
u n i ve r s i t y o f co pe n h ag e n

Generic Patch Inference

Andersen, Jesper; Lawall, Julia Laetitia

Published in:
Automated Software engineering 2008

DOI:
10.1109/ASE.2008.44

Publication date:
2008

Document version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
Andersen, J., & Lawall, J. L. (2008). Generic Patch Inference. In Automated Software engineering 2008: 3rd
IEEE/ACM International Conference on Automated Software Engineering (ASE 2008), September 15-19, 2008
(pp. 337-346). IEEE Communications Society. https://doi.org/10.1109/ASE.2008.44

Download date: 09. May. 2024

https://doi.org/10.1109/ASE.2008.44
https://doi.org/10.1109/ASE.2008.44

Generic Patch Inference
Jesper Andersen

DIKU, University of Copenhagen,
Universitetsparken 1, 2100 Copenhagen Ø, Denmark

Email: jespera@diku.dk

Julia L. Lawall
DIKU, University of Copenhagen,

Universitetsparken 1, 2100 Copenhagen Ø, Denmark
Email: julia@diku.dk

Abstract—A key issue in maintaining Linux device drivers is
the need to update drivers in response to evolutions in Linux
internal libraries. Currently, there is little tool support for
performing and documenting such changes.

In this paper we present a tool, spdiff, that identifies common
changes made in a set of pairs of files and their updated versions,
and extracts a generic patch performing those changes. Library
developers can use our tool to extract a generic patch based on
the result of manually updating a few typical driver files, and
then apply this generic patch to other drivers. Driver developers
can use it to extract an abstract representation of the set of
changes that others have made.

Our experiments on recent changes in Linux show that the
inferred generic patches are more concise than the corresponding
patches found in commits to the Linux source tree while being
safe with respect to the changes performed in the provided pairs
of driver files.

I. INTRODUCTION

In the case of open-source software, such as Linux, where
the developers are widely distributed, it must be possible to
exchange, distribute, and reason about source code changes.
One common medium for such exchange is the patch [1].
When making a change in the source code, a developer makes
a copy of the code, modifies this copy, and then uses diff
to create a file describing the line-by-line differences between
the original code and the new version. He then distributes this
file, known as a patch, to subsystem maintainers and mailing
lists for discussion. Once the patch has been approved, other
developers can apply it to their own copy of the code, to update
it to the new version.

Patches have been undeniably useful in the development of
Linux and other open-source systems. However, it has been
found that they are not ideal for one kind of change, the
collateral evolution [2]. A collateral evolution is a change
entailed by an evolution that affects the interface of a library,
and comprises the modifications that are required to bring
the library clients up to date with this evolution. Collateral
evolutions range from simply replacing the name of a called
library function to more complex changes that involve multiple
parts of each affected file. Such changes may have to be repli-
cated across an entire directory, subsystem implementation, or
even across the entire source code. In the case of Linux, it
has been shown that collateral evolutions particularly affect
device drivers, where hundreds of files may depend on a single
library [2].

The volume and repetitiveness of collateral evolutions strain
the patch-based development model in two ways. First, the

original developer has to make the changes in every file,
which is tedious and error prone. Second, developers that need
to read the resulting patch, either to check its correctness
or to understand what it will do to their own code, may
have to study hundreds of lines of patch code, which are
typically all very similar, but which may contain some subtle
differences. An alternative is provided by the transformation
system Coccinelle, which raises the level of abstraction of
patches to semantic patches [3]. A semantic patch describes a
change at the source code level, like an ordinary patch, but is
applied in terms of the syntactic and semantic structure of the
source language, rather than on a line-by-line basis. Semantic
patches include only the code relevant to the change, can be
abstracted over irrelevant subterms using metavariables, and
are independent of the spacing and line breaks of the code to
which they are applied. The level of abstraction of semantic
patches furthermore implies that they can be applied to files
not known to the original developer, such as the many drivers
that are maintained outside the Linux source tree.

Despite the many advantages of semantic patches, it may not
be reasonable to expect developers to simply drop the patch-
based development model when performing collateral evolu-
tions. For the developer who makes the collateral evolution,
there can be a gap between the details of an evolution within
a library and the collateral evolution it entails. Therefore,
he may still find it natural to make the required changes
by hand in a few typical files, to better understand the
range and scope of the collateral evolution that is required.
Furthermore, the standard patch application process is very
simple, involving only replacing one line by another, which
may increase confidence in the result. Thus, developers may
find it desirable to continue to distribute standard patches, with
or without an associated semantic patch.

What is then needed is a means of mediating between
standard patches and semantic patches, by inferring semantic
patches from standard patches. In this paper, we propose a tool,
spdiff, that infers a restricted form of semantic patch, which
we refer to as a generic patch, from a collection of standard
patches implementing a common set of transformations. The
Linux developer who makes a change in a library that affects
its interface can perform the collateral evolution in a few files
based on his knowledge about how drivers typically make use
of the library, and then apply spdiff to produce a generic
patch that can be applied to the other files automatically.
Complementarily, the developer who needs to read an existing

standard patch implementing a collateral evolution can apply
spdiff to the patch to obtain a more concise, abstract
representation of the changes that are performed, as well as
information about any deviations from these changes, which
may represent bugs or special cases of which he should be
aware. If the developer maintains proprietary code outside the
Linux kernel source tree, he may furthermore use the inferred
generic patch to apply the necessary changes.

Concretely, the contributions of this paper are:
• We provide a formalization of what constitutes a concise

and abstract generic patch. The formalization does not
rely on particular features of our generic patches and thus
could be instantiated for other transformation languages.

• We give an algorithm that infers concise and abstract
generic patches. We have implemented the algorithm
spfind in a tool spdiff.

• We show examples of the generic patches inferred by
spdiff from some recent collateral evolutions in Linux.

The rest of this paper is organized as follows. Section II
presents a motivating example that illustrates some of the
issues taken into account by our approach. Sections III through
V formally present our algorithm for inferring generic patches,
by first defining a core term language, then developing the
necessary elements of a theory of patches on this language,
and finally defining the algorithm itself. Section VI illustrates
the application of our spdiff tool to various recent collateral
evolutions performed in the Linux source tree. Section VII
describes related work and Section VIII concludes.

II. MOTIVATING EXAMPLE

To motivate the design of spfind, we begin with a simple
example of a collateral evolution from March 20071 and
consider the issues involved in inferring a generic patch for
it. The collateral evolution required replacing uses of the
general-purpose memory copying function memcpy that man-
ages network buffers by calls to a special-purpose function,
skb_copy_from_linear.

Figure 1 shows extracts of two files affected by this collat-
eral evolution and the updates to these files. The lines prefixed
with - and + indicate where code was removed and added,
respectively. Furthermore, the line that is prefixed with ! has
superficially the same form as the others, in that it represents
a call to memcpy, but it is not affected by the collateral
evolution. In the first file, two calls to memcpy are present
and only one was affected and in the second file only one
such call was affected.

A summary of the set of changes is shown in Figure 2. The
summary reveals that although there are differences in how the
two files were modified, there are also compelling similarities:

1) All calls to memcpy where the second argument is
a reference to the field data are changed into calls

1Git SHA1 identification codes
1a4e2d093fd5f3eaf8cffc04a1b803f8b0ddef6d and
d626f62b11e00c16e81e4308ab93d3f13551812a.
All patches in this paper can be obtained from
http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=summary

static int ax25_rx_fragment(ax25_cb *ax25,
struct sk_buff *skb)

{
struct sk_buff *skbn, *skbo;

if (ax25->fragno != 0) {
...
/* Copy data from the fragments */
while ((skbo = skb_dequeue(&ax25->frag_queue))

!= NULL) {
- memcpy(skb_put(skbn, skbo->len), skbo->data,
- skbo->len);
+ skb_copy_from_linear_data(skbo,
+ skb_put(skbn, skbo->len), skbo->len);

kfree_skb(skbo);
}
...

}
static int ax25_rcv(struct sk_buff *skb, ...)
{
...
if (dp.ndigi == 0) {
kfree(ax25->digipeat);
ax25->digipeat = NULL;

} else {
/* Reverse the source SABM’s path */

! memcpy(ax25->digipeat, &reverse_dp,
! sizeof(ax25_digi));

}
...

}

File: net/ax25/ax25_in.c
static
struct sk_buff *dnrmg_build_message(

struct sk_buff *rt_skb,
int *errp)

{
struct sk_buff *skb = NULL;
...
if (!skb)
goto nlmsg_failure;

...
- memcpy(ptr, rt_skb->data, rt_skb->len);
+ skb_copy_from_linear_data(rt_skb, ptr, rt_skb->len);

...
nlmsg_failure:
if (skb)
kfree_skb(skb);

...
}

File: net/decnet/netfilter/dn_rtmsg.c

Fig. 1. Extracts of the two files.

- memcpy(skb_put(skbn, skbo->len), skbo->data,
- skbo->len);
+ skb_copy_from_linear_data(
+ skbo,
+ skb_put(skbn, skbo->len),
+ skbo->len);

- memcpy(ptr, rt_skb->data, rt_skb->len);
+ skb_copy_from_linear_data(rt_skb, ptr, rt_skb->len);

Fig. 2. Set of changes for the two files of Figure 1.

to skb_copy_from_linear_data. On the other
hand, in the call to memcpy marked with a !, the second
argument is not a reference to the field data.

2) The first argument becomes the second.
3) The field reference to data in the second argument

is dropped. The resulting expression, which has type

struct sk_buff *, becomes the first argument of
the new function call.

4) The third argument of memcpy is copied as-is to the
third argument of the new function call.

The changes made to the two mentioned files can be sum-
marised compactly as the following generic patch derived
using our inference tool:

- memcpy(X0,X1->data,X2)
+ skb_copy_from_linear_data(X1,X0,X2)

where X0, X1, and X2 serve as placeholders (metavariables)
for concrete arguments. Intuitively, the above is an abstract
representation of the changes made: in the context of a call
to memcpy where the first and third argument are arbitrary
expressions and the second references the data field, change
the called function to skb_copy_from_linear_data,
move the first argument to the second position, remove the
data field reference of the second argument and make it the
first, and copy the third argument as-is. Thus, the combined
requirements on the context in which to make a transformation
ensure that only the calls marked with - are affected and leave
out the call to memcpy marked with !, as required.

As illustrated by this example, there are two main issues
to be considered when inferring such generic patches: 1)
compactness and 2) safety.

Compactness: The most trivial way to construct a generic
patch is simply to enumerate the changes, as done for the
example earlier in this section. The result, however, would
be no better than a standard patch, and it would gener-
ally not be applicable to files other than the ones used
for the inference. Finally, it would generally not be read-
able as high-level documentation of the changes performed.
We prefer, therefore, a more compact description of the
changes, which we produce by replacing subterms that are
not affected by the transformation by metavariables, as illus-
trated by e.g., the use of X0 rather than the concrete terms
skb_put(skbn,skbo->len) (in ax25_in.c) and ptr
(in dn_rtmsg.c) in the generic patch in the above example.

Safety: The safety of a generic patch requires that only
things that actually changed in the original file should be
changed by the inferred generic patch. In our example, one
of the calls to memcpy was not changed. We saw that we
could ensure safety by imposing a structural restriction on
the second argument to memcpy: only those calls where the
second argument referenced the data field should be affected.

In the next two sections we develop the machinery needed
in order to state an algorithm that can automatically infer safe
and compact generic patches such as the one shown above.
In the example, there was only one change, but the method
we describe is capable of dealing with multiple changes,
and always ensures that the derived generic patch correctly
describes a transformation that applies to all the files given as
input.

III. SETUP

While our approach targets C code, we formalise it in
terms of a simpler language, which we call the language of
TERMs. This language only distinguishes between atomic and
compound terms, as is sufficient for the presentation of the
algorithm. The language is defined as follows:

Definition 1 (Syntax of Terms)

TERM ::= ATOM | ATOM(TERM+)

In this definition, and subsequently, t+ indicates one or more
comma-separated occurrences of the nonterminal t. Further-
more, terms will be written as a and a(ts), for atomic and
compound terms respectively.

Updates on terms are described by generic patches. A
generic patch is created out of patterns, as defined below.

Patterns: A pattern is a TERM that may additionally
contain metavariables, which are placeholders for concrete
terms. The syntax of patterns is as follows:

Definition 2 (Syntax of Patterns)

p ::= ATOM | ATOM(p+) | Meta | Meta(p+)

Where Meta denotes a set of metavariables. In the examples,
we use uppercase letters to denote metavariables.

A pattern p matches a term t if there is a substitution θ of
the metavariables for terms such that applying the substitution
to the pattern yields a term syntactically equivalent to t, i.e.,
θp = t where θp denotes application of θ to p. A metavariable
may occur more than once in a pattern, in which case all
occurrences of the metavariable must match the same concrete
term. For example, the pattern f(X,X) matches any concrete
term that is a call to f with two syntactically equal arguments.

Term replacement patches: Patterns are then combined
into term replacement patches. A term replacement patch
describes how to transform any (sub)terms that match a given
pattern. The syntax of a term replacement patch is as follows:

Definition 3 (Syntax of Term Replacement Patches)

trp ::= p p

The application of a term replacement patch to a term is
defined by the rules shown in Figure 3.2 Rule a is concerned
with the case where a term t matches the pattern p according
to some substitution θ. The matching term is replaced with
θp′. The remaining rules traverse the term top-down along all
branches of the term (rule b) until reaching a subterm at which
rule a applies or until reaching a leaf (rule c). (Note that rules
b and c only apply if rule a does not.) If there is no matching
subterm, the application of a term replacement patch behaves
as the identity function.

2Note that although term replacement patches have the form of rewrite
rules, they are not applied iteratively as done in term rewriting systems.

(a)
∃θ : θp = t θp′ = t′

(p p′)(t) = t′,>

(b)

(p p′)(ti) = t′i, fi for all 0 ≤ i ≤ n
F =

⊔
fi

(p p′)(a(t0, . . . , tn) = a(t′0, . . . , t
′
n), F

(c)
¬∃θ : θp = a

(p p′)(a) = a,⊥

Fig. 3. Application of a term replacement patch.

The application of a term replacement patch additionally
returns a flag >, when a match has been found, or ⊥, when
no match has been found. These are ordered as ⊥ v >. Note
that a match may not actually cause the generated term to be
different from the original one, e.g., if the term replacement
patch specifies that the two arguments of a function should be
switched, and they are actually textually equivalent.

Generic patches: A generic patch is a sequence of one
or more term replacement patches, as defined by the following
grammar:

Definition 4 (Syntax of Generic Patches) A generic patch
is either a term replacement patch or a sequence of generic
patches.

gp ::= p p | gp; gp

Subsequently, whenever we say “patch,” we mean generic
patch unless stated otherwise.

The rules for applying a generic patch are shown below. The
application of a term replacement patch p1 p2 is defined in
terms of the rules of Figure 3, but here the application only
succeeds if the pattern matches somewhere, as indicated by
the flag >. A sequence of patches gp1; gp2 first applies gp1

to the term and then the result of that application is used as
input to the application of gp2.

[[p p′]]t = t′′ if p p′(t) = t′′,>
[[gp1; gp2]]t = [[gp2]]([[gp1]]t)

IV. THEORY OF SUBPATCHES

To satisfy the criteria of safety and compactness, we would
like to infer a generic patch that expresses the largest possible
common transformation applied to each term, without perform-
ing any undesired transformations. In this section, we provide
a formal definition of what it means for the transformation
performed by a generic patch to be largest and common.

A. Ensuring safety

Safety of a generic patch requires that it does not perform
undesired changes. Formally, safety is defined relative to a pair
of terms (t, t′′) with the assumption that some transformation
has been made in t to turn it into t′′. A patch gp is safe relative
to a pair of terms when the transformations it makes when
applied to t are a part of those that turn t into t′′. The following

example shows a patch that performs a safe transformation
and another patch that does not perform a safe transformation
relative to a pair of terms.

Example 1 (Illustration of safety) Consider the following
terms:

t = m(f(10),f(100))
t′ = m(f(42),f(100))
t′′ = m(f(42),f(42))
t′′′ = m(f(42),f(420))

and the following patches:

gp′ = f(10) f(42)
gp′′ = f(X) f(42)

Observe that [[gp′]]t = t′ and [[gp′′]]t = t′′. We now consider
whether gp′ or gp′′ is safe with respect to the pair (t, t′′′).

The following diagram illustrates the application of gp′ and
gp′′ to t, where subterms that have been affected by a patch
are underlined, and the relation to the result, t′′′ (center right).

m(f(42),f(100))

f(100) f(420)

��
m(f(10),f(100))

gp′
44jjjjjjjjjjjjjjjjj

gp′′
**UUUUUUUUUUUUUUUU m(f(42),f(420))

m(f(42),f(42))

?

OO

After the application of gp′, only the subterm f(100) (top
right) of t′ needs to be modified in order to reach t′′′ (center
right). As can be seen by the fact that f(100) is not
underlined it was not modified by gp′. Thus, gp′ is safe relative
to (t, t′′′). After application of gp′′, on the other hand, we need
to undo some of the changes made by gp′′, i.e., the second
underlined occurrence of f(42) in t′′ (bottom right). Thus,
gp′′ is not safe relative to (t, t′′′).

The definition of safety is based on the observation that
in transforming t into t′′ it is not necessary to modify any
subterm more than once. Thus, if t′ is the result of applying
gp to t, then any subterm of t that is changed in t′ should not
be changed again, and any subterm of t that is not changed
in t′ can be changed in order to reach the third term t′′′. The
rules in Definition 5 capture this property. We then say that
gp is safe relative to (t, t′′).

Definition 5 (One-step reachable) Suppose a patch gp and
a pair of terms (t, t′′) are given. Assume that [[gp]]t = t′ for
some t′. We say that t′′ is one-step reachable if t′′ can be
obtained from t′ without modifying any of the subterms that
gp modified with respect to t. We denote this t→ t′→ t′′.

t = t′ ∨ t′ = t′′

t→ t′→ t′′

a(ts) 6= a′(ts′) a′(ts′) 6= a′′(ts′′)
a = a′ ∨ a′ = a′′

∀(t, t′, t′′) ∈ (ts, ts′, ts′′) : t→ t′→ t′′

a(ts)→a′(ts′)→a′′(ts′′)

Based on Definition 5 we define a safe transformation part
of a pair of terms (t, t′′) as a patch such that any affected
subterm of t is affected in a safe manner.

Definition 6 (Safe Transformation part)

gp � (t, t′′) ⇐⇒ ∀t′ : [[gp]]t = t′ ⇒ t→ t′→ t′′

Common patch: A patch is said to be common to a set
of pairs of terms C if it is safe relative to each of the pairs of
C.

Definition 7 (Common Safe Patch) A patch gp is consid-
ered common relative to a set of pairs of terms C if it is
safe relative to each pair of terms in the set C:

gp � C ⇐⇒ ∀(t, t′′) ∈ C : gp � (t, t′′)

B. Ensuring compactness

In addition to seeking a safe generic patch, we also seek a
generic patch that compactly represents the changes made. In
order to define that a generic patch gp′ is more compact than
another generic patch gp, we define an ordering of patches
relative to a pair of terms: gp �(t,t′′) gp′. When gp �(t,t′′) gp′

the transformations expressed by gp are also contained in gp′

and we say that gp is a subpatch of gp′.

Definition 8 (Patch Ordering Relation)

gp �(t,t′′) gp′ ⇐⇒ gp′ � (t, t′′) ∧ ∃t′ : [[gp′]]t = t′ ∧
gp � (t, t′)

Thus, we consider gp a subpatch of gp′ if and only if gp
performs a safe part of the transformation that gp′ performs,
as expressed by gp � (t, t′), and gp′ is a safe part of (t, t′′).

The subpatch definition can be generalised to a set of pairs
of terms as follows:

gp �C gp′ ⇐⇒ ∀(t, t′′) ∈ C : gp �(t,t′′) gp′

Example 2 (Compactness and subpatches) In this example
we show that 1) when a patch gp′ is a larger than gp it
can actually be syntactically smaller than gp and that 2)
larger patches can be more compact by covering the changes
expressed by several smaller patches.

Consider the following terms:

tf = f(1)
tg = g(f(1))
th = h(f(1))
tx = x(f(2))
t′f = f(1,1)
t′g = g(f(1,1))
t′h = h(f(1,1))
t′x = x(f(2,2))

tm = m(g(f(1)),h(f(1))+x(2))
t′m = m(g(f(1,1)),h(f(1,1)+x(2,2)))

as well as the following patches:

gpf = tf t′f = f(1) f(1,1)
gpg = tg t′g = g(f(1)) g(f(1,1))
gph = th t′h = h(f(1)) h(f(1,1))
gpx = tx t′x = x(f(2)) x(f(2,2))
gpf,x = f(X) f(X,X)

The subpatch hierarchy is given below. An arrow from gpi

to gpj indicates that relative to the term pair (tm, t′m), gpi is
a subpatch of gpj .

gpf,x

gpf

55lllllllllllllll

gpg

<<zzzzzzzz
gph

bbDDDDDDDD
gpx

OO

From the hierarchy it is evident that although gpf is
syntactically smaller than both gpg and gph it is a superpatch
of both. Finally, we see that gpf,x is the largest patch and
that it covers both the transformations made by gpf and gpx.
Therefore it is more compact than the combination of the two
smaller patches.

The largest common subpatch: Suppose C is a set of
pairs of terms {(t0, t′′0), ..., (tn, t′′n)} representing the original
and updated code after some manual collateral evolution has
been performed. A largest common subpatch for C is then a
patch gp satisfying the following properties:

gp � C (1)
∀gp′ : gp′ � C ⇒ gp′ �C gp (2)

Property (1) expresses that gp is a common safe patch and
property (2) expresses that gp is largest among the common
subpatches. Since there can be more than one patch satisfying
the requirements above, we let LCP(C) be the set of largest
common patches for a set of pairs of terms C. The set
LCP(C) is thus the set of the most compact and safe generic
patches relative to a set C.

Example 3 (Largest Common Subpatch) The following is
an example of a largest common subpatch for a set of pairs of
terms {(t1, t′1), (t2, t′2)}. This example shows that the largest
common subpatch need not be unique.
t1 =

void foo(void) {
int x;
f(117);
x = g(117);
return x;

}

t′1 =

int foo(void) {
int x;
f(117,GFP);
x = h(g(117));
return x+x;

}

t2 =

void bar(int y) {
int a;
a = f(11)+g(y);
return a;

}

t′2 =

void bar(int y) {
int a;
a = f(11,GFP)+g(y);
return a+a;

}

The changes made to the two terms are enumerated below.
In the term t1 three changes are made: the call to g(117)
is embedded in another call to h, the call to f(117) gets
an extra argument GFP, and the expression returned is added
to itself. In the term t2 only two changes are made: the call
to f(11) gets an extra argument GFP and the expression
returned is added to itself. Schematically:
Updates applied to t1:

- f(117)
+ f(117, GFP)

- g(117)
+ h(g(117))

- return x;
+ return x+x;

Updates applied to t2:

- f(11)
+ f(11,GFP)

- return a;
+ return a+a;

Given C, we can verify that the set LCP(C) consists of
exactly two generic patches:{

f(X) f(X,GFP);return Y return Y+Y,

return Y return Y+Y;f(X) f(X,GFP)

}
The difference between the two is the order in which the two
term replacement patches are applied. However, the result of
applying either patch to each term in C is the same.

The example above motivates the following theorem of
equivalence of the set of largest common subpatches.

Theorem 1 For all sets of pairs of terms C, all of the patches
in the set LCP(C) are extensionally equivalent with respect
to the application function:

∀C : ∀gp, gp′ : gp ∈ LCP(C)⇒
gp′ ∈ LCP(C)⇒
(ti, t′′i) ∈ C ⇒
[[gp]]ti = t′i ∧ [[gp′]]ti = t′i

Proof of Theorem 1 (sketch): Given a set of pairs of
terms C, let B = {gp | gp � C}. The goal is to show that
the pair consisting of the quotient set B/∼ (where ∼ denotes
equivalence of generic patches with respect to C) and the
subpatch ordering �C (C/∼,�C) form a join semi-lattice and
that the least upper bound is in fact the set LCP(C). Since
any element of B/∼ is a set of equivalent generic patches,
theorem 1 follows.

Monotonicity: Given a set of pairs of terms C, suppose
B is such that LCP(C) = B. That is, B is the set of largest
common subpatches for C. Adding more pairs to the set C
will decrease the size of B:

∀C,C ′ : C ⊆ C ′ ⇒ LCP(C) ⊆ LCP(C ′)

In particular LCP(C ′) can become empty. This can happen
in two ways: 1) the transformation in the pairs added to C has
nothing in common with those in C, or 2) the transformations
in LCP(C) are not safe for the new pairs of terms. In this
case the transformation found in LCP(C) is applied in the
new pairs, but the transformation language is not expressive
enough to make a safe description of the transformation.

0: simple_pairs C =
1: B := I := ∅;
2: foreach (ti,ti’’) ∈ C:
3: Bi := {p p’ | p p’�(ti,ti’’)};
4: B := Bi ∪ B;
5: foreach Bi ∈ B:
6: I := Bi ∩ I;
7: return I

8: gen (C, bps, current_bp) =
9: next := next_bps (C, bps, current_bp);
10: if next = ∅
11: then
12: return {current_bp};
13: else
14: foreach bp ∈ next:
15: nbp := current_bp;bp;
16: Si := gen (C, next, nbp);
17: S := Si ∪ S;
18: foreach Si ∈ S:
19: R := Si*R
20: return R;

21: let spfind C =
22: return gen (C, simple_pairs(C), ⊥)

Fig. 4. The algorithm behind spfind.

V. THE SPFIND ALGORITHM

In this section we present the algorithm spfind on which
our tool is based. Given a set of pairs of terms, this algorithm
infers a collection of largest common subpatches, as defined
in the previous section.

Overview of the algorithm: The algorithm follows a
generate-and-test scheme. 1) For each pair of terms, we
construct the set of all possible parts that have the form of
term replacement patches (i.e., not sequential patches). Next,
we collect the term replacement patches that occur in the
intersection of all of the generated sets of term replacement
patches for every pair of terms. 2) Finally, we combine
the term replacement patches in this intersection into larger
sequential patches to obtain largest common subpatches for the
given set of term pairs. As discussed in the previous section,
there can be more than one largest common subpatch.

Using pseudo-code, Figure 4 states the essential algo-
rithm behind our tool. The algorithm is split into two parts:
1) generation of term replacement patches in the function
simple_pairs (lines 0-7) and 2) combination of patches
into larger ones in the function gen (lines 8-20). In the
following we describe these functions.

A. Generating term replacement patches

The key part of simple_pairs is the set comprehension
in line 3, which uses the safe transformation part relation gp �
C, to construct a set of term replacement patches.

Generating and abstracting over term replacement
patches: In order to implement the set comprehension de-
scribed in line 3 of simple_pairs we need a way to
generate all possible term replacement patches for a pair
of terms. To do this, the algorithm first finds all the term
replacement patches without metavariables (concrete parts)
and then generalises each concrete part in every possible way
by introduction of metavariables.

To generate all the concrete parts for a pair of terms (t, t′′)
the algorithm simply traverses the two terms in parallel. For
each pair of subterms it returns the concrete part tl tr only
when tl tr � (t, t′′), using Definition 6 to perform the
part-of check.

For each concrete part tl tr, the algorithm then generates
a set of generalised patches by introducing metavariables for
subterms of tl and tr respectively such that ∃θ : θp = tl and
θp′ = tr and p p′ � (t, t′′). The pseudocode for introducing
metavariables is tedious but straightforward and consequently
not shown. As an example, however, consider the concrete
term replacement patch f(42,117) f(42, 117 + 42).
Below we show a non exhaustive list of possible abstracted
versions:
f(42,X0) f(42,X0+42)
f(X0,117) f(42,117+X0)
f(X0,X1) f(X0,X1+X0)

...
X0(X1,X2) X0(X1,X2+X1)

Intersection: The final step of simple_pairs is to take
the intersection of all the generated sets of term replacement
patches. Because the generalization process ensures that all
metavariables have been generated systematically, if I is the
intersection of all sets of term replacement patches generated
as described above, then it holds that:

∀gp ∈ I : gp � C

where C is the set of pairs of terms input to the
simple_pairs function. Recall that the definition of gp �
C simply requires that gp is a safe transformation part for each
pair in C. Since I is the intersection of all the sets of term
replacement patches constructed from each pair of terms in C
(Bi in line 6), we can conclude that ∀(t, t′) ∈ C : gp � (t, t′)
as required.

B. Creating sequential patches

The gen function (lines 8 to 19 in Figure 4) constructs
larger patches based on the term replacement patches returned
by the simple_pairs function.

A technically correct version of the gen function would
simply generate all possible permutations of the term replace-
ment patches given, and then extract the largest among the
constructed patches. This approach, however, is unnecessarily
inefficient. Instead, the algorithm iteratively constructs larger
patches by extending simple patches into sequential ones and
removing smaller ones when combining sets of results. To
remove smaller patches, the algorithm uses Definition 8 for
gp �C gp′.

Finding possible next patches: Given a set of pairs
of terms, a prefix patch (denoted current_bp in Fig-
ure 4) and a set of term replacement patches, the function
next_bps returns the set of patches that can safely be
applied after current_bp. For each of these possible next
patches (denoted bp), the algorithm extends current_bp
into current_bp;bp (in line 15) and recursively calls gen
with the extended patch. If there are no more next patches to
apply, the algorithm simply returns the singleton set consisting

of the current prefix patch. The function next_bps is defined
as:
let next_bps (C, bps, current) =

{ bp ∈ bps | current;bp � C }

Joining sets of patches: Given sets of constructed
patches, lines 18-19 combine them to obtain a resulting set
that has the property that all patches in the set are largest:

S * S’ = {gp ∈ S ∪ S′ | ∀gp′ ∈ S ∪ S′ : gp′ �C gp}

Correctness of algorithm: We now state the relation
between the set of largest common subpatches LCP(C) and
the algorithm, although a formal proof of correctness is beyond
the scope of this paper.

The algorithm given in Figure 4 is sound and complete with
respect to the definition of set of largest common patches.
Given a set of pairs of terms C, spfind(C) ⊆ LCP(C) and
LCP(C) ⊆ spfind(C).

The implementation: We have implemented the algorithm
in a tool called spdiff.3 Because LCP(C) can be large
and involve uninteresting or overly generic variants, we have
desiged the tool to be sound but not complete, although the
tool always produces non-empty results when LCP(C) 6= ∅.
In the following we consider in more detail what these
uninteresting or overly generic variants may be.

In Example 3 we have already seen a case where LCP(C)
contains multiple elements because of differences in the order
of the constituent term replacement patches. LCP(C) can
also be very large when there are too many opportunities
for generalization. Given a set C of pairs of terms, the set
LCP(C) may be very large in case the terms in C are
structurally very similar. To see why, suppose the following
generic patch is in the set LCP(C):

foo(bar(w+x),117+y)
 foo(bar(w+x),117+y) + z

The essential part of the change is that in the right hand side,
a z is added. Potentially, however any subexpression can be
abstracted, so there are O(n2) abstractions, gp, of the generic
patch such that gp ∈ LCP(C). Given that the above generic
patch is in the set LCP(C), it may be that the following
generic patches are also in this set (recall that metavariables
are written as uppercase letters).

foo(X(w+x),117+y) foo(X(w+x),117+y) + z

X(bar(w+x),117+y) X(bar(w+x),117+y) + z

X(bar(w+x),117+Q) X(bar(w+x),117+Q) + z

X(Y,Q) X(Y,Q) + z

. . .

Although X(Y,Q) X(Y,Q)+z is in the set LCP(C) it
is not very likely that this generic patch is going to be safe
to apply to an unknown input term, because it specifies no
concrete information about either the function that is applied
or its arguments. Thus, the tool discards such a result, if a
more informative result is available.

3Binary available as http://www.diku.dk/∼jespera/spdiff.opt

Based on the observation expressed in Theorem 1 that
all generic patches in the set LCP(C) perform the same
transformation to all given terms, the tool can return a subset
LCP(C) of generic patches that seem likely to also apply
correctly to unknown terms. Concretely, define the size of a
generic patch |gp| as the size of each pattern it contains, where
the size of a pattern is given by:

|ATOM| = 1
|ATOM(t0, ..., tn)| = 1 + |t0|+ · · ·+ |tn|
|Meta| = 0
|Meta(t0, ..., tn)| = |t0|+ · · ·+ |tn|

The size of a pattern is thus the number of ATOMs in the
pattern. Let spdiff(C) denote the result of running the tool
with input C. The relation between the result of spdiff(C)
and LCP(C) is then

spdiff(C) = R ∧ LCP(C) = B ⇒
R ⊆ B∧
R = {gp | gp ∈ B, ∀gp′ ∈ B : |gp′| ≤ |gp|}

The size of the previous generic patch is then:

|X(Y,Q) X(Y,Q)+z| =
|X(Y,Z)|+ |X(Y,Z)+z| = 0 + 1 = 1

The other generic patches listed above have a size that is
strictly larger than 1. Thus, the above generic patch is not
part of the set returned by the tool.

VI. EXAMPLES

We now provide a few examples of the use of spdiff,
based on some recent patches committed to Linux that we
have identified using the patchparse collateral evolution
mining tool [2]. For each standard patch that we have tested,
we have constructed the set of pairs of terms, C, from the
image of the Linux source tree just before the standard patch
was applied and just after.

Adapt to structure changes: The following commits,
dated November 9, 2007, begin with the log message “convert
to use the new SPROM structure”.4

95de2841aad971867851b59c0c5253ecc2e19832
458414b2e3d9dd7ee4510d18c119a7ccd3b43ec5
7797aa384870e3bb5bfd3b6a0eae61e7c7a4c993

These commits comprise over 650 lines of patch code, and
affect 12 files in the drivers/net directory or its subdi-
rectories, at 96 locations. In the role of an expert in the affected
files, we selected three files from the first commit that illustrate
the set of required changes. From these files, spdiff infers
the following generic patch:
X0->sprom.r1 X0->sprom ;
sprom->r1.X0 sprom->X0

The inferred generic patch fully updates all 12 original files in
the same way the standard patches did. By careful examination
a person could construct the inferred generic patch by hand.
However, there would be no guarantee that the constructed

4The patches can be obtained from
http://git.kernel.org/?p=linux/kernel/git/torvalds/linux-2.6.git;a=summary

patch is safe, as this is not evident in the standard patch.
To check safeness manually, one would have to consider 1)
whether the constructed patch updates the proper locations
correctly but does not update locations, that were not to be
modified, and 2) whether the constructed patch is only a part
of the update that is to be performed to a particular file.

Furthermore, the inferred generic patch updates some other
files that were present at the time of the original patches but
were overlooked. These files were in other directories and were
not updated until February 18, 2008, by another developer.

Structure changes: Commit c32c2f63a9d6c953aa-
f168c0b2551da9734f76d2 from February 14, 2008 af-
fects 9 files at 12 locations. The message attached to the
commit is “d_path: Make seq_path() use a struct path
argument”. The standard patch attached to the commit is
approximately 160 lines. The patch inferred by spdiff is:
seq_path(X1,X2->X3.mnt,X2->X3.dentry,X4)
 seq_path(X1,&X2->X3,X4)

The inferred generic patch fully updates all but one
of the original files. The only file that is not fully up-
dated is the file fs/namespace.c in which a declaration
struct path mnt_path is also added.

Renaming of function calls: The following commits,
dated December 20, 2007, begin with some variant of
the log message “Kobject: convert drivers/* from
kobject_unregister() to kobject_put()”.
c10997f6575f476ff38442fa18fd4a0d80345f9d
78a2d906b40fe530ea800c1e873bfe8f02326f1e
197b12d6796a3bca187f22a8978a33d51e2bcd79
38a382ae5dd4f4d04e3046816b0a41836094e538

These commits comprise almost 800 lines of patch code,
and affect 35 files at 79 locations. Based on the changes in
the 17 files in the first of the above commits, spdiff derives
the following generic patch:
kobject_unregister(X0) kobject_put(X0)

The inferred generic patch fully updates all but 3 files in
the same way the standard patch did. The remaining files each
include an additional change that goes beyond the collateral
evolution.

Modifying declarations: Commit c11ca97ee9d2e-
d593ab7b5523def7787b46f398f and 12 others from
around December 7, 2007 change 21 files at 26 loca-
tions. The log messages are “use LIST_HEAD instead of
LIST_HEAD_INIT”. The standard patches total almost 300
lines. The inferred generic patch is:
struct list_head X0 = LIST_HEAD_INIT(X0);
 LIST_HEAD(X0);

The inferred generic patch fully updates all 21 files. The
original developer, on the other hand, initially overlooked
one case and had to create a second patch on the same
file to correct it. Furthermore, 6 files that contained relevant
declarations at the time the patches were committed were not
updated by the original patches, and of those 5 files have still
not been updated today (four months later). All of these files
are fully updated by the generic patch.

Use kzalloc: Over the past couple of years, around
100 patches have been committed that convert the combination
of calls to kmalloc and memset to kzalloc. One such
commit is dd3927105b6f65afb7dac17682172cdfb8-
6d3f00 from September 6, 2005 which affected 6 files at 27
locations. The transformation it performs can be represented
as follows.

x = kmalloc(size, flags);
...
memset(x, 0, size);

9=; kzalloc(x, size, flags);
...

Our tool is, however, not able to infer any common generic
patch in this case because the language of generic patches
is not able to express the temporal ordering of terms or the
sharing of metavariables between disjoint code fragments.

Assessment: These examples show that for a variety of
collateral evolutions, spdiff infers generic patches that are
much more concise, and we believe much more readable,
than the corresponding standard patches. In several cases, the
original standard patches did not perform part of the collateral
evolution in some relevant files. In this situation, a developer
could use spdiff to infer a generic patch from the provided
standard patches and to complete the collateral evolution.
Using the Coccinelle transformation system, the generic patch
can be applied everywhere in the Linux source tree.

While all of the inferred generic patches inferred are all
simple enough that a person could construct them by hand by
inspecting the standard patches, it would require more work to
confirm that the manually constructed patch is indeed safe for
all of the input files. Safeness is not evident from the standard
patches, so to confirm safeness, one would need to apply the
constructed patch to all original input files and check that for
each file, the constructed patch applies correctly to a subset
of the locations that need to be modified in the file.

Our final example illustrates a limitation of generic patches.
The richer language of semantic patches provided by Coc-
cinelle can express the properties needed to treat such exam-
ples [3]. We plan to extend spdiff to treat such cases in the
future.

VII. RELATED WORK

Our approach considers the problem of finding a single
generic patch that correctly updates a collection of programs.
We know of no work that addresses this problem directly.
Several approaches, however, have considered how to con-
cisely capture the changes between the original and modified
versions of a single program. In this section we relate our
approach to a number of other approaches that detect programs
changes.

Chawathe et al. [4] describe a method to detect changes to
structured information based on an ordered tree and its updated
version. Their goal is to derive a compact description of the
changes. To this end, a notion of a minimum cost edit script
is defined. An edit script is basically a sequence of operations
where each operation has an associated cost determined by
some measure of structural similarities between the trees.

As such, the minimum cost edit script will be the most
compact description of the changes made to the original tree
with respect to the edit operations. Edit operations, however,
always explicitly denote the node to transform and thus the
approach is not sufficient for our context where we would like
one transformation specification that applies to even unknown
code.

Neamtiu et al. consider the problem of identifying changes
to C programs [5]. Their method infers changes, additions
and deletions of various program elements based on structure
matching of syntax trees. Two trees that are structurally
identical but have differences in their nodes are considered
to represent matching program fragments. In contrast to the
work by Chawathe et al., each simple change (e.g. renaming
of a variable) is only reported once. Thus, the description
of the changes made can be more compact than what is
possible with the minimum cost edit scripts of Chawathe et al.
However, similarities in changes involving larger trees are not
detected, and consequently very similar changes made across
all functions are reported as separate changes, whereas we
need to be able to generalise descriptions of changes.

Kim et al. propose a method to infer “change-rules” from
two versions of the same program [6]. Their goal is to
construct a small set of change rules that capture many
changes. Change rules express changes related to program
headers (method headers, class names, package names, etc.).
The basic shape of a change rule is similar to that of our term
replacement patches: ∀x ∈ scope : transformation,
meaning that every match described by the scope is modified
by the transformation. The scope, described using a variant
of regular expressions, ranges over the textual representations
of the previously mentioned headers. By using regular expres-
sions as an abstraction mechanism the scope can be extended
to e.g. all calls to a method that starts with the prefix foo.
Thus, change rules can express that a given transformation
was applied to a set of entities which is more compact than
simply enumerating all entities. Our term replacement patches
are similar to change rules but apply to any program element
rather than just to program headers. Finally, our use of meta-
variables allow equality constraints among program elements
as well as applicability to more than one input program.

Weißgerber et al. present a technique to identify likely
refactorings in the changes that have been performed in Java
programs [7]. Like Kim et al., they search for a fixed set
of transformation types (in this case, rename method, add
parameter, etc). Each transformation type has an associated
precondition that enables the transformation. They first collect
various signature information about the old and new versions
of a given file, and then use this information to determine
whether the preconditions of any of the transformation types
is satisfied. If a precondition is satisfied, the transformation
is considered a refactoring candidate. They furthermore use
clone-detection to check that the change performed by a
candidate is semantics preserving. Because we consider ar-
bitrary changes, such checks are not relevant in our case. The
transformation types given by Weißgerber et al. do not support

any kind of abstraction mechanisms such as our metavariables.
Thus, two detected changes can not be generalised into a
more compact description that covers both of them, as could
potentially be done by the method given by Kim et al. and by
our work.

The patchparse collateral evolution mining tool [2]
scans patch files for frequently occurring changes, modulo
a simple strategy for abstracting away from terms that are
shared between the original and modified code. Patchparse
is sufficient to detect some of the rules in our examples, such as
the kobject_unregister/kobject_put example, for
which it reports:
kobject_unregister(ARG0) replaced by kobject_put(ARG0)

However, its strategy for detecting common terms is essentially
top-down, and thus it reports the following result for the
seq_path example:
seq_path(ARG0, CODE, CODE, ARG3) replaced by

seq_path(ARG0, CODE, ARG3)

In this case, it was not able to relate the second and third
arguments in the original call to the second argument in
the new code, and thus it falls back on characterizing these
arguments as arbitrary code (CODE), which is not sufficient
to specify the transformation. Patchparse furthermore does
not ensure that the transformation represented by the proposed
collateral evolution is either safe or compact. It can, however,
be beneficially used, as we have done in this paper, to narrow
down the set of patches considered when using spfind
to infer generic patches based on standard patches already
submitted to Linux.

VIII. CONCLUSION

The contributions of this paper are as follows: 1) We
provide a formalisation of the largest common subpatch no-
tion independent of the transformation language used. 2) We
give an algorithm that performs inference of largest common
subpatches relative to a transformation language of generic
patches as well as a tool that implements the algorithm. 3) We
have shown examples of inferred generic patches from recent
collateral evolutions in Linux where our tool infers generic
patches that are more compact than the standard patches that
were originally applied to the Linux source tree and allowed

us to update relevant files where the collateral evolution was
not performed.

Currently, the spfind tool requires that a change be made
in all of the provided files. In practice, however, particularly
when spfind is used to better understand a collection of
existing standard patches, it can be useful to be able to detect
changes that occur in only a subset of the files. We plan to
address this issue in the near future, e.g., by allowing the
user to provide a threshold for the frequency of occurrences
required for a change to be considered for inclusion in the
generic patch.

Finally, the language of generic patches can cover only a
subset of the collateral evolutions performed in the Linux
kernel. In the future we plan to extend our method to the
richer language of semantic patches provided by Coccinelle.

IX. ACKNOWLEDGMENTS

We would like to thank Gilles Muller for his feedback on an
earlier version of this paper. We would also like to thank the
anonymous reviewers for helpful comments. And finally, this
work was supported in part by the Danish Research Council
for Technology and Production Sciences.

REFERENCES

[1] D. MacKenzie, P. Eggert, and R. Stallman, Comparing and Merging Files
With Gnu Diff and Patch. Network Theory Ltd, Jan. 2003, unified
Format section, http://www.gnu.org/software/diffutils/
manual/html_node/Unified-Format.html.

[2] Y. Padioleau, J. L. Lawall, and G. Muller, “Understanding collateral
evolution in Linux device drivers,” in The first ACM SIGOPS EuroSys
conference (EuroSys 2006), Leuven, Belgium, Apr. 2006, pp. 59–71.

[3] Y. Padioleau, J. Lawall, R. R. Hansen, and G. Muller, “Documenting
and automating collateral evolutions in Linux device drivers,” in Eurosys
2008, Glasgow, Scotland, Mar. 2008, pp. 247–260.

[4] S. S. Chawathe, A. Rajaraman, H. Garcia-Molina, and J. Widom, “Change
detection in hierarchically structured information,” in SIGMOD ’96:
Proceedings of the 1996 ACM SIGMOD international conference on
Management of data. New York, NY, USA: ACM, 1996, pp. 493–504.

[5] I. Neamtiu, J. S. Foster, and M. Hicks, “Understanding source code
evolution using abstract syntax tree matching,” SIGSOFT Softw. Eng.
Notes, vol. 30, no. 4, pp. 1–5, 2005.

[6] M. Kim, D. Notkin, and D. Grossman, “Automatic inference of structural
changes for matching across program versions,” in ICSE ’07: Proceedings
of the 29th International Conference on Software Engineering. Wash-
ington, DC, USA: IEEE Computer Society, 2007, pp. 333–343.

[7] P. Weissgerber and S. Diehl, “Identifying refactorings from source-code
changes,” in ASE ’06: Proceedings of the 21st IEEE/ACM International
Conference on Automated Software Engineering. Washington, DC, USA:
IEEE Computer Society, 2006, pp. 231–240.

