
Predicting Effectiveness of Automatic Testing Tools
Brett Daniel1

University of Illinois at Urbana-Champaign
Urbana, Illinois 61801

Email: bdaniel3@uiuc.edu

Marat Boshernitsan1

Coverity, Inc.
San Francisco, California 94107

Email: maratb@acm.org

Abstract—Automatic white-box test generation is a challenging
problem. Many existing tools rely on complex code analyses
and heuristics. As a result, structural features of an input
program may impact tool effectiveness in ways that tool users
and designers may not expect or understand.

We develop a technique that uses structural program metrics
to predict the test coverage achieved by three automatic test gen-
eration tools. We use coverage and structural metrics extracted
from 11 software projects to train several decision tree classifiers.
Our experiments show that these classifiers can predict high or
low coverage with success rates of 82% to 94%.

I. INTRODUCTION

Automatic test generation is a recurring theme in computer
science research [1]–[11]. Also called test-input generation,
it has many uses in software engineering, ranging from aug-
menting manual testing efforts to automatically generating test
suites.

Determining inputs that cause a program to execute a par-
ticular code path is generally undecidable [12]. Nevertheless,
researchers have proposed many heuristics and approximations
to produce tests for realistic source code. These heuristics and
approximations are often based on the intuition (sometimes
experimentally supported) about the types of programs that the
analysis is likely to encounter. The unfortunate side effect is
that the accuracy or the performance of the analysis algorithms
may be adversely affected by the structure of the input
program.

We are unaware of any techniques that automatically corre-
lates program structure to tool effectiveness. Such knowledge
would help both users and tool designers. Users would gain
knowledge of why a tool did not perform in the way they
expected, allowing them to adapt to the tool’s limitations. Tool
designers would learn the tool’s limitations, allowing them to
improve the tool’s effectiveness.

Our technique provides a path to achieving this goal. It
entails training decision trees to predict test coverage using
metrics derived from program structure. First, we extract
structural program metrics from a large corpus of Java source
code with coverage produced by a given test generation tool.
We then use off-the-shelf machine learning techniques to train
a decision tree to predict whether the testing tool will achieve
high or low coverage on any method for which the required
metrics can be computed.

1The work presented in this paper was done while both authors were
employed by Agitar Software, Inc., which has since ceased operations.

(a) Process for tool designers to train a decision tree

(b) Process for tool users to obtain prediction for their code

Fig. 1. Overview of the process to predict a testing tool’s effectiveness

Our key contributions are the following:
• We present a novel technique by which one can use

machine learning algorithms to predict automatic testing
tool effectiveness from structural metrics.

• We evaluate the technique using three automatic testing
tools: Agitator [6] and Mockitator from Agitar Software,
and Randoop [5] from the Massachusetts Institute of
Technology. We find that decision trees trained on 11
open-source Java projects can predict high or low cover-
age with 82% to 94% success rate.

II. OVERVIEW

In this section we give a broad overview of the process we
propose to predict effectiveness of an automatic test generation
tool. The process has two parts: training a decision tree using
code with known coverage characteristics and using the tree
to predict coverage on new code.

Figure 1(a) illustrates the training process. We begin with a
large corpus of source code, which we refer to as the training
code. We extract two data sets from the training code. First,
we extract many metrics that characterize method structure.
Second, we run the automatic testing tool to produce a suite



Fig. 2. The first three levels of a decision tree trained using our 11 open-
source projects

of tests. These tests exercise the training code and produce
coverage numbers for the methods. The coverage numbers and
metrics flow into a machine learning algorithm that trains a
decision tree.

Figure 1(b) presents the process a tool user would follow
to predict coverage based on the structure of his or her code.
A user first extracts the same metrics from his or her body of
code as were extracted from the training code. These metrics
flow into the decision tree that renders a coverage prediction
in terms of the metrics. In our case, the prediction is a high
or low coverage label, along with the set of metrics that the
decision tree used.

III. EXAMPLE

To illustrate the process described in Section II, we examine
the java.util.HashMap class’s putAll method:

public void putAll(Map m)

We train a decision tree using the coverage that Agitator
(one of our test generation tools) achieved on a large body
of source code. Figure 2 illustrates the first three levels of
such a decision tree. An internal node contains a test against
a structural metric, an edge represents the result of the test,
and a leaf node represents a high or low coverage prediction.
The ellipses represent deeper portions of the tree that we omit
for space. A trace from the root to a leaf is the conjunction
of the metric tests that led to a particular prediction.

The following partial trace for putAll predicts that Agitator
will get low coverage. The prediction is correct; in reality,
Agitator achieves just 14% coverage.

¬ Is Constructor
∧ Number of Referenced Types > 4
∧ Number of Non-Loop Paths > 3
...
∧ Number of Visible Types > 0
∧ Number of Branches > 4
=⇒ Low Coverage

Each of the metrics in the trace provides a clue to the
program features that likely affected Agitator’s test generation.
In reality, Agitator is unable to construct a Map object for
the m argument with size greater than 0. This is related to
the “Number of Referenced Types” and “Number of Visible
Types” metrics.

IV. IMPLEMENTATION AND EVALUATION

We are confident that the approach described in Section II is
applicable to many kinds of coverage criteria, software, met-
rics, machine learning algorithms, and automatic testing tools.
For our evaluation, we instantiated the proposed technique
with combined statement and branch coverage, a training set of
11 open-source projects, 49 simple structural metrics, an off-
the-shelf decision tree algorithm, and three testing tools with
differing approaches to test generation. See [13] for discussion
of the motivation behind these choices.

A. Training Code

We extracted metrics and coverage from 11 open-source
Java projects: ANTLR, Apache Commons Collections, Apache
Commons Primitives, ASM, java.util, javax.xml, Java Simple
Argument Parser, Jython, TestOrrery, the TimeAndMoney li-
brary, and our own metrics extraction code. These projects
ranged in size from 200 to 8,000 methods, giving us a corpus
of about 21,000 methods with which to train decision trees.
We have posted the full data set at http://mir.cs.uiuc.edu/
predictcoverage/.

B. Structural Metrics

The key to predicting coverage lies in the choice of program
features to extract from source code. We call these fea-
tures structural metrics, and they range from familiar object-
oriented metrics to metrics derived from control flow. All
structural metrics are numeric or nominal values derived by
traversing the program’s parse tree or control flow graph.

We explored 49 metrics derived from a method’s signature,
body, or containing class. We found that method-targeted met-
rics can predict coverage much more accurately than metrics
derived from larger program elements.

Each metric falls into one of the following categories:
• Dependency metrics derived from the types that the

method references. Example: number of types visible in
the method’s signature

• Field access metrics derived from reads or writes to
fields. Example: number of static field accesses

• Method structure metrics derived from the method’s
declaration. Example: whether the method is public or
private

• Containing class metrics derived from the class in which
the method is declared. Example: whether the class has
a public constructor

• Control flow metrics derived from the method’s control-
flow graph. Example: cyclomatic complexity [14]

The full list of metrics can be found at http://mir.cs.uiuc.edu/
predictcoverage/.



Fig. 3. Coverage distribution across all projects for each of the test generation
tools

C. Decision Trees

Predictive models fall into one of two general categories:
regression models that predict continuous values and classifi-
cation models that predict discrete values.

Our first experiments focused on regression models, but we
found that they performed poorly since coverage is bounded
by [0%, 100%]. Many closely-related nominal metrics or an
unusually large or small numeric metric could send the pre-
diction out of this range, causing a nonsensical prediction less
than 0% or greater than 100%.

We then experimented with several classification models
and found that decision trees best served our purposes for
the following reasons:

• One can easily understand a decision tree’s prediction.
As Figure 2 shows, a tree’s internal nodes test metrics,
and a prediction can be represented as a trace down the
tree.

• A decision tree is convertible to and from other classifi-
cation models such as decision tables, rules, and certain
probabilistic models, yet is a useful representation for
execution.

• A decision tree learning algorithm will ignore metrics
that do not reveal new information. Thus, we can add
many metrics and the tree will only contain those that
the algorithm determines are useful.

• There are many mature algorithms for creating deci-
sion trees. We used an off-the-shelf implementation of
the C4.5 algorithm [15] implemented in the Weka [16]
toolkit.

The type of trees we chose required discrete rather than
continuous coverage values. We experimented with several
ways of dividing coverage into nominal values and found
that a simple two-way division into high and low coverage
yielded the best results. This was a natural choice since
as Figure 3 shows, there are many more methods with 0%
and 100% coverage than methods with coverage in the non-
inclusive range (0%, 100%). Furthermore, we found that the
“split point” had little effect on the success rate, though higher
splits were marginally better.

Fig. 4. Success rate using the majority class (ZeroR), 10-fold cross-
validation, and leave-project-out (LPO) cross-validation

D. Testing Tools

Our experiments dealt with three automatic test genera-
tion tools: two packaged with Agitar Software’s AgitarOne
product, and one developed at the Massachusetts Institute of
Technology.

1) Test Generation with AgitarOne: AgitarOne is a com-
prehensive unit testing product for Java developed at Agitar
Software. Test generation is supported in AgitarOne by two
distinct test generation engines. Agitar’s Agitator is a dynamic
test generation engine that uses runtime feedback and limited
on-the-fly static analysis to generate input data for software
agitation and for regression test generation. Agitar’s Mocki-
tator is a static test generation engine that creates regression
tests using constraint solving and mock objects [17]. In the
AgitarOne product, the two engines are used in tandem, with
Mockitator filling in for the coverage paths undiscovered by
Agitator. For the purposes of our evaluation, we treated these
two engines as independent and created separate decision trees
for each.

2) Test Generation with Randoop: Randoop is a tool cre-
ated by Pacheco et al. [5] that implements feedback-directed
random test generation for object-oriented programs. Randoop
incrementally constructs sequences of method calls that create
and mutate objects. It constructs each sequence by randomly
selecting an existing sequence and “extending” it with a call to
a random public method. Following construction, it reflectively
executes the sequence to produce results that feed back into
later sequences.

E. Evaluation

We evaluated decision trees using their success rate, mea-
sured as the ratio of correctly classified methods to the total
number of methods [16]. We found that decision trees could
predict high or low coverage with success rates of 82% to
94%.

When evaluating decision trees (or, indeed, any machine
learning classifier), one must partition the data set into two
disjoint subsets: one for training and the other for testing.
Cross-validation repeats the train-test process for several di-
visions and reports the average success rate.



(a) Agitator (b) Mockitator (c) Randoop

Fig. 5. Success rate on projects when left out of the training set, relative to each tool’s overall ZeroR success rate

We used two methods of cross-validation. 10-fold cross-
validation, a widely-accepted method for verifying machine
learning classifiers [16], divides the data into 10 random
subsets and performs cross-validation using 9 subsets for
training and the remaining subset for testing. Leave-project-out
(LPO) cross-validation, a method specific to our experiments,
trains a decision tree on all projects except one which is left
out for testing.

We compared these two success rates against the success
rate of the trivial ZeroR classifier that always predicts the most
common classification. For example, if most of the training
data got low coverage, ZeroR will predict low coverage on
all inputs. ZeroR provides a useful indication of a predictor’s
worst performance, since a nonrandom prediction scheme
should do better.

Figure 4 compares the ZeroR classifier’s success rate against
the success rates of the best decision trees measured by
the two cross-validation schemes. In our experiments, 10-
fold cross-validation yielded success rates between 82% and
94%, an average of 17% above ZeroR. LPO cross-validation
indicated that the decision trees performed 7% and 13% better
than ZeroR for Agitator and Randoop tests, but 2% worse
for Mockitator tests. We speculate that the Mockitator tree’s
poor LPO success rate was due to Mockitator’s already high
coverage (and correspondingly high ZeroR success rate). A
larger number of projects would likely improve LPO cross-
validation, since loss of one project would have a smaller
impact on the success rate.

LPO cross-validation also indicated how well a decision tree
would predict coverage on individual projects. Figure 5 shows
the success rate on each project when left out of the training
set, relative to each tool’s ZeroR success rate. “N/A” indicates
that Randoop crashed while generating tests.

We found that the success rates for the Agitator (Figure 5(a))
and Randoop (Figure 5(c)) trees were higher than ZeroR’s
success rate on most projects. This result indicates that a
decision tree trained on one corpus of code can accurately
predict coverage on a previously unseen corpus of code. The
success rate of the Mockitator classifier (Figure 5(b)) was
less convincing, due, once again, to Mockitator’s high ZeroR
success rate.

V. CONCLUSION AND FUTURE WORK

Program structure impacts the effectiveness of automatic
testing tools in unexpected ways. Our proposed technique
can predict tool effectiveness, measured in terms of coverage,
using metrics derived from program structure. This prediction
provides the first step toward an understanding of testing
tool behavior in terms of program structure. In future work,
we hope to explore how users and tool designers can apply
the knowledge that our technique provides to explain tool
behavior [13], build better testing tools, and improve user code.

REFERENCES

[1] D. Beyer, A. J. Chlipala, and R. Majumdar, “Generating tests from
counterexamples,” in ICSE, 2004.

[2] W. Visser, C. S. Pǎsǎreanu, and S. Khurshid, “Test input generation with
Java PathFinder,” in ISSTA, 2004.

[3] T. Xie, D. Marinov, W. Schulte, and D. Notkin, “Symstra: A framework
for generating object-oriented unit tests using symbolic execution,” in
TACAS, 2005.

[4] N. Gupta, A. P. Mathur, and M. L. Soffa, “Generating test data for
branch coverage,” in ASE, 2000.

[5] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball, “Feedback-directed
random test generation,” in ICSE, 2007.

[6] M. Boshernitsan, R. Doong, and A. Savoia, “From Daikon to Agitator:
lessons and challenges in building a commercial tool for developer
testing,” in ISSTA, 2006.

[7] C. Cadar and D. R. Engler, “Execution generated test cases,” in SPIN,
2005.

[8] P. Godefroid, “Compositional dynamic test generation,” in POPL, 2007.
[9] P. Godefroid, N. Klarlund, and K. Sen, “DART: directed automated

random testing,” in PLDI, 2005.
[10] K. Sen, D. Marinov, and G. Agha, “Cute: a concolic unit testing engine

for C,” in ESEC/FSE, 2005.
[11] K. Inkumsah and T. Xie, “Evacon: a framework for integrating evo-

lutionary and concolic testing for object-oriented programs,” in ASE,
2007.

[12] S. A. Cook, “The complexity of theorem-proving procedures,” in STOC,
1971.

[13] B. Daniel and M. Boshernitsan, “Predicting and explaining automatic
testing tool effectiveness,” University of Illinois at Urbana-Champaign,
Tech. Rep. UIUCDCS-R-2008-2956, April 2008.

[14] T. McCabe, “A complexity measure,” IEEE Trans. Soft. Eng., vol. 2,
no. 4, pp. 308–320, 1976.

[15] J. R. Quinlan, C4.5: Programs for Machine Learning. Morgan
Kaufmann, 1993.

[16] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning
Tools and Techniques, 2nd ed. Morgan Kaufmann, 2005.

[17] K. Beck, Test-Driven Development by Example. Addison Wesley, 2003.


