ versions of the system models are represented asimeters. The functioning of the ASW can be inhibited or
subsystems. The top level will then pass the necessary varitreset at any time. This raises questions, for example, about
ables to the subsystems—variables that are not deviated wilhow the ASW should operate if it is reset or inhibited while
be passed to both subsystems as they are whereas variablesossing the various thresholds. In our initial version of the
that are deviated will be passed with a deviation added toASW, we model the perceived altitude status (are we above
the subsystem designated to be ‘deviated’. The two subsyseor below the thresholds) as shown in Figure 5. Using the
tems execute synchronously and they compute the valuesextual RSML® syntax, we view theAltitudeStatusto be
of state variables based on the input values received fromUnknownat system startup or after a reset. The variable
the parent. We can now express the properties of interest ass assigned the the value in an EQUALS clause when the
properties over the two subsystems. guard condition in that clause is true. The guard condition
Note that the input variables are declared only once in is expressed in a tabular format we callbD/oR tables. The
the parent system in this modelling scheme and we doleft column of theAND/OR table lists the logical phrases.
not need to impose extra constraints for input variables asEach of the other columns is a conjunction of those phrases
invariants—this saves on both verification time and required and contains the logical values of the expressions. If one of
memory space. the columns is true, then the table evaluates to true. A col-
The table in Figure 4 shows a performance comparisonumn evaluates to true if all of its elements match the truth
of the two modelling schemes for one deviation analysis values of the associated predicates. A dot denotes “don’t
over the our sample system, the Altitude Switch, (after ap- care.” For example, we will set thidtitudeStatuso Above
plying abstraction on numeric variables as described in theor Belowwhen we have determined that we are above the
next section). threshold hysteresis or below the threshold respectively—
until then, we consider thaltitudeStatudo be Unknown

usage . . The BelowThreshold(and AboveThresholdHyst({nacros
scheme # of BDD variables memory usage time usage . . L.

) — encapsulate the conditions used to determine this informa-
simele duplication 22 oM frats tion based on the altimeter data, this is where potential vot-
embedding 1o M 096° ing algorithms providing fault tolerance would be modelled.

The ASW command to the Device of Interest (DOI) is

Figure 4. A comparison of the two modelling defined as in Figure 6. At startup and after areset, we do not

schemes. know what the to do with the DOI so we view its status as

Undefined We power the DOI off under two conditions, (1)
we ascended above the threshold plus the hysteresis value
Since the embedding scheme is more efficient, we have(the condition@T(..AltitudeStatus = Abov@)dicating that

chosen to pursue this approach for our prototype tool. Wethe conditionAltitudeStatus = Abovéecame true) while
have implemented a prototype tool that uses RSMis the not being inhibited nor reset, or (2) we are currently above
source language and produces output to NuSMV [8]; never-the threshold plus hysteresis and the reset is removed. We
theless, our approach is not limited to any particular model turn on the DOI if the system is operational (i.e. it isn’t
checking tools. In the next section we will illustrate the ap- inhibited or reset) and the altitude changed from above to
proach with a simple example. below (condition rows 1 and 4).

STATE_VARIABLE AltitudeStatus : STATE_VARIABLE DOI_Intended :

VALUES : {Unknown, Above, Below, AltitudeBad} VALUES : {PowerOff, PowerOn}
PARENT : PowerStatus.On PARENT : PowerStatus.On
INITIAL_VALUE : UNDEFINED INITIAL_VALUE : UNDEFINED
CLASSIFICATION : State CLASSIFICATION : State
EQUALS Unknown IF EQUALS UNDEFINED IF ivReset = TRUE
TABLE
ivReset T EQUALS PowerOff IF
PREV_STEP(..AltitudeStatus) = UNDEFINED : * T, TABLE
END TABLE @T(..AltitudeStatus = Above) : T *
..AltitudeStatus = Above HR
EQUALS Below IF ..ASWOpModes = Inhibited CFY
TABLE @F(..ASWOpModes = Inhibited) : * T;
BelowThreshold() C T, ivReset T F %
AltitudeQualityOK() : T; END TABLE
ivReset F;
END TABLE EQUALS PowerOn IF
TABLE
EQUALS Above IF @T(..AltitudeStatus = Below) : T
TABLE ..ASWOpModes = Inhibited o F;
AboveThresholdHyst() : T; ivReset . F
AltitudeQualityOK() : T, PREV_STEP(..AltitudeStatus) = Unknown : F;
ivReset . F; END TABLE
END TABLE END STATE_VARIABLE
EQUALS AltitudeBad IF
TABLE . o
AltitudeQualityOK() : F; Figure 6. The definition of the DOI_Intended
ivReset . F H
END TABLE state variable.
END STATE_VARIABLE
Figure 5. The definition of the AltitudeStatus itive deviation with only one altimeter will always lead to
state variable. the DOI being turned on too late. Therefore, we have in-

cluded three redundant altimeters and use a voting scheme

to determine if we are above or below the threshold. A

voting scheme where we require all altimeters to be below
Analysis: Figure 7 shows a major part of the NUSMV the threshold before we turn the DOI on will, not surpris-
code for the ASW system automatically translated from the ingly, be useless since a positive deviation in any altimeter
ASW specifications written in RSME. Note that this is will lead to the DOI being turned on too late. Therefore,
the code for one instance of the ASW—not the code we e selected a voting scheme that will ‘obviously’ solve our
will create to represent the two ASW systems for deviation problem—we will turn the DOI on as soon esealtimeter
analysis. indicates we are below the threshold and we will turn the

Given this system model, we would like to check the tol- DOI off as soon asll altimeters indicate we are above the
erance of the system in terms of deviation of the measuredthreshold plus hysteresis. With this voting scheme, the DOI
altitude. Suppose one of the altimeters is not accurate andwill be turned on early of we have a negative deviation in
the measured altitude can be deviatedb§0 ft... 100 ft one altimeter and there will be no change in when the DOI
from the actual value of the altitude. The main function is turned on if we have a positive deviation. Also, the DOI
of the ASW system is to signal then command to the may be turned off late if we have a negative deviation in one
DOI when the aircraft descends below the threshold alti- altimeter and there will be no change in when the DOI is
tude. Since it is quite critical that the DOI is turned on in turned off if we have a positive deviation (see Figure 8)—at
a timely manner, we would like the ASW to tolerate devi- l|east that is what we expected before applying our deviation
ations in the altitude measures. In particular, we want to analysis.
make sure that the DOI is never turned on ‘too late’. This The NuSMV code is translated using the embedding
can be captured as the propeffihe deviated system sig- scheme described in the previous section as shown in Fig-
nals the DOl comman@®nwhenever the correct system sig- ure 9. The main module defines input variables for the ASW
nals the DOl comman@®n”. Note here that we are not con- system and the range of deviations for one of the altimeters.
cerned about the deviation leading to the DOI being turned |t embeds two synchronous sub-procesa&N Original
on ‘too early’; this is an acceptable performance degrada-and ASWDeviated that accept the values of input vari-
tion in the face of deviations, ‘too late’, however, is not ac- ables defined in the main module; correct values for the
ceptable. processASWOriginal and deviated values for the process
To achieve this level of fault tolerance we will have to in- ASWDeviated The definition for the sub-moduleSWis

clude more than one altimeter in the ASW system—a pos-identical to the original ASW system definition except for

MODULE main

DEFINE

--- declare constants ---
AltitudeThreshold:= 2000;
00;

AltBadTolerance:=5;

VAR

--- declare input variables ---
Altitudel : 0..40000 ;
AltitudeQ1:{Good,Bad,Un_defined } ;
Altitude2 : 0..40000 ;
AltitudeQ2:{Good,Bad,Un_defined } ;
Altitude3 : 0..40000 ;
AltitudeQ3:{Good,Bad,Un_defined } ;
InhibitSignal: {Inhibit,NoInhibit};
ivReset : boolean;

--- declare state variables ---

DOICommand: {On,Off,Un_defined } ;

AltitudeStatus: {Unknown,Above,Below,AltitudeBad,Un_defined } ;
ASWOpModes: {OK,Inhibited,FailureDetected,Un_defined } ;
FaultDetectedVariable: {0, 1, Un_defined } ;

DOI_Intended: {PowerOff,PowerOn,Un_defined } ;

--- declare macro variables ---

m_BelowThreshold:BelowThreshold(AltitudeThreshold, Altitude1,AltitudeQ1,Altitude2,AltitudeQ2, Altitude 3, Altitude Q3);
m_AltitudeQualityOK:AltitudeQualityOK (AltitudeQ1, AltitudeQ2, AltitudeQ3);
m_AboveThresholdHyst:AboveThresholdHyst(Altitude Threshold,Hysteresis, Altitude 1, Altitude Q1,Altitude 2, Altitude Q2, Altitude 3, Altitude Q3);

ASSIGN

init(InhibitSignal):= Nolnhibit;
init(ivReset):=
init(AltitudeStatus):=Un_defined;
init(DOICommand):=Un_defined;

--- state variable assignments ---

next(DOICommand):=

case
(((next(DOI_Intended)=PowerOn) & !((DOI_Intended=PowerOn)))) : On;
(((next(DOI_Intended)=PowerOff) & !((DOI_Intended=PowerOff)))) : Off;
1

: DOICommand ;
esac;
next(AltitudeStatus):=
case
(((AltitudeStatus= Un_defined))) | (((next(ivReset)))) : Unknown;
((next(m_BelowThreshold.result))&(next(m_AltitudeQualityOK.result))&!((next(ivReset)))) : Below;
((next(m_AboveThresholdHyst.result))&(next(m_AltitudeQualityOK.result))&!((next(ivReset)))) : Above;
(!(next(m_AltitudeQualityOK.result))&!((next(ivReset)))) : AltitudeBad;
1 : AltitudeStatus ;
esac;
next(ASWOpModes):=
case
(((next(ivReset)))) : Un_defined ;
(((next(InhibitSignal)=Inhibit)) & !((next(ivReset)))) : Inhibited;
(!((next(InhibitSignal)=Inhibit)) & ((next(AltitudeStatus)=AltitudeBad)) & !((next(ivReset)))) : FailureDetected;
({((ASWOpModes=FailureDetected)) & !((next(InhibitSignal)=Inhibit)) & !((next(AltitudeStatus)=AltitudeBad)) & !((next(ivReset)))) : OK;
1 : ASWOpModes ;
esac;
next(FaultDetectedVariable):=
case
(((next(ASWOpModes)=FailureDetected))) : 1;
(((next(ASWOpModes)=0K))) 1 0;
1 : FaultDetectedVariable ;
esac;
next(DOI_Intended):=
case
((((next(ivReset))=1))) : Un_defined ;
((next(AltitudeStatus)=Below) & !((AltitudeStatus=Below)))
&!((next(ASWOpModes)=Inhibited))&!((next(ivReset)))&!((AltitudeStatus=Unknown))) : PowerOn;
(((next(AltitudeStatus)=Above))&(!((next(ASWOpModes)=Inhibited)) & (ASWOpModes=Inhibited)))|(((next(AltitudeStatus)=Above) &
I((Altitude Status=Above)))&!((next(ASWOpModes)=Inhibited))&!((next(ivReset)))) : PowerOff;
1 : DOI_Intended ;
esac;

MODULE BelowThreshold(Altitude Threshold,Altitude1,AltitudeQ1,Altitude2, Altitude Q2,Altitude 3, Altitude Q3)
VAR
result : boolean;

ASSIGN
init(result
next(result):

(((next(AltitudeQ3)=Good)) & ((next(Altitude3)<Altitude Threshold))) | (((next(AltitudeQ2)=Good))&((next(Altitude2)<Altitude Threshold)))
| ((next(AltitudeQ1)=Good)) & ((next(Altitude1)<Altitude Threshold)));

MODULE AboveThresholdHyst(AltitudeThreshold,Hysteresis, Altitude 1, AltitudeQ1,Altitude2, AltitudeQ2,Altitude 3, Altitude Q3)
VAR
result : boolean;

ASSIGN

init(result):=0 ;

next(result):= /* true if all of the altitude values are above the threshold hysteresis
false , other wise */

Figure 7. Fraction of NuSMV code for the ASW system

DOI turned on early
if one altimeter has
anegative deviation

DOl turned off late if
one altimeter has a
negative deviation

/ Threshold + Hysteresis

Threshold

Positive deviation - /
Non-deviated trajectory /

Negative deviation

Figure 8. A negative deviation will turn on the
DOI early. A positive deviation will have no
effect.

the removal of the input variable declarations and the macro
declarations; the macro declarations are referenced from

both sub-processes and do not need to be declared twice.

MODULE main
DEFINE
Altitude1_Deviated := Altitudel + Deviation;

VAR

--- declare input variables ---
Altitude1 : 0..40000 ;
AltitudeQ1:{Good,Bad,Un_defined } ;
Altitude2 : 0..40000 ;
AltitudeQ2:{Good,Bad,Un_defined } ;
Altitude3 : 0..40000 ;
AltitudeQ3:{Good,Bad,Un_defined } ;
InhibitSignal: {Inhibit,Nolnhibit};
ivReset : boolean;

--- declare deviation limit
Deviation: -100..100;
--- declare sub-systems
ASW_Original : ASW(Altitudel, AltitudeQ1,Altitude2,AltitudeQ2,
Altitude3, AltitudeQ3, InhibitSignal,ivReset);
ASW_Deviated : ASW(Altitudel_Deviated, AltitudeQ1,Altitude2,
AltitudeQ2, Altitude3,AltitudeQ3, InhibitSignal,ivReset);
SPEC
AG(ASW_Original.DOICommand=0n -> ASW_Deviated.DOICommand=0n);

--- subsystem definition
MODULE ASW(Altitudel, AltitudeQ,Altitude2,AltitudeQ2,
Altitude3, AltitudeQ3, InhibitSignal,ivReset)
/* the code is the same as the code in the original ASW system except for the
removal of the input variable declaration and the macro declaration */

/* the common macro declaration part */
MODULE BelowThreshold(..)

Figure 9. NuSMV code for deviation analysis.

The propertyThe deviated system signals the DOI com-
mandOnwhenever the correct system signals the DOI com-
mandOn’ can be specified in CTL as

AG(ASW_Original.DOICommand=0On-
ASW _Deviated.DOICommand=0n)

ing the ASW system is not feasible without using some
abstraction. The change of the integer values in the ASW
is not constrained, i.e., the altitude values are random in-
put. Therefore, we can apply a simplemain reduction
abstraction[1] to reduce the size of the domain without af-
fecting the behavior of the system.

At a high level, the idea behind the simplest version of
domain reduction abstraction is to partition the input do-
main based in the collection of numeric guarding conditions
in the model. We then reduce the domain to a set of ran-
dom representatives, one from each equivalence class. In
the ASW mode we can identify six numeric guarding con-
ditions.

Altitudel < AltitudeT hreshold
Altitudel > AltitudeThreshold + Hysteresis
Altitude2 < AltitudeThreshold
Altitude2 > AltitudeT hreshold + Hysteresis
Altitude3 < AltitudeThreshold
Altitude3 > AltitudeThreshold + Hysteresis

The constraints produce the following data equivalence
classes.

a;1 Altitude#i < AltitudeT hreshold
a;o Altitude#ti > AltitudeT hreshold A

Altitude#ti < AltitudeThreshold + Hysteresis
ai3 Altitude#ti > AltitudeT hreshold + Hysteresis

wherei = 1..3. After selecting a representative value from
each equivalence class, the domain of each altitude variable
is reduced tAAltitude#i : {1999, 2001, 2201 We proved

in [1] that a system model with such a reduced domain bi-
simulates the original system model.

After applying the domain reduction abstraction,
NuSMV easily checks the property and generates a counter
example as shown in Figure 10. The variables withsab-
script in the lower half of the table are the variables in the
deviated system—there is[é100..100] deviation inAlti-
tudel The issue highlighted by the counter example is a
startup problem caused by our definition of the initial sys-
tem behavior.

A graphical view of the startup scenario can be seen in
Figure 11. At system startup, the state varialbdtitud-
eStatusand DOICommandare given the valuéJndefined
since we do not know if we are above or below the thresh-
old and, consequently, we do not know if the DOI should
be on or off. In this initial version of the ASW, we do
not assign a new value to tfEOICommanduntil we cross
one of the thresholds (either we drop below the threshold
or we raise above the threshold plus hysteresis)—note that

Since the model includes several integer variables over awe turn the DOI on and off based on theentof crossing

large domain, such aaltitudel: 0..4000Q0; model check-

the thresholds, not based on the conditions of being above

Variable/Step 1 2 3 4 Threshold + Hysteresis
Altitudel Undefined 2201 1999 Non-deviated trajectory)
Altitude2 Undefined 2201 1999 Deviated trajectory — — cl?ec\)llielllljerzesli/:tnerlT:I o
Altitude3 Undefined . 2201 1999 N
AltitudeStatus | Undefined| Unknown Above Below h Threshold
DOICommand | Undefined| Undefined Off On \
Altitudeld Undefined 2191 1999 The system AN
Altitude2.d Undefined 2201 1999 is inhibited S~ 2
Altitude3d Undefined . 2201 1999 Deviated system believes it is below threshold, but The inhibit
AltitudeStatusd | Undefined| Unknown | Unknown Below DOI cannot be turned on because we are inhibited is removed
DOICommandd | Undefined| Undefined| Undefined| Undefined

Figure 10. A counter example trace

Figure 12. The inhibit scenario problem.

Dol)) Variable/Step 1 2 3 4
urned off in non-deviated system _ .
- AltitudeStatus changes to Above DOI turned on in non- Altitudel Undefined 2201 1999
deviated system Altitude2 Undefined 2201 1999
Threshold + H _ Altitude3 Undefined . 2201 1999
- reshold + Hysteresis AltitudeStatus | Undefined| Unknown | Above | Below
_) /// AN DOICommand | Undefined | Undefined Off On
Non-deviated trajectory/, N Alitudeld | Undefined 2191 | 1999
Deviated trajectory 4 \ // Altitude2d Undefined 2201 1999
A Threshold Altitude3.d Undefined . 2201 1999
N e AltitudeStatusd | Undefined| Unknown | Unknown | Below
Deviated system never crosses threshold S E DOICommandd | Undefined| Undefined| Undefined| On
- AltitudeStatus remains Below

DOI not turned on
since we remain Below

Figure 13. Corresponding trace after correc-
tion

Figure 11. The startup scenario problem.

ior the problem is solved, the trace in Figure 10 would be-
come the trace shown in Figure 13. The problem, however,
not change t®ff until the AltitudeStatudecomefbove— was not that simple; the model checker quickly found an-
the DOICommandwill remain Undefineduntil this event other counter example trace related to the inhibit signal that
happens. The counter example shows that if we have a negprevents the system from issuing output commands. The
ative deviation, the original system raises above the thresh-counter example in Figure 14 shows this case (a graphical
old plus hysteresis, thus setting tAkitudeStatugo Above illustration is available in Figure 12); if we have a negative
and theDOICommando Off. The deviated system, on the deviation in one altimeter, the value AftitudeStatusf the
other hand, is still considered to be below the threshold be-deviated system becomBglowin the second state because
cause of the negative deviation so no action is taken. Whenof the deviation (the deviated variable is less than the thresh-
the aircraft now descends below the threshold, the originalold) but the ASW cannot set the value[@OICommando
system’sAltitude Statusvill change fromAboveto Below— On since it is inhibited. The original system stays above
an event that will cause the DOI to be turned on. Since the threshold in this state. In the next state, the aircraft de-
the deviated system never changdtitudeStatuso Above scends below the threshold and the inhibit is removed. The
the event of changing frorAboveto Belowwill never take original system can s&@0OIlCommando On since it is not
place and, consequently, the DOI will not be turned on. We inhibited and the everAboveto Below occurred, but the
have discovered how a critical function can be effected by deviated system still cannot S8DICommando On since
a deviation in one altimeter despite our conservative voting in this system the event happened while it was inhibited.
mechanism. When this problems is corrected, a similar issue is raised
After analyzing the counter example, one would expect with an ASW reset function that is designed to bring the
that the system would tolerate the deviation if we changed system back to its initial state. Although our ASW can be
the startup behavior of the system—we will now allow the corrected so that it does tolerate deviations in one altime-
DOl to be turned on immediately at startup if we are below ter, the example serves to demonstrate how a fault tolerance
the threshold and off if we are above threshold hysteresismechanism that will ‘obviously correct the problem’ ex-
no matter what the previous value AltitudeStatusvas; at hibits undesirable behavior under various non-obvious cir-
startup we will no longer wait for the event of crossing the cumstances. In our limited experience with deviation anal-
thresholds to occur. With this modification in startup behav- ysis, the problems exposed seem to be related to startup

or below. Therefore, the value of thiBOICommanddoes

Variable/Step 1 2 3 4
Altitudel Undefined 2001 1999
Altitude2 Undefined 2001 1999
Altitude3 Undefined . 2001 1999

AltitudeStatus | Undefined| Unknown | Unknown Below

Inhibit Undefined . Inhibited | NotInhibited

DOICommand | Undefined| Undefined| Undefined On

Altitudeld Undefined 1964 2026
Altitude2d Undefined 2001 1999
Altitude3d Undefined . 2001 1999
AltitudeStatusd | Undefined| Unknown Below Below
Inhibit_d Undefined . Inhibited | NotInhibited
DOICommandd | Undefined| Undefined| Undefined| Undefined

Figure 14. Counter example trace after cor-
rection

behaviors, temporary shutdowns and inhibits, and system 4

reset behaviors—well known problem areas in critical sys-
tems [4].

6. Discussion

In this paper we reported on an effort to perform devi-
ation analysis using standard model checkers. Our work

is an alternative to other approaches based on a symbolic[7]

execution of the system models and promises to provide a
more accurate analysis than what was previously possible.
In our, admittedly very limited, experience, deviation anal-

ysis through model checking works well and has helped us [

identify problems in smaller examples. More work is nec-
essary before the feasibility of the approach on larger prob-

lems can be determined. The future challenges mainly fall [10]

in two categories: comparative evaluation and conquering
the state space explosion problem.
Here, we showed that deviation analysis through mode

sity of Minnesota will help address this problem so that de-
viation analysis through model checking will become us-
able on realistic systems.

References

[1] Y. Choi, S. Rayadurgam, and M. Heimdahl. Automatic ab-

straction for model checking software systems with interre-
lated numeric constraints. IRroceedings of the 9th ACM
SIGSOFT Symposium on the Foundations of Software Engi-

neering (ESEC/FSE-9pages 164-174, September 2001.
CISHEC. A Guide to Hazard and Operability Studie$he

Chemical Industry Safety and Health Council of the Chemi-

cal Industries Association Ltd., 1977.
E. M. Clarke, O. Grumberg, and D. Pelddodel Checking

MIT Press, 1999.
M. S. Jaffe, N. G. Leveson, M. P. Heimdahl, and B. E. Mel-

hart. Software requirements analysis for real-time process-
control systemsIEEE Transactions on Software Engineer-

ing, 17(3):241-258, March 1991.
T. Kletz. Hazop and Hazan: Identifying and Assessing Pro-

cess Industry Standardsnstitution of Chemical Engineers,

1992,
J. McDermid and D. J. Pumfrey. A development of hazard

analysis to aid software design. GOMPASS '94: Proceed-
ings of the Ninth Annual Conference on Computer Assur-

ance pages 17-25. IEEE/NIST, June 1994.
S. P. Miller and A. C. Tribble. Extending the four-variable

model to bridge the system-software gap. Froceedings
of the Twentith IEEE/AIAA Digital Avionics Systems Confer-
ence (DASC’01)October 2001.

8] NuSMV: A New Symbolic Model Checking. Available at

http://nusmv.irst.itc.it/.
J. Reese and N. Leveson. Software deviation analysisi-In

ternational Conference on Software Engineeriktay 1997.
J. Reese and N. Leveson. Software deviation analysis: A

“safeware” technique. IAIChe 31st Annual Loss Prevention
SymposiumMarch 1997.

I[11] J. D. ReeseSoftware Deviation AnalysisPhD thesis, Uni-

versity of California, Irvine, 1996.

checking can be effective in pointing out subtle problems in [12] J. M. Thompson, M. P. Heimdahl, and S. P. Miller. Spec-

a system model. We did not, however, make any claims as to
the relative effectiveness of tackling real world safety analy-
sis problems with our approach compared to other proposed
techniques. We believe the exploratory nature of the origi-
nal devaition/perturbation analysis will nicely complemen
the more verification-oriented nature of deviation analysis
through model checking. The interaction of the techniques,
and a possible incorporation of theorem proving and model
checking techniques in our perturbation analysis are issues
worth further study.

The size of the representation of the state space and the
next state relation are the limiting factor when model check-
ing larger systems. Since we are in essence simultaneously
analyzing two copies of a system (correct and deviated),
we have many more variables to contend with. We hope,
however, that existing abstraction techniques in conjunction
with techniques currently under development at the Univer-

ification based prototyping for embedded systems Séw-
enth ACM SIGSOFT Symposium on the Foundations on Soft-
ware Engineeringnumber 1687 in LNCS, pages 163-179,
September 1999.

t [13] M. W. Whalen. A formal semantics for RSMLS. Master’s

thesis, University of Minnesota, May 2000.

