Configuration Lifting: Verification meets Software Configuration

Hendrik Post, Carsten Sinz
Research Group “Verification meets Algorithm Engineering”
Institute for Theoretical Computer Science, University of Karlsruhe, Germany

http://verialg.iti.uka.de

Abstract

Configurable software is ubiquitous, and the term Soft-
ware Product Line (SPL) has been coined for it lately. It
remains a challenge, however, how such software can be
verified over all variants. Enumerating all variants and an-
alyzing them individually is inefficient, as knowledge can-
not be shared between analysis runs. Instead of enumera-
tion we present a new technique called lifting that converts
all variants into a meta-program, and thus facilitates the
configuration-aware application of verification techniques
like static analysis, model checking and deduction-based
approaches. As a side-effect, lifting provides a technique
for checking software feature models, which describe soft-
ware variants, for consistency.

We demonstrate the feasibility of our approach by check-
ing configuration dependent hazards for the highly config-
urable Linux kernel which possesses several thousand of
configurable features. Using our techniques, two novel bugs
in the kernel configuration system were found.

1 Introduction

Formal software verification plays an increasingly im-
portant role in the software development process. It is grad-
ually evolving into a tool with much more widespread use
and is on the edge of becoming a natural companion to
well-established testing methods. Microsoft’s Static Driver
Verifier (SDV) [1], for example, is a tool that automatically
checks C code of Windows device drivers for conformance
to the Windows Driver Model (WDM). However, complete
software systems not only consist of a bunch of source code
files, but also contain various dimensions of versioning. For
low-level code this extra information comes in the form of
makefiles, configuration files, or shell scripts, and these ad-
ditional files are generally not considered during formal ver-
ification.

Software configuration provides another source of com-
plexity for software testing and verification. A configura-

{post,sinz} @ira.uka.de

tion space consisting of n features that may be turned on and
off independently requires analysis of (up to) 2" concrete
configuration instances. And with conventional software
testing already facing the problem of incomplete coverage
of possible program executions, adding an exponential fac-
tor to the set of possible program instances may completely
break the testing approach. Software verification techniques
like Model Checking have the potential to cover all possible
program executions but are currently incomplete—or even
sound—because configurations are not taken into account.

The new technique, called lifting, integrates configura-
tion information into a conventional verification process. In
this paper, this novel approach is introduced, concentrat-
ing on applying it to build configurations and conditional
compilation techniques. Lifting can be described as auto-
matically transforming a configurable software system such
that all configuration steps are performed at runtime of the
program.

Lifting allows standard verification techniques to reason
about the following typical defect areas in a generative [3]
software build process:

D1. The feature model may be inconsistent.

D2. The feature model restrictions may not match the re-
strictions required by the concrete, implemented fea-
tures.

D3. Any variant may violate software requirements that
should hold for all variants, e.g., it may cause runtime
errors.

As verification backend we have chosen CBMC [2], a
SAT-based source code bounded model checker for C.

1.1 Lifting
In this paper we consider configurable programs (SPLs)

consisting of the following parts:

e A feature model consisting of (propositional logic)
rules over a finite domain language that describes valid
software variants (e.g., Kconfig for the Linux kernel).

e Configurable source code (configuration is done, e.g.,
by preprocessor directives).

e A tool chain for configuring a variant consistent with
the feature model as well as for building the correct
software variant (makefiles, C preprocessor).

The tool chain is also called a Software Variant Genera-
tion System (SVGS). The main idea of lifting now is as fol-
lows: We assume that a verification tool for checking indi-
vidual variants is already available. To handle different soft-
ware variants, we have to integrate relevant parts of the con-
figuration and build process into our verification approach.
This is done by converting the configuration and build parts
into the source code language of the configurable program
(written, e.g., in C), and modifying the original program
accordingly. Then the assume/assert mechanism of the ver-
ification backend can be used to reason about multiple con-
figurations as well as properties of the configuration system.
In that way, we can check, e.g., that a property holds for all
valid software variants. We will also denote the modified
program containing the configuration and build parts (thus
encompassing all valid variants) by meta-program.

The impact of variant generation on the source code level
can be modelled by conditional code inclusion/exclusion'.
Each inclusion/exclusion is then guarded by a condition that
depends on the feature model and build tool chain. For ex-
ample, a function definition may be included in a C program
only if the corresponding feature is enabled, the makefile
includes this file (this may also depend on the selected fea-
tures) and all relevant preprocessor conditions (#1ifdefs)
evaluate to true. The challenge for configuration-aware ver-
ification is now twofold: the set of guards must be computed
by analyzing the feature model, Makefiles, and preproces-
sor statements. Additionally, guards must be expressed in
a way such that the verification backend can handle them.
One way to achieve the latter is to encode guards as path
conditions as will be illustrated in the next section.

Compared to checking each software variant indepen-
dently, lifting is expected to work well if the variants share
large parts of the project’s source code, which is typically
the case. The benefits of lifting are that configuration inde-
pendent knowledge must be generated only once, and that
program errors that occur in many software variants can be
detected efficiently.

2 Case Study: Linux as a SPL

Sincero et al. state that Linux is in fact a software prod-
uct line [4]. Variant generation in Linux is mainly based
on conditional compilation of C code. The code, organized

!Code exclusion/inclusion may transform any program into any other
program, hence no loss of expressive power occurs.

in thousands of modules, is conventionally configured us-
ing the following means: An Architecture Definition, a rule-
based configuration system called Kbuild which encodes a
feature model, a set of Makefiles, Preprocessor Statements
that may exclude, include, or modify source code on any
syntactical level and Runtime Parameters for modules and
the kernel itself.

In this section we apply lifting to the configuration of the
Linux kernel. This is done in several steps, which resemble
the steps that are required to configure a kernel. At first,
the Kbuild feature space and rules is translated into C. Af-
ter this step, problems belonging to class D1 can already be
analyzed. Next, Makefiles are lifted to express their seman-
tics in C. Having done that, problems of class D2 can be
expressed—e.g., to rule out that functions are used but not
defined in certain configurations. Finally, the effects of arbi-
trary preprocessor statements are encoded into preprocessor
free C code, which enables the use of verification tools like
C software model checkers to gain full access to the config-
uration process as a whole. The latter transformation relates
to problems belonging to class D3.

Lifting Kbuild. Kbuild allows feature models to be de-
fined as a set of (boolean) features and rule-based restric-
tions. Features may depend on each other. For example,
feature A may only be allowed if another feature B is also
enabled. Such and other dependencies can be expressed by
the Kbuild keywords depends [on] . Reverse depen-
dencies can be defined using the selects attribute. Other
features are omitted in this paper.

We now translate the Kbuild rules into a C-function. For
all possible features a new, unconstrained variable is intro-
duced. It is then checked programmatically whether values
assigned to the variables comply with the set of proposi-
tional logic rules. For a valid configuration, the C-function
calls all possible entrypoints (i.e., main) of the original
source code. If the configuration does not comply, the pro-
gram terminates gracefully to avoid errors resulting from
variants executed under illegal configurations.

Example 1 Kbuild feature model consisting of the sole rule
A depends on B lifted into a C function.

void feature_model () {
_Bool invalid = false, feature_A, feature_B;
invalid = invalid || (feature_A && ! feature_B);
if (!invalid) main(...);

exit (RETURN_CONFIG_INVALID) ;
}

Note that the above example encodes the dependencies
between different feature models as a path constraint.

The above transformation is implemented by a script
written in awk which translates the ruleset into C code.
The C code can then be analyzed using the bounded source

Table 1. Kbuild feature model analysis, i386
architecture.

Features 4675
Dependencies 3640
Selects 1830
Variables in SAT formula 142004
Clauses in SAT formula 280629
Size of program expression (assignments) 15233
Analysis runtime 108s

Table 2. Analysis of undefined functions,
PowerPC architecture (for drivers/base
and drivers/macintosh).

Source files 68
LOC 31000
Non-trivial assertions to be checked 50
Features 4495
Makefiles 952
Conditions in Makefiles 10489
Errors found 5
New errors 1
Makefile analysis runtime 25s
Source parsing, condition extraction runtime ~ 30s
Create verification conditions 10s
Analysis runtime <Is

code model checker CBMC [2]. In our experiments with
the Linux kernel we addressed the following problem (from
class D1):

Problem 1 May a feature be enabled, although its depen-
dencies are not fulfilled?

This problem arises from the Kbuild implementation of re-
verse dependencies’: Kbuild allows a feature A to be ac-
tivated by another feature B without ensuring that A’s de-
pendencies are met, as selects automatically enables all
required features.

Modelling this problem can be done in finite domain
logic, but state updates must also be modelled. C as a mod-
elling language is of course expressive enough to handle
this. The resulting C program that encodes the problem is
similar to Example 1 except that two steps replace the in-
vocation of a main function: (1) Apply all selects by
updating configuration variables if the feature that contains
the select is enabled. (2) Assert that the new configura-
tion still complies with all dependency rules.

The above steps model the effect of reverse dependen-
cies introduced by select statements: CBMC then checks
whether the assertion holds or not, and, if the latter should

2Reverse dependencies activate dependent features while normal de-
pendencies cannot be enabled when their dependencies are not met.

be the case, a counter-example trace will be printed. The
counter-example gives information about the first depen-
dency that has been violated. The above analysis lead to the
discovery of an error. Details about the performed analysis
are given in Table 1.

Lifting Make. Makefiles direct the compilation process
by determining which source files (and in which order) have
to be compiled and linked together. In Linux, the set of
files and directories which are included into a kernel build
is determined by configuration flags. For each source file
we compute all conditions that must be fulfilled such that
make would compile and link it. This condition is usually
encoded recursively: an item is included if its guard expres-
sion is true and its parent directory is also built. Hence, the
resulting guard is a conjunction of guards for this file and
all directories on the file’s path.

Problems of class D2 are related to compile problems
that arise for certain configurations. We decided to pick one
type of problem that has been reported on the Linux kernel
mailing list:

Problem 2 A function may be used in configurations in
which it is not defined.

Whether a C function is defined may depend on configura-
tion features. It may occur that calls to this configuration-
dependent function do not have sufficient guards, e.g., calls
to undefined functions may exist for some configurations.
Let Gp denote the guard for the definition of a function,
and G ¢ denote the guard under which any call to the func-
tion may occur. The system is safe with respect to the above
problem if Go = Gp.

The problem extends Problem 1 in so far, as information
about makefile and preprocessor guards must be included.
A function is defined or used if the file is included by make
and the definition is not masked by #1 fdef guards.

If Go = Gp holds for all valid configurations, then the
function call can be considered safe. Using this technique,
we were able to re-discover four known configuration er-
rors. Moreover, we found another unsafe call/definition pair
that has been fixed by the Linux kernel developers indepen-
dently from our work.

Table 2 gives more details on the performed experiments.

Lifting Preprocessor Code. The C preprocessor imple-
ments code modifications. The preprocessor gets as input
the macro declarations created by Kbuild. These and other
information are then used to modify the source code.

In order to understand the dependencies between Kbuild
rules, makefiles and preprocessor directives we introduce a
new term called preprocessor (code) region. A preproces-
sor region is a maximal nonempty section of C source code

that does not contain any preprocessor statements like #1if,
#ifdef, #else, #endif and others.

For each region we compute the preprocessor con-
dition (guard) that must hold for it to be active (i.e.,
the condition under which it is included in the compi-
lation process). The relationship between features and
region guards is that conditional compilation uses pre-
processor variables that are defined only if certain fea-
tures are included in the current configuration. Consider,
as a simple example, a statement like x = 5/y, em-
braced by an #ifdef DIVISION_ENABLED. The divi-
sion is only included in the source file if the preproces-
sor symbol DIVISTION_ENABLED is defined. Kbuild sets
DIVISION_ENABLED, which bridges the gap between fea-
ture model and preprocessor evaluation.

Commonly the following aspects of a C program are
changed using configuration dependent preprocessing: code
blocks or individual statements, definitions, declarations,
types and initializers. We will now show how declara-
tions can be lifted. Other configuration dependent ele-
ments are treated similarly: If a declaration is configura-
tion dependent—i.e., it is located in a region which has a
non-trivial guard—we modify its name by adding to it a
new postfix. Any direct reference to the original variable
is replaced by a conditional reference. Variant bound dec-
larations can now be referenced in the meta-program. Re-
moving all preprocessor effects enables configuration aware
verification. The corresponding problem (from class D3) is
straightforward:

Problem 3 Does a set of variants contain runtime errors?

As a micro case study, we transformed a real Linux de-
vice driver, sound/oss/ad1848. c, using our technique
(we had to manually preprocess several lines of the original
code). Note that afterwards the meta driver was still compi-
lable using the custom kernel make process.

The driver contains five binary configuration features
that are independent from each other, i.e., 32 (almost iden-
tical) variants exists. We started with the smallest variant
and incrementally lifted features one after another. Thereby,
we introduced 56 new if statements that guard configura-
tion dependent operations or names. No new function calls
or loops were introduced, hence the amount of code cov-
ered by CBMC was as high as before. Our conclusion is
that, at least for this driver, lifting may provide a substantial
speedup compared to naively checking each variant sepa-
rately (Table 3). Note that the fastest runtime was achieved
for the smallest variant that excludes PNP, SMP and timer
support (ET). If the analysis of each possible variant takes
at least as long as for the minimal variant, the total conven-
tional analysis time would be 32 x 71s ~ 37min. Lifting
can analyze all variants (cf. last line in Table 3) in 73s. The

Table 3. Verif. of lifted code (ad1848.c).

CBMC / SAT problem size
Lifted Feature Variants | Time #Vars #Clauses
Minimal code 1 [71.0s | 8%10° 13 % 10°
+MODULES 2 | 74.6s +1 +3
+DEBUGXL 4 | 75.6s +25657 +81983
+ET 8 | 754s +3 -295
+CONF IG_SMP 16 | 72.9s | +117704 +185367
+CONF IG_PNP 32 | 73.0s +4 +13975

speedup is dependent on the fact that most lines of code are
not influenced by configuration.

3 Discussion

Software configuration lifting, as presented in this pa-
per, is a novel technique. We have shown that it can be ap-
plied to very complex software systems featuring many lev-
els of configuration. Lifting facilitates the analysis of spec-
ifications in three domains: inconsistencies within a feature
model, inconsistencies between feature model and feature
implementations and even the coverage of runtime errors in
all product variants. Though the presented technique is cen-
tered on configurable code using conditional compilation
mechanisms, it should in principal be applicable to other
SPL implementation mechanisms. The usage of the target
language as modelling language for the generative process
is expressive enough to model complex generation proce-
dures. The three domains have been tested on a very large
system including more than 4600 features. The compu-
tationally hardest part, model checking the meta-program,
did provide a substantial speed-up compared to enumera-
tion based analysis runs. We were able to expose new bugs
attached to uncommon configurations. Finding those would
potentially have required much more effort if all configura-
tions were checked separately.

References

[1] T. Ball, E. Bounimova, B. Cook, V. Levin, J. Lichtenberg,
C. McGarvey, B. Ondrusek, S. K. Rajamani, and A. Ustuner.
Thorough static analysis of device drivers. In EuroSys Conf.,
Proc., pages 73-85. ACM Press, 2006.

[2] E. Clarke, D. Kroening, and F. Lerda. A tool for checking
ANSI-C programs. In TACAS, volume 2988 of LNCS, pages
168-176. Springer, 2004.

[3] K. Czarnecki and U. Eisenecker. Generative Programming.
Methods, Tools and Applications. Addison Wesley, May
2000.

[4] J. Sincero, H. Schirmeier, W. Schroder-Preikschat, and
O. Spinczyk. Is The Linux Kernel a Software Product Line?
In Intl. Workshop on Open Source Software and Product Lines
(SPLC-OSSPL 2007), Proc., 2007.

