Automated Aspect Recommendation through Clustering-Based Fan-in Analysis

Danfeng Zhang, Yao Guo*, Xiangqun Chen
Key laboratory of High Confidence Software Technologies (Ministry of Education)
Institute of Software, School of Electronics Engineering and Computer Science, Peking University
zhdf@os.pku.edu.cn, {yaoguo, cherry} @sei.pku.edu.cn

Abstract

Identifying code implementing a crosscutting concern
(CCC) automatically can benefit the maintainability and
evolvability of the application. Although many approaches
have been proposed to identify potential aspects, a lot of
manual work is typically required before these candidates
can be converted into refactorable aspects.

In this paper, we propose a new aspect mining approach,
called Clustering-Based Fan-in Analysis (CBFA), to rec-
ommend aspect candidates in the form of method clusters,
instead of single methods. CBFA uses a new lexical based
clustering approach to identify method clusters and rank
the clusters using a new ranking metric called cluster fan-
in. Experiments on Linux and JHotDraw show that CBFA
can provide accurate recommendations while improving
aspect mining coverage significantly compared to other
state-of-the-art mining approaches.

1. Introduction

Since its introduction in the 1990s, Aspect-Oriented
Programming (AOP) [1] has enhanced the maintenance and
evolution of software by separating concerns into modules.
The whole process of evolving legacy software into aspect-
oriented systems can be divided into two steps: aspect
mining (manually or automatically) to identify potential
aspects in legacy software, and refactoring to encapsulate
these aspect candidates into aspect-oriented (AO) code.

Many aspect mining approaches [2]-[9] have been pro-
posed to identify aspect candidates. As not all the candi-
dates identified by these tools are “true” candidates', we
first need to filter out the “fake” ones from the mining
results before these candidates can be converted into refac-
torable aspects.

* Corresponding author.

1. In this paper, “true” candidates are referred to those can be encapsu-
lated into meaningful aspects during refactoring, while the rest are referred
as “fake” candidates.

The quality of aspect recommendation plays an impor-
tant role in alleviating manual work in identifying these
“fake” candidates. Many current mining approaches try
to identify potential aspects through single occurrences,
thus, a lot of manual work is required to combine these
methods into meaningful aspects, each of them normally
contains multiple methods related to the same concern.
Although some mining approaches can automatically group
the aspect candidates, they tend to miss groups with a rela-
tively small size due to the lack of proper recommendation
criteria, as we will show later.

Our motivation is originated from a widely used aspect
mining approach, fan-in analysis [4], which has been
adopted in many studies [10], [11]. The basic idea behind
it is that a method called by many other methods is more
likely to be a crosscutting concern (CCC). Although the
approach can successfully identify many potential aspect
candidates, it faces the following main limitations:

« It uses a fan-in threshold to filter out methods with low
fan-in value, which, as they claimed, are not likely to
be aspects. However, many true candidates might have
very low thresholds, which means they will be filtered
out by fan-in analysis.

o Fan-in analysis only provides a set of unrelated meth-
ods with high fan-in’s, without any information about
which concern each candidate should belong to. Those
candidates have to be partitioned into different groups
manually during refactoring to create meaningful as-
pects, which is both time consuming and error-prone.

« The choice of fan-in threshold is application specific.
As reported in [10], [12], choosing a suitable threshold
has a significant impact on the mining performance of
fan-in analysis.

In this paper, we propose a new approach called
Clustering-Based Fan-in Analysis (CBFA), which takes
advantage of clustering [13] to automatically divide the
methods into separate clusters, where each cluster repre-
sents a meaningful set of methods related to the same
concern. Identifying aspect candidates as clusters removes
the efforts required to combine single aspect candidates

into refactorable aspects. Identifying clusters rather than
single methods can also improve the coverage of fan-
in analysis because methods with low fan-in’s can be
identified together with related high fan-in ones. We also
define a new ranking metric, cluster fan-in, which is used
to rank the method clusters automatically.

This approach is applicable regardless of specific pro-
gramming languages. We evaluated it on two completely
different systems, C-based Linux, and a Java system, JHot-
Draw?, which has been evaluated in many previous aspect
mining research work [4], [10], [12]. Through detailed
evaluation of several CCCs in Linux and JHotDraw, we
demonstrate that CBFA can provide accurate recommenda-
tions while improving aspect mining coverage significantly
compared to other state-of-the-art mining approaches.

This paper makes the following main contributions:

« By taking a lexical based clustering approach to group
related concern occurrences together, CBFA achieves
two important goals compared to methods identifying
single occurrences individually: improving the mining
coverage and reduce the cost of aspect construction
during refactoring.

« We propose using a new ranking metric, cluster fan-
in, to recommend aspect candidates in order of their
significance, instead of using a cutting threshold (such
as cluster size) to filter out less possible candidates,
as used in most mining approaches based on grouping
or clustering.

o CBFA is applicable to both C and Java. Through ex-
periments with two popular real-life software systems,
we demonstrate that CBFA displays good performance
regardless of specific languages.

The paper has been structured as follows. In the next
section, we present an example of applying fan-in analysis
to Linux. In section 3, we present the proposed CBFA
approach in detail. We show the performance of this new
approach in section 4, and discuss some open issues in
section 5. Related work will be compared in section 6. We
conclude our work in section 7.

2. An Aspect Mining Example

First, we use a relatively simple aspect mining example
to explain the main problems with current approaches and
introduce key motivations behind our proposed approach.

One of the very important crosscutting concerns in
Linux, called synchronization, is responsible for handling
the synchronization tasks between processes and threads
in the system. Synchronization has been studied in many
aspect mining research, such as in PURE [14]. As pointed

2. www.jhotdraw.org

Table 1. Synchronization functions in Linux

Mechanisms | Related functions |

ATOMIC_INIT atomic_read atomic_set
atomic_add atomic_sub atomic_dec
atomic_add_negative atomic_sub_and_test
atomic_inc atomic_dec_and_test
atomic_inc_and_test
spin spin_lock spin_trylock spin_unlock spin_lock_init

atomic oper-
ation (11)

lock (11) spin_is_locked spin_lock_irgsave spin_lock_irq
spin_lock_irqrestore spin_unlock_irq
spin_unlock_irgsave spin_unlock_irqrestore
read/write read_lock write_lock read_unlock write_unlock

spin read_lock_irq read_lock_irgsave

lock (15) read_unlock_irq read_unlock_irqstore
write_lock_irq write_lock_irqsave
write_unlock_irq write_unlock_irqrestore
write_trylock rw_lock_init rw_is_locked
big kernel lock_kernel unlock_kernel kernel_locked
lock (5) release_kernel_lock reacquire_kernel_lock

out in their work, encapsulating these code can greatly im-
prove the architectural flexibility for an operating system.

Many synchronization mechanisms are used in Linux
(we use Linux 2.4.18 here), such as atomic operation, spin
lock, read/write spin lock, and big kernel lock. Functions
related to these mechanisms are summarized in Table 1 as
listed in [15], where the bolded functions are function-like
macros>, and the others are inlined functions. The call sites
of these function-like macros or inlined functions represent
symptoms of the synchronization concern. This list will be
used to check the effectiveness of the mining approaches
studied.

As this concern is related to 42 methods summarized in
Table 1, it might be straightforward to convert each of these
methods into an aspect to express all the occurrence of
this method, thus generating 42 different aspects. However,
this granularity of refactoring is too small because it still
makes these refactored aspects code “scattered”, which is
inconsistent to the key objectives of AOP. It will be much
more meaningful to group methods into larger aspects, each
of them represents a certain mechanism or even the whole
concern. Refactoring in a larger granularity can greatly
improve the maintainability and comprehensibility of the
refactored AOP code.

To identify these crosscutting concerns, we first apply
the fan-in analysis [4] on Linux.

Fan-in analysis is based on the observation that a cross-
cutting concern in non-AOP systems is usually imple-
mented by single methods in the system, which are called
from numerous places in the code. The fan-in metric of
a method m is defined as the number of distinct method
bodies that can invoke m. (Since this metric is originally
defined for the Java language, we modified it slightly

3. function-like macro is a macro “whose use looks like a function
call” defined by GNU in http://gcc.gnu.org/onlinedocs/gcc-4.1.0/cpp/

Table 2. Results of fan-in analysis when mining the
synchronization concern in Linux

[Mechanisms | # Total [# Found [Coverage |
atomic operation 11 5 45.45%
spin lock 11 8 72.73%
read/write spin lock 15 5 33.33%
big kernel lock 5 2 40.00%

[Sum [42] 20 [47.61% |

to support C language as discussed in Section 3.) This
approach follows three steps:

Step 1. Automatically compute the fan-in metric for all
the methods in the targeted source code.
Step 2. Filter the result of the first step:

« Restrict the set of methods to those having a fan-in

above a certain threshold.

« Filter getters and setters from this restricted set.

« Filter utility methods such as toString().
Step 3. (Mainly manual) Analysis of the remaining set
of methods.

The results of the fan-in analysis approach on mining
synchronization concern in Linux are shown in Table 2.
While there are totally 42 methods related to the syn-
chronization concern as we listed in Table 1, fan-in anal-
ysis with a threshold at 10 (the threshold used in [4])
can find only 20 of them. So the coverage is 47.61%,
meaning that more than half of the occurrences related
to the synchronization concern cannot be found. It will
definitely affect the effectiveness of refactoring if we do
not find the remaining methods to completely encapsulate
the concern through either manual walk-through or more
comprehensive approaches.

To understand why fan-in analysis can not find other
occurrences of this concern in Linux, we found that only 20
functions (or function-like macros) related to synchroniza-
tion have a fan-in larger than (or equal to) 10 in the code
(such as 156 for spin_lock), other functions have fan-in
values smaller than 10 (such as 1 for spin_trylock), which
will be filtered out by this approach.

To find the methods with low fan-in’s, one way is to
lower the threshold. However, it will bring more “fake” as-
pect candidates in the results, which means that more work
is required to filter out these non-aspect-related methods.
Note that even the threshold is set as small as 2 (which
in practice will introduce too many “fake” candidates), the
above mentioned function spin_trylock will still be left out
regardlessly.

Another problem of fan-in analysis besides the selection
of the threshold is that the results returned lacks infor-
mation about which concern each method belongs to. In

the experiment, fan-in analysis returns 116 methods as
results at the threshold of 10. We have to search for the 20
methods related to synchronization and then group them
into meaningful aspects manually.

If we can automatically group the methods into related
groups such as those shown in Table 1, it will reduce
the manual grouping effort during refactoring. Besides,
if we can calculate the fan-in value for each group of
methods, instead of single methods, we could identify
those important but rarely called methods along with those
frequently called methods together. Additionally, instead of
using a fan-in threshold to cut off the results, we will use a
ranking approach to recommend the clusters that are most
likely to be aspects. This leads to our proposed mining
approach: the clustering-based fan-in analysis.

3. Clustering Based Fan-in Analysis (CBFA)

We propose a new automated approach called
Clustering-Based Fan-in Analysis (CBFA) that, through
identifying aspect candidates together as groups, can
improve the efficiency of aspect mining and provide better
support for refactoring. CBFA adopted clustering from
data mining [13] on lexical form of the source code.

Technique Overview. The process of the CBFA approach
can be summarized as in Figure 1, which includes five
steps:

1) The source code is first analyzed and parsed into
a set of methods. In this step, we use an indexer to
identify all methods in the source code and function-
call relations.

2) Each of the methods analyzed is converted into a
vector based on its signature.

3) An automated clustering step is then taken to group
related methods together into clusters based on the
similarity of vectors. The Jaccard Coefficient [13] is
used in our approach.

4) In parallel with the clustering step, the fan-in value
of each method is calculated based on function-call
relations generated in step 1. The definition of fan-in
is the same as in [4] for Java language systems. For
C language systems, the definition will be extended
to include function-like macros.

5) Finally, we calculate cluster fan-in of each cluster,
and rank the clusters based on their fan-in values
to complete the aspect recommendation step. The
output of CBFA is a ranked list of method clusters,
each of them is expected to be encapsulated into
one (or at most a few of) meaningful aspect during
refactoring.

The main steps introduced by CBFA is the adoption of

lexical-based clustering in aspect mining and the recom-

2. convert to
vectors

=

1. indexing
the code

of fan-in

raw methods
value

4. calculation

3. automated
clustering

5. ranking by
fan-in of each
cluster

clustered methods

. R ranked results
with fan-in value

Figure 1. Overview of Our Approach

mendation step, which uses a new ranking metric.

Method Retrieving. Although many elements can be taken
into account in aspect mining (such as classes, methods,
annotations, and so forth), the basic element concerned in
this paper is method (including function-like macro in C).

A code parser is used in the method retrieving step to
extract C/C++ and Java elements in the source code, as
well as the function-call relations which will be used later
during fan-in value calculation.

As suggested by Marin et. al. [4], due to the usually
high fan-in values of getters and setters in Java, which
can hardly be exploited in an aspect solution, we filtered
out methods with a prefix of “get” or “set” for the Java
language. However, no methods need to be filtered out in
systems written in C.

Vector Representation in CBFA. A vector space model
(or vector model) is needed in clustering to represent each
object to be clustered in aspect mining approaches. It is
often used for information filtering, information retrieval,
indexing and relevancy rankings [13].

Let X = {01,04,...,0,} be the set of objects to
be clustered. With a vector space model, each object is
measured with respect to a set of m initial attributes
Ajq, Ag, ..., A, (usually a set of relevant characteristics of
the analyzed objects) and is therefore described using an
m-dimensional vector O; = (O;1, 042, ...,0im), O, € R,
1 <i<n,1 <k < m. Usually, the attributes associated
to the objects are standardized in order to ensure an equal
weight to all of them [13].

Based on the methods retrieved from the last step, it
takes two steps to generate the vector representation for
each method:

1) The signatures of methods are split into tokens based
on naming conventions in Java and C. For example,
fireSelectionChanged in Java is split into “fire selec-
tion changed”, and kernel_locked in C is split into
“kernel locked”.

2) All these split tokens in the system are specified as
m initial attributes. Each method m; is represented
as a vector O; = (041,042, . .., O;p,), where O, is
1 if and only if method m; contains the attribute A,,.

Clustering. In the clustering step, we need to specify the
similarity metric and design the clustering algorithm.

Jaccard Coefficient [13] is a metric usually used in the
calculation of the similarity of asymmetric binary attributes
like this. It is defined as:
Nj,j

where N;; represents the total number of attributes
where O; and O; both have a value of 1. N; represents
the total number of attributes where the attribute of O;
is 1 and the attribute of O; is 0. N; represents the total
number of attributes where the attribute of O; is 0 and the
attribute of Oj is 1. . .

The similarity between two vectors O, and Oy is thus
defined as:

sim(Oq, Oy) = J(Oq, Oy)

We choose Jaccard Coefficient as the similarity metric,
based on the observation that in this vector model, value
0 is not as important as value 1, since methods are the
“same” when they have a lot of words in common, not
when they have an absence of most of the common words.

To group similar vectors into the same cluster, we use
a heuristic algorithm presented in Table 3. The variable
simMin in the algorithm represents a threshold to determine
if two names are “similar” enough to be clustered. The
value is chosen as 0.3 after extensive studies®.

The input of the CBFA algorithm is a method set
M = {my,ma,...,my} along with vectors representing
them that have been calculated in last step.

The clustering algorithm we used is pretty straight-
forward. At the beginning, the cluster set is empty. For
each vector m; in M = {my,ma,...,m,}, we calculate
its similarity to each other methods in existing clusters.
The biggest similarity curMaxzSim and the index of
corresponding cluster cur is recorded. If curMaxSim is
larger than the threshold simMin, this method will be
clustered into the cluster with index cur, otherwise a new
cluster will be created with m; as its only method.

4. A straightforward explanation to this is that if we want to cluster
two methods, whose signatures both contain two words, and one word
in common, their similarity will be 1/3=0.33. Our experiments also
demonstrated that 0.3 is good enough in our approach.

Table 3. Clustering Algorithm used in CBFA

Input:

the set M = {m1,ma, ..., my} is the set of methods to be clustered,
associated with vectors that represent them

simMin(> 0) is the threshold, only when two methods’ similarity
is larger than it, should they be clustered. In CBFA, it is chosen as
0.3

Output:
K ={K1,K>,...,Kp}, where K is a partition of methods set M
in system, and K; = {mj1,mja,...,mj;} is a cluster of similar
methods

Helper functions:
s(methodq, methody): the similarity of method a and b, Jaccard
Coefficient is used in our approach.
Algorithm CBFA:
k—®
K—®
for each m; € M do
cur — 0
curMaxzSim «— 0
for each k; € K
for each m; € k;
if s(m;, m;) > curMaxzSim
curMaxSim «— s(m;, my)
cur < j
if curMaxzSim > simMin
kcur «— kcur U{mL}
else
K — K| J{k}

return K

Fan-in Value Calculation. In parallel with the clustering
step, we calculate the fan-in value of each method.

As mentioned, the calculation of fan-in values is per-
formed using the definition in [4] for Java. However, for
C language system, we notice that this approach should be
modified as follows:

1) Because there is no polymorphism in C-based sys-
tems, the fan-in is just the number of times a specific
method was called throughout the source code.

2) Besides functions, there are also function-like macros
acting like functions in C. These function-like macros
should be treated as functions while calculating fan-
in values.

The calculation is straightforward based on the function-
call relations generated in step 1.

Ranking Metrics. Numerous clusters will be returned after
the clustering step in a large system, thus a good ranking
algorithm is necessary to rank the resulting clusters in order
to provide proper aspect recommendation.

Zhang et al. [9] used a random walk model motivated
by the page-rank algorithm [16]. The idea underlying the
page-rank algorithm is to generate ranks reflecting the
degrees of “popularity” and ‘“‘significance”. As a much
simpler metric, fan-in values also represent “popularity”
and “significance” of methods since a method called more

frequently is typically more popular and thus more signif-
icant.

After the clustering step, the fan-in of a whole cluster
is more useful than that of a single method, because we
expect that the whole cluster together, instead of a single
method in it, should be refactored into an aspect. Therefore
we define a new metric called cluster fan-in as below.

The cluster fan-in F of a cluster C is defined as:

F(C) =22 f(mi),m; € C

where function f returns the fan-in value of a single
method.

The final results of CBFA are ranked based on the cluster
fan-in values of all the clusters in a descending order to
recommend the clusters based on their significance.

4. Evaluation

4.1. Experimental Setups

We implement CBFA as a plug-in on Eclipse’. For C
language systems, we use C/C++ Develop Tools (CDT) to
index the source code, and calculate the fan-in value of
each method. The version of CDT we used is 4.0.1. For
Java language systems, we use Java Develop Tools (JDT)
to perform the indexing and fan-in calculation tasks. The
version of JDT we used is 3.3.1.

We will analyze two systems in this paper. As a popular
open source operating system, Linux is a typical C language
legacy system. The version we analyzed is 2.4.18. Due to
the code size limit of CDT, we can not analyze the whole
Linux system. Instead, we analyzed a subsystem of Linux
without net, file system, and platform (except i386) related
code. The subsystem we analyzed consists of 1064 “.c”
files and approximately 84K lines of code.

The JHotDraw framework is a Java GUI framework for
technical and structured graphics. Since it is designed as
an exercise to show how to use design patterns, it was
analyzed by many mining research groups to evaluate their
mining approaches [4], [10], [12]. The version we analyzed
is 5.4b, which includes about 12K lines of code.

To evaluate the mining efficiency of CBFA, we first
compare CBFA on several well-known CCCs in the litera-
ture (e.g., undo and persistence) with three state-of-the-art
aspect mining approaches in a top-down evaluation. The
techniques evaluated include fan-in analysis [4], identifier
analysis [8], and a dynamic approach [7]. We then explore
the capability of CBFA to find other less known aspects
within a large system using a bottom-up approach.

5. www.eclipse.org

4.2. Metrics

Two metrics are used in our evaluation: concern cover-
age and true positives °. They are based on precision/recall
measures used in information retrieval systems. We for-

mally define them as follows.

First, we define the set Correct(c,tech) and
Wrong(c,tech) for a certain mining technique tech
as follows:

Correct(c, tech) = Total. ﬂ Candyiech

Wrong(c,tech) = Candiecn, — Totalcce ﬂ Candiech

where Total. stands for the method set related to a
concern c¢; Total... is the set includes all methods that
are considered aspect related. C'and;ecp, is produced by a
mining technique tech as the set of aspect candidates for
concern c.

Using the above definitions, we can calculate the concern
coverage and true positives as follows:

C t(c,tech
ConcernCoverage(c, tech) = [Correct(c, tech)|
|Total.|

TruePositives(c,tech) = 1 — [Wrong(c, tech)|

|Candiech|

As most of the existing aspect mining techniques do
not group the results based on concerns, Correct(c,tech)
measure is defined using the total set of crosscutting
concerns from the system. In such cases, only an average
true positives can be provided. It will be a little difficult to
calculate Wrong(c, tech) because it is subjective to decide
whether a method is related to a certain concern.

Typically, getting high concern coverage is more impor-
tant than getting high true positives. After all, assuming
that our ultimate goal is to encapsulate all methods related
to a specific concern into an aspect, then as long as you
get less than 100% coverage, you have to go through the
rest of code (which may be millions of lines of code) to
find the remaining ones. On the other hand, if you do not
get 100% true positives, you only have to go through the
mining results to eliminate the “fake” ones, which in most
cases will be much smaller than the entire code base.

4.3. Top-Down Approach

In order to evaluate the performance of CBFA, we first
choose several well-known CCCs in JHotDraw and Linux,
and compare the mining efficiency of CBFA with three
state-of-the-art mining approaches in a top-down approach.

6. This name comes from “false positives” used in many recent
work [4], [10], [12].

Concerns Analyzed. We choose five widely analyzed
CCCs [4], [10], [12] in JHotDraw, which include:

1) Undo: an undo concern in a graphical editor like
JHotDraw performs undo and redo activities. It is an
implementation of the Command design pattern [17].
A more detailed discussion about this concern and
how to refactor it can be found in [4].

2) Observer: this concern implements the Observer de-
sign pattern. As there are at least eight different
implementations of this concern in JHotDraw, we
choose figure selection observer as an example.

3) Iterator: Iterator is a widely used design pattern in
Java. It is commonly used to traverse the collections
in Java. Two other implementations, which are used
to iterate figures and handles, can be found in JHot-
Draw.

4) Visitor: the Visitor design pattern is also widely used
in Java to visit objects.

5) Persistence: persistence is a concern in JHotDraw to
save and reload items.

As it is hard to identify all methods that are related to a
certain concern (extremely difficult for complex concerns
such as Observer), in our evaluation, a set of methods are
considered to be an indication of a concern based on three
criteria below:

1) they should be relevant to this concern,

2) scattered in the system, and

3) the programmers should be able to locate all the
classes related to that concern based on these meth-
ods.

A detailed list of the methods we identified based on the

above criteria can be found in Table 4.

For Linux, because there are few well-known CCCs, we
will use the synchronization concern describe earlier as the
test case, which can be found in Table 1.

Techniques Compared. Three well-known mining tech-
niques are taken into comparison, which include fan-in
analysis [4], identifier analysis [8] and dynamic analy-
sis [7].

Fan-in analysis has been introduced in Section 2. The
public available tool FINT’ is used during our evaluation.
A fan-in threshold is required during the evaluation, we
choose 10 for JHotDraw as suggested by Roy et. al. [12].

Identifier analysis performs Formal Concept Analysis
(FCA) [18] on generated elements, such as method names.
The results of this approach are called “concepts”, which
include methods whose names share a certain word. For
example, “readInt” and “readDouble” are both included in
the “read” concept. A threshold of concept size is required
during analysis: it is chosen as 10, also as suggested by

7. Available from http://swerl.tudelft.nl/bin/view/AMR/FINT

Table 4. List of CCCs analyzed in JHotDraw

CCC Related methods
Undo(7) undo, redo, execute, pushUndo, popUndo,
pushRedo, popRedo
addFigureChangeListener,
removeFigureChangeListener, willChange,
changed, figureChanged

Observer (5)

Iterator(6) next, hasNext, nextFigure, hasNextFigure,
nextHandle, hasNextHandle

Visitor(4) visit, visitFigure, visitHandle,
visitFigureChangeListener

Persistence read, readStorable, readString, readlnt, readLong,

(16) readColor, readDouble, readBoolean, write,
writeStorable, writeString, writelnt, writeLong,
writeColor, writeDouble, writeBoolean

Roy et. al. [12]. Since the lack of public available tools,
we implemented a prototype tool, which performs FCA on
the method names.

Dynamic analysis collects the trace information while
executing certain use cases. The Dynamo® aspect mining
tool is used to evaluate the dynamic analysis approach, the
use cases adopted in [10], [12] are applied in the evaluation.

However, none of the existing tools (FINT and Dynamo)
is applicable for Linux. We have implemented a new fan-
in analysis tool that is able to work on C code [11]. We
also extended the prototype tool implemented for identifier
analysis in Java to make it applicable for C. Dynamic
analysis approach is not evaluated on Linux due to the
lack of use cases.

Result Analysis. The performance of each technique is
shown in Table 5 and Table 6. For mining approaches that
provide meaningful groups of methods, an extra number
bracketed in concern coverage indicates how many groups
are provided for a certain concern. An ideal mining ap-
proach should provide exactly one group (normally, less
than a few groups is also acceptable) for each concern.

From the results for JHotDraw from Table 5, we can
see that CBFA can achieve a considerable higher concern
coverage for the concerns compared to other techniques,
while encapsulating each concern in only one or two
clusters. CBFA is also the best while comparing the true
positives metric.

Fan-in analysis tends to miss methods with a low fan-in
value. As shown in section 2, it misses methods whose fan-
in values are smaller than the threshold. For example, the
visitor concern contains six methods, whose fan-in values
are all smaller than the threshold during evaluation. Thus,
fan-in analysis can find none of these methods.

Identifier analysis returns 85 concepts at the chosen
threshold (10) in JHotDraw. However, it tends to omit
smaller groups. For example, the concept containing the

8. Available from http:/star.itc.it/dynamo/ under GPL

iterator concern has only six methods, thus it is filtered
out by the chosen threshold °. The case with the visitor
concern is similar.

Another benefit of CBFA over identifier analysis is that,
methods that can not be included in the same concept in
the latter may be clustered together by CBFA if they are
similar enough. For example, CBFA can find 6 methods
(except for execute) in exactly one cluster for the undo
concern, however it requires at least two concepts(concept
“undo” and “redo”) for FCA to cover them. In CBFA, undo
and popRedo, which can never be included in the same
concept in FCA, can be clustered together with the help of
popUndo, which is similar to both of them.

Dynamic analysis tends to miss methods which are not
called in the use cases. For example, iterator concern is
completely omitted because methods related are not called
in the use cases. Even when a certain concern is included
in the use cases, the concern coverage may be still low (for
example, since the persistence use case only contains write
operations, and the read operations are not covered by it,
the coverage of persistence concern is still low using this
use case).

The performance of fan-in analysis in Linux is similar
to JHotDraw. Identifier analysis generates 205 concepts in
Linux. As the concepts of selected concerns in identifier
analysis are large enough (even the concept containing the
big kernel lock concern has a size larger than 10, because it
contains other methods that not belonging to this concern),
we can see from the results that it performs as well as
CBFA in these cases.

4.4. Bottom-Up Approach

We analyze the capability of CBFA to find other less
known aspects within both JHotDraw and Linux in a
bottom-up analysis.

From the top recommendations of CBFA, we take the
first ten CCCs and compare the performance of CBFA
with the other three techniques discussed in section 4 on
these CCCs. As concern coverage is more important than
true positives, we only evaluated concern coverage for each
system due to the space limitation.

Since there is little published knowledge about most of
these identified concerns, we looked at the source code and
documentation of applications in order to achieve a clear
picture of the application to perform a manual analysis of
the results.

9. We have noticed that the current approaches of identifier analysis
could also be extended in order to provide a ranked list of concepts,
instead of using a fixed threshold. A discussion of the recommendation
quality of this extended version and CBFA is given in Section 5.1.

Table 5. Comparison of CBFA and Other Techniques for JHotDraw

Concern #methods Concern Coverage True Positives
CBFA Fan Iden Dyn CBFA Fan Iden Dyn
Undo 7 85.71%(1) 42.86% 85.71%(2) 57.14%(1) 100% N/A 50% 63.89%
Observer 5 80%(1) 100% 60%(1) 40%(1) 86.49% N/A 73.08% 62.5%
Iterator 6 100%(1) 83.33% 0%(0) 0%(0) 100% N/A N/A N/A
Visitor 4 100%(1) 0% 0%(0) 75%(1) 86.49% N/A N/A 50%
Persistence 16 100%(2) 37.5% 100%(2) 43.75%(1) 80% N/A 75% 70%
AVERAGE N/A || 93.14% 52.87% 49.14% 43.18% 90.60% 73.88% 66.03% 61.60%
Table 6. Comparison of CBFA and Other Techniques for Linux
Concern #methods Concern Coverage True Positives
CBFA Fan Iden CBFA Fan Iden
atomic operation 11 100%(1) 45.45% 100%(1) 91.67% N/A 90.91%
spin lock 11 100%(1) 72.73% 100%(1) 87.84% N/A 100%
read/write spin lock 15 86.67%(2) 33.33% 86.67%(2) 80.95% N/A 75%
big kernel lock 5 100%(1) 40% 100%(1) 87.84% N/A 75%
AVERAGE N/A || 96.67% 47.88% 96.67% 87.08% 52.35% 85.23%

Table 7. Bottom-up Approach Results for JHotDraw

Concern CBFA Fan Iden Dyn
composition(1) 100% 100% | 100% 0%
mouse handler(15) || 86.67% | 26.67% | 100% | 28.57%
zoom(6) 100% 0% 0% 0%
factory method(21) 100% | 2.38% | 100% | 2.38%
iterator(6) 100% | 83.33% 0% 0%
persistance(16) 100% | 37.5% | 100% | 43.75%
undo(7) 85.71% | 42.86% | 85.71% | 57.14%
manage handles(16) 75% 0% 50% | 100%
observer(5) 80% | 100% 60% 40%
draw(25) 92% 12% 96% 4%
AVERAGE 91.94% | 40.47% | 69.71% | 27.58%

Table 8. Bottom-up Approach Results for Linux

Concern CBFA Fan Iden
FPU(72) 90.27% 16.67% 100%
ped(7) 100% 14.29% 100%
pte(14) 92.86% 7.14% 100%
pmd(9) 100% 0% 100%
spin lock(11) 100% 72.73% 100%
read/write spin lock(15) 86.67% 33.33% 86.67%
big kernel lock(5) 100% 40% 100%
ipc(7) 100% 57.14% 0%
printk(1) 100% 100% 0%
local irq(5) 80% 80% 0%
AVERAGE 94.98% 42.13% 68.67%

Result Analysis. The first ten CCCs recommended by
CBFA in JHotDraw are listed in Table 7. The number
shown in the bracket indicates the number of methods
related to that concern. The four CCCs whose names are
bolded are the concerns that have been analyzed before.
The concern called “manage handles” is analyzed in [10].
The intentions of other concerns manifest themselves in
their names quite clearly, so we skip detailed introduction
to each concern.

One observation from the results is that CBFA can
identify new concerns that none of current approaches can
find (such as the zoom concern). The fan-in analysis can not
find the manage handles concern, and it only get a concern
coverage less than 20% for the factory method and draw
concerns. The identifier analysis omits two concerns (zoom
and iterator) completely. Dynamic analysis performs the
worst among these approaches.

The results for Linux are shown in Table 8, except for
dynamic analysis. The fan-in analysis approach missed the
pmd concern, and only get a concern coverage less than
20% for the FPU, pgd and pte concerns. The identifier
analysis misses three concerns because of the the small
sizes of the concepts containing them (for example, the
size of the concept that contains printk is only 2). While
the performance of CBFA is similar as identifier analysis
in the previous top-down approach evaluation, it surpasses
the latter in these cases.

Based on the results obtained in both top-down and
bottom-up approaches, CBFA can provide accurate rec-
ommendations while improving aspect mining coverage
significantly compared to other state-of-the-art mining ap-
proaches.

5. Discussions

5.1. Recommendation Quality

As CBFA provides automated recommendation of aspect
candidates in the result, the recommendation quality plays
a very important role in the evaluation. Here we use the
number of cluster candidates a user need to examine before
reaching the targeted aspect as a quality metric, since the
fewer recommendations the user needs to examine, the
more efficient an mining approach is.

We use the five CCCs in JHotDraw as discussed in
section 4, to evaluate the recommendation quality of CBFA.
As these concerns are widely analyzed in the literature [4],
[10], [12], we consider that they are somewhat “represen-
tative”.

As fan-in analysis do not group the results, and dynamic
analysis’s recommendation quality strongly depends on
the manually chosen use cases, only the recommendation
quality of identifier analysis is compared with CBFA.
Although the latter does not provide a ranked results, as
it filters out the small sized clusters, we apply the cluster
size as its ranking metric.

During our evaluation, all of these five concerns can be
covered within the top 42 clusters that was recommended
by CBFA, while the extended identifier analysis requires
the user to examine at least 151 concepts to find all these
five concerns, which causes a considerable larger manual
effort to identify the concerns needed.

In short, the recommendation quality surpasses that of
extended identifier analysis: the quality of the former was
roughly 1 in 8 (i.e,, 5 valid CCCs in the 42 identified
clusters), compared to 1 in 30 for the latter.

5.2. Using CBFA to Support Refactoring

This paper is focused on how to automatically identify
aspect candidates efficiently. However, this is only the
first step towards aspect-oriented rewrite of existing legacy
system. These candidates must still be converted into
aspect-oriented code using certain refactoring mechanism.
Here we discuss how CBFA can efficiently support the
automation of refactoring process, with help of the some
related refactoring work [19], [20].

Usually, the refactor tools require a marked source
code, where all the identified locations related to possible
concerns are marked. Based on the identified clusters in the
system by CBFA, This can be accomplished by identifying
all occurrences of all methods in the clusters, with help
of a search module provided by most IDEs, such as the
Eclipse/CDT we adopted.

Next, these marked potential aspects should be extracted
into pointcuts and advices. The human-guided automated
technique proposed by Binkley et. al. [20] can be adopted
to extract these code. One benefit of using CBFA as the
aspect mining approach is that, as the aspect candidates
provided by CBFA are grouped into meaningful clusters
as shown in our evaluation, these generated pointcuts and
advices code can usually be encapsulated in the (almost)
correct aspects, and thus reduce the human inference in
this step.

Finally, we can rewrite the raw pointcuts by
an automated inference of pointcuts in aspect-
oriented refactoring [19]. For example, join points in

changeSelection() pointcut of
aspect [19] in JHotDraw below:

afterDrawApplication

public void DrawApplication.clearSelection ()
public void DrawApplication.toggleSelection(Figure

could be rewritten as one pointcut expression:

public void DrawApplication.=xSelection()

This shows that, with the help of several existing work,
CBFA can be adopted to accomplish the whole process
of refactoring legacy software in aspect-oriented systems
automatically or at least semi-automatically.

6. Related Work

Aspect mining is an important step in aspect refactoring.
The goal of aspect mining is to identify aspect candidates in
the source code automatically or semi-automatically. The
techniques related to our approach can be classified into
the following categories.

A lot of aspect mining efforts are lexical based. Tourwe
and Mens [8] perform FCA on generated elements, which
can be any source code artifacts. In their initial work,
however, they only considered classes, methods and formal
parameters. Shepherd et al. [5] used Lexical Chaining for
aspect mining. The main difference between CBFA and
these two approach is that: we used a clustering algorithm
commonly used in information retrieving to group the
elements, instead of FCA used in [8] and lexical chaining
used in [5]. The inherent limitation of all lexical based
approaches (including CBFA) is that, they are not capable
of finding methods that do not follow a good naming
convention.

Another natural language processing based mining ap-
proach [21] uses a search-based approach with queries
performed over a program model that captures the action-
oriented relations between identifiers in a program. This
technique is capable of finding action-oriented concerns,
such as playTrack and playCD, while CBFA can find other
concerns as well as action-oriented concerns.

Fan-in analysis [4] are motivated by the symptom that,
CCCs are usually implemented as methods in the system,
which is called from numerous places in the code. Another
example of an implementation idiom of CCCs is “code
duplication”. Bruntink et al. [3] use clone detection to find
aspect candidates in a C-based system ASML. The main
limitation of such approaches is that, they only provide
individual aspect candidates, without grouping similar ele-
ments to groups. This directly makes an unfavorable impact
on the concern coverage and requires more manual efforts
to group them into meaningful aspects.

Besides static approaches mentioned above, dynamic
analysis approaches, such as DynAMiT [2] and Dy-

namo [7], are proposed. The limitation of such approaches
is that their performances rely heavily on the use cases to be
executed. However, they could be used as complementary
techniques with static ones to identify additional concerns.

7. Conclusion

In this paper, we propose an automated aspect mining
approach called Clustering-Based Fan-in Analysis (CBFA).
CBFA adopts a lexical based clustering approach to group
methods related to the same crosscutting concern together,
and automatically recommend aspects based on the cluster
fan-in ranking metric. Experiments in Linux and JHotDraw
shows that not only can CBFA provide accurate recom-
mendations, it can also improve aspect mining coverage
significantly compared to other state-of-the-art mining ap-
proaches.

Future work of CBFA include evaluating CBFA on more
systems, refining its algorithms in order to achieve better
performance, as well as a more in-depth research on how to
automatically generate aspect-oriented code based on the
mining results of CBFA.

Acknowledgement

We are grateful to Prof. Hong Mei, for his guidance and
support in both the research and paper writing process. We
want to thank Dr. Lu Zhang for discussions and comments
on the earlier draft of this paper. We would also thank
the anonymous reviewers for their insightful comments.
The authors are sponsored by the National High Technol-
ogy Research and Development Program(863) Program of
China under Grant No. 2007AA01Z462, 2007AA010304
and 2008 AA01Z133.

References

[1] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V.
Lopes, J. M. Loingtier, and J. Irwin, “Aspect-oriented pro-
gramming,” in proc. of European Conference on Object-
Oriented Programming(ECOOP), June 1997.

[2] S. Breu and J. Krinke, “Aspect mining using event traces,’
in proc. of International Conference on Automated Software
Engineering (ASE), 2004, pp. 310-315.

[3] M. Bruntink, A. v. Deursen, T. Tourwe, and R. van Engelen,
“An evaluation of clone detection techniques for identifying
crosscutting concerns,” in Proc. of International Conference
on Software Maintaince (ICSM), 2004, pp. 200-209.

[4] M. Marin, A. V. Deursen, and L. Moonen, “Identifying
crosscutting concerns using fan-in analysis,” ACM Trans.
Softw. Eng. Methodol., vol. 17, no. 1, pp. 1-37, 2007.

[5] D. Shepherd, T. Tourwe, and L. Pollock, “Using language
clues to discover crosscutting concerns,” in Workshop on the
Modeling and Analysis of Concerns, 2005.

(6]

(7]

8]

(9]

(10]

(11]

(12]

[13]

(14]

(15]

(16]

(17]

(18]

(19]

[20]

(21]

D. Shepherd, L. Pollock, and K. Vijay-Shanker, “Towards
supporting on-demand virtual remodularization using pro-
gram graphs,” in proc. of the International Conference on
Aspect-oriented Software Development (AOSD), 2006, pp.
3-14.

P. Tonella and M. Ceccato, “Aspect mining through the
formal concept analysis of execution traces,” in proc. of 11th
Working Conference on Reverse Engineering (WCRE), 8-12
Nov. 2004, pp. 112-121.

T. Tourwe and K. Mens, “Mining aspectual views using
formal concept analysis,” in proc. of Source Code Analysis
and Manipulation Workshop (SCAM), 2004, pp. 97-106.

C. Zhang and H. A. Jacobsen, “Efficiently mining cross-
cutting concerns through random walks,” in proc. of the
International Conference on Aspect-oriented Software De-
velopment (AOSD), 2007, pp. 226-238.

M. Ceccato, M. Marin, K. Mens, L. Moonen, P. Tonella, and
T. Tourwe, “A qualitative comparison of three aspect mining
techniques,” in proc. of the 13th International Workshop on
Program Comprehension, 2005, pp. 13-22.

D. Zhang, Y. Guo, Y. Wang, and X. Chen, “Toward efficient
aspect mining for linux,” in Asia-Pacific Software Engineer-
ing Conference (APSEC), 4-7 Dec. 2007, pp. 191-198.

C. K. Roy, M. G. Uddin, B. Roy, and T. R. Dean, “Evaluat-
ing aspect mining techniques: A case study,” in proc. of 15th
IEEFE International Conference on Program Comprehension
(ICPC), 26-29 June 2007, pp. 167-176.

J. Han and M. Kamber, Data Mining: Concepts and Tech-
niques. Morgan Kaufmann Publishers, 2001.

D. Mahrenholz, O. Spinczyk, A. Gal, and W. Schrder-
Preikschat, “An aspect-oriented implementation of interrupt
synchronization in the PURE operating system family,” in
proc. of the 5th ECOOP Workshop on Object Orientation
and Operating Systems, June 2002.

Novell Press, 2005.

L. Page, S. Brin, R. Motwani, and T. Winograd, “The pager-
ank citation ranking: Bringing order to the web,” Technical
Report, Stanford Digital Library Technologies Project, 1998.

R. Love, Linux Kernel Development.

E. Gamma, R. Helm, R. Johnson, and J. Vissides, Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1994.

B. Ganter and R. Wille, Formal Concept Analysis: Mathe-
matical Foundations. Spring-Verlag, 1999.

P. Anbalagan and T. Xie, “Automated inference of pointcuts
in aspect-oriented refactoring,” in proc. of the International
Conference on Software Engineering (ICSE), 2007, pp. 127—
136.

D. Binkley, M. Ceccato, M. Harman, F. Ricca, and
P. Tonella, “Automated refactoring of object oriented code
into aspects,” in proc. of International Conference on Soft-
ware Maintenance (ICSM), 2005, pp. 27-36.

D. Shepherd, Z. P. Fry, E. Hill, L. Pollock, and K. Vijay-
Shanker, “Using natural language program analysis to lo-
cate and understand action-oriented concerns,” in proc. of
the International Conference on Aspect-oriented Software
Development (AOSD), 2007, pp. 212-224.

