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Abstract

For large software systems, interface structure has an

important impact on their maintainability and build perfor-

mance. For example, for complex systems written in C, re-

compilation due to a change in one central header file can

run into hours. In this paper, we explore how automated

cluster analysis can be used to refactor interfaces, in order

to reduce the number of dependencies and to improve en-

capsulation, thus improving build performance and main-

tainability. We implemented our approach in a tool called

“Interface Regroup Wizard”, which we applied to several

interfaces of a large industrial embedded system. From this,

we not only learned that automated cluster analysis can in-

deed help to improve the design of interfaces, but also which

of the final refactoring steps are best done manually by an

architect.

1 Introduction

As a software system evolves over many years, the in-

terfaces between its source modules are modified as well.

Over time, interface structure is likely to deteriorate. This

might result in fat interfaces with with huge numbers of def-

initions that are not functionally coherent, and which have

many different source files (“users”) depending on them.

Especially in the case of large software systems this nega-

tively affects build performance and maintainability. In the

C programming language, for instance, a source file can use

an interface definition by including a complete header file.

As a result, for every change to a single definition in that

header file, all source files that use one or more of its defi-

nitions need to be recompiled.

As an example, at ASML, a company that develops man-

ufacturing machines for the production of microchips, over

the course of years build time has increased such that it

sometimes affects the development speed of its control soft-

ware. Recompilation after interface changes can run into

hours, leading to a loss of productivity of the development

team.

The obvious solution to this problem is to refactor inter-

faces such that the definitions in an interface are (1) func-

tionally coherent (for maintainability), and (2) are used by a

similar set of users (for build performance). Although these

criteria correlate to some extent, they are not equivalent, re-

sulting in trade-offs [1, 8].

In this paper, we investigate the use of automatic clus-

ter analysis to address this problem. Hierarchical clustering

aims at putting together entities (interface definitions) that

are similar (in terms of their users) in the same cluster (in-

terface), while entities in different clusters are less similar.

Although this type of clustering has been applied to many

software engineering problems, it has not been applied to

interface redesign.

We are interested in the limits and opportunities of the

use of cluster analysis for interface refactoring, and the

practical difficulties one encounters in doing so. Therefore,

we describe in this paper the application of cluster analysis

to refactor the interfaces of a complex industrial embedded

software system comprising millions of lines of C code. To

apply cluster analysis to this code base, we have developed

an interactive tool called Interface Regroup Wizard (IRW),

which supports a software architect in refactoring the inter-

faces in C software components.

In this paper, we explore three questions:

1. Can an automatic approach such as cluster analysis be

applied to improve the design of interfaces?

2. What are the limits of automation for the refactoring of
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interfaces, that is, to what extent can the this be done

automatically?

3. What needs to be done in practice before interfaces can

be refactored automatically using cluster analysis?

The paper is structured as follows: In the next section,

we offer a summary of related work in the area of clus-

ter analysis and interface redesign. Next, in Section 3, we

describe the clustering approach that we follow. Then, in

Section 4, we introduce the industrial case that motivated

our research. In Section 5 we describe the interactive tool

we developed to apply cluster analysis to cases like these:

the results of the actual case are covered in Section 6. We

conclude the paper with a discussion of our findings, a sum-

mary of our contributions, and an outlook to future work.

2 Related Work

Cluster analysis has been applied to problems in vari-

ous fields, such as psychiatry, medicine, and market re-

search [6]. Also in software engineering a wide variety

of problems have been solved using clustering techniques.

Many of these revolve around the problem of remodulariz-

ing legacy systems [13, 16, 3, 4]. A unifying framework dis-

cussing various subsystem classification techniques is dis-

cussed by Lakhotia [9].

van Deursen and Kuipers [15] use agglomerative hierar-

chical clustering to restructure legacy software for the mi-

gration to object orientation. They furthermore explore how

hierarchical clustering compares to formal concept analysis,

an alternative grouping technique.

Mancoridis et al. [10] and Mitchell and Mancoridis [12]

present a heuristic search algorithm for the recovery of

modular software structure and a tool, Bunch, implement-

ing the algorithm. They use traditional hill climbing and

genetic techniques to optimize inter- and intra-cluster con-

nectivity.

The primary contribution of the present paper is not so

much in proposing new clustering algorithms: instead, we

demonstrate through a concrete case study how cluster anal-

ysis can be effectively used to address the real life problem

of interface redesign that companies (such as ASML) build-

ing large software systems are facing.

3 Cluster Analysis for Interface Redesign

We apply agglomerative hierarchical clustering [6]. This

type of clustering starts with a strong clustering (i.e., a sep-

arate cluster for every entity) and then iteratively merges the

two nearest clusters (based on some distance measure) un-

til a desired clustering is obtained or the number of clusters

is reduced to one. As such, we need to select a distance

metric to calculate the distance between entities, a cluster-

ing algorithm to calculate the distance between clusters of

entities, and quality metrics to select one of the generated

clusterings.

3.1 Distance Metric

In our case, the entities to be clustered are the symbols

(which are defined in interfaces). The feature set based on

which we cluster is the set of using modules (.c-files using

the symbol, which we also call “users”). Thus, each symbol

is an entitiy, and each using .c-file is a feature.

As a distance metric we select the Jaccard distance.

Maqbool and Babri [11] argue that Jaccard is particularly

suited for asymmetric binary features and gives similar re-

sults as other distance metrics for cases where the feature

vector is sparse (as it is in our case). We define the distance

δ between two symbols s and t to be the Jaccard distance Jδ

between their sets of users Us and Ut :

δ(s, t) = Jδ(Us,Ut) =
|Us∪Ut |− |Us∩Ut |

|Us∪Ut |

As such, the distance between two symbols is between

zero and one, where for similar symbols (in terms of their

users) it is closer to zero (if Us and Ut are disjoint the δ

equals 1, if they are the same it is 0).

3.2 Clustering Algorithm

A clustering algorithm uses the distance between indi-

vidual symbols to determine the distance between clusters.

Table 1 gives an overview of several measures that are com-

monly used to calculate the distance δ between two clusters

C and D.

The build performance depends on the total number of

users for the symbols in an interface: any modification to

an interface requires that all the .c-files that use a symbol in

that interface need to be recompiled. Therefore, we select

a cluster similarity measure that results in clusters in which

the symbols are relatively similar. The extent to which the

symbols in a cluster are similar is referred to as compact-

ness. Of the measures enumerated in Table 1, complete,

median, average, and single linkage perform from best to

worst with respect to achieving compactness.

With single linkage two clusters might be clustered be-

cause two outliers are near, but all other symbols are not.

Average performs better because it uses a cluster centre

measure, but still considers outliers. Median performs even

better because it does not include outliers for its centre mea-

sure. Complete performs best, because with this algorithm

even the symbols furthest away are relatively near (similar).
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Table 1. Commonly used clustering distance measures

single δsi(C,D) = min
s∈C,t∈D

δ(s, t) minimum distance between each pair of symbols such

that each pair has a symbol in both clusters.

complete δco(C,D) = max
s∈C,t∈D

δ(s, t) maximum distance between each pair of symbols

such that each pair has a symbol in both clusters.

average δav(C,D) = ∑s∈C ∑t∈D δ(s,t)
|C|·|D|

average distance between each pair of symbols such

that each pair has a symbol in both clusters.

median δme(C,D) = med{δ(s, t)|s ∈C, t ∈ D}
median distance between each pair of symbols such

that each pair has a symbol in both clusters [5].

δad(C,D) =



















δco(C,D), if 0 ≤ δco(C,D) < 1

δme(C,D), if δco(C,D) = 1∧0 ≤ δme(C,D) < 1

δav(C,D), if δme(C,D) = 1∧0 ≤ δav(C,D) < 1

δsi(C,D), if δav(C,D) = 1∧0 ≤ δsi(C,D) < 1

Figure 1. Adaptive linkage

Adaptive Clustering Algorithm A problem with these

cluster similarity measures is that at some point all clus-

ters are at maximum distance (i.e., Jδ = 1). From then on-

wards, cluster decisions are taken arbitrarily (the distance

between clusters cannot decrease). This is particularly rele-

vant for our setting, since we are mainly interested in clus-

terings with a relatively small number of clusters (as we

will see in Section 4.2, architects would typically split the

symbols in an existing interface in less than seven groups).

Remember that we start with a large number of clusters that

is reduced for each new clustering. Hence, we are inter-

ested in clusterings generated at the end of the clustering

process. Obviously, we prefer a clustering algorithm that

results in few arbitrary decisions. Of the enumerated mea-

sures above, single, average, median, and complete perform

from best to worst with respect to the number of arbitrary

decisions (which we want to minimize).

From the previous discussion, we can conclude that for

selecting a cluster similarity measure there is a trade-off be-

tween the compactness of the generated clusterings and the

number of arbitrary decisions taken. Therefore, we propose

a hybrid approach that combines these measures, which we

call adaptive linkage. It uses the best measure (with respect

to compactness) that does not result in arbitrary decisions.

For two clusters C and D it is defined as in Figure 1.

3.3 Selection of a Clustering

The iterative process of hierarchical clustering creates a

new clustering after each iteration that contains less clusters

than the previous clustering. This type of clustering process

is particularly suited when the optimal number of clusters

is unknown beforehand. However, it does require a means

to select a suitable clustering. In our approach we leave

this decision to the software architect, the user of our ap-

proach. We aid the architect by presenting him a graph that

plots each generated clustering against two validation met-

rics proposed by Handl and Knowles [7] to measure com-

pactness and connectivity. A good clustering has minimal

values for both measures.

Compactness As a measure for the compactness of a

clustering CC we use intra-cluster variance. Intra-cluster

variance is defined as the root mean square distance be-

tween entities and their cluster’s centre:

Comp(CC) =

√

1

N
∑

C∈CC
∑
s∈C

δ(s,µC)2,

where µC is the centre of cluster C and N is the total

number of symbols.

Connectivity Connectivity is a measure for the degree to

which near neighbouring symbols have been placed in the

same cluster. It penalizes the situation that near neighbours

are not in the same cluster; the nearer the neighbour, the

higher the penalty.

Conn(CC) = ∑
s∈CC

L

∑
j=1

ps,nns( j)
,

where

ps,nns( j)
=

{

1
j
, if s ∈C∧nns( j) /∈C

0, otherwise

Here, L is the number of near neighbours we want to

take into account, and nns( j) is the jth nearest neighbour of

symbol s.

4 Interface Redesign in Practice

In this section we discuss what needs to be done before

the algorithms discussed in the previous section can be ap-

plied. This particularly relates to the question how to take

into account various criteria for putting interface definitions

together that are not directly related to dependencies. All

this is based on our experience in applying these techniques

to the interfaces of a large industrial system, which we in-

troduce first.
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4.1 Wafer Scanner

The context in which we developed our approach con-

sists of the embedded control software of a wafer scanner

developed by ASML, the leading manufacturer of lithog-

raphy systems for the semiconductor industry. In a wafer

scanner silicon wafers are exposed to circuit patterns in a

lithographic process. The result is a wafer that holds hun-

dreds of microchips. The process performed by a wafer

scanner is a critical step in the manufacturing of microchips.

The main drivers for the development of these machines

are reduction of line thickness, overlay precision, and pro-

ductivity. Extreme requirements for line thickness and over-

lay (nanometer scale) result into complex optical, mecha-

tronic and metrology solutions, which, in turn, result into

large (approx. 20 MLOC) and complex control software.

As such, many interfaces have been defined, of which some

contain several thousand definitions.

During the last eight years ASML’s high-end scanners

have been advancing from 150 nm resolution and 80 wafers

per hour to 45 nm resolution and 130 wafers per hour. This

improvement has been realized by newly designed optical,

mechatronic and metrology system parts. It is nearly im-

possible to prepare software interfaces for such changes in

the system. Practice shows that some software interfaces

need to be changed to support more advanced systems.

Software architecture For refactoring the interfaces of

the wafer scanner control software, build performance is not

the only criterion. Maintainability is another important cri-

terion. Furthermore, the logical structure of the source code

is more intricate than source files and header files; from

an architectural perspective the system is decomposed into

many components on different hierarchical levels. Our ap-

proach needs to take this structure into account as well.

The information we use for the cluster analysis is mod-

elled in the architecture style depicted in Figure 2. Here, a

System is composed of one or more logical components. In

turn, each Component may be decomposed into subcompo-

nents, resulting in a hierarchy of components. In our case, a

‘leaf’ Component consists of a number of C source code

files (.c-files) and interfaces. An Interface is composed of

a number of header files (.h-files) that each define a set of

symbols. A Symbol might be a Macro definition, Function dec-

laration, or Type definition. A .c-file may use any number of

symbols. Such a .c-file is referred to as the user of that Sym-

bol. An Interface can be provided by a Component, meaning

that the Interface is visible to other components on the same

hierarchical level. As such, we can assign a level to an In-

terface that corresponds to the highest hierarchical level at

which it is visible. Finally, it is also possible that an Inter-

face shares other Interfaces, that is, it includes other inter-

faces of which the symbols will be visible on the hierarchi-

Macro definition

Function declaration

Type definition

Symbol

.c−file

.h−file

Interface

Component

System

1..*

1..* *

1..*

1..*

*

*

provides

*

shares

user+ 1..*

*

uses

Figure 2. Architecture style

cal level of the sharing Interface.

In the case of ASML, the software is structured into

hundreds of components on four hierarchical levels, being,

from fine grained to coarse grained: component, building

block, functional cluster, and system. These components

provide more than 1500 interfaces that define over half a

million different symbols. Analysis of the source code re-

vealed that in total these symbols are used 1.6 million times.

As such, each symbol, on average, is used by approximately

three users (i.e., .c-files). Note that we do not take into ac-

count the possibility that a symbol can be used multiple

times in a single .c-file (such usage is simply counted as

one).

4.2 Interface Quality

To minimize build time upon recompilation, one might

think that is optimal to define a seperate interface for each

symbol. However, this significantly slows down the over-

all compilation process, since for every symol a separate

(.h) file must be opened. Furtermore, overall, the optimal

interface design is a trade-off between build time and main-

tainability. Interfaces are used to reason about the system’s

structure and behaviour. This requires a manageable num-

ber of them. Therefore, defining a separate interface for

each symbol has a negative impact on the maintainability

of the system. Hence, symbols that are related in terms

of functionality are grouped in manageable interfaces. The

overall criteria ASML uses to assess the quality of its inter-

faces are mentioned in Table 2.

The dependency criterion is clearly meant to reduce build

time. To some extent this criterion also improves maintain-
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Table 2. Interface quality criteria

Dependency

The number of .c-files that needs to be rebuilt into ob-

ject files that, in turn, need to be linked, due to a mod-

ified interface has to be minimized.

Sharing
The number of interfaces that is shared by other inter-

faces should be minimized.

Encapsulation

We measure encapsulation as the number of symbols

actually used by users on the interface’s visibility level

relative to the total number of symbols it defines. En-

capsulation should be maximized.

Functional co-

herence

The symbols defined in an interface should be related

to the same functionality.

Stability
Interfaces should be stable; the number of changes

should be minimized.

ability as we would expect that two symbols with a similar

set of users are related in terms of functionality.

Sharing also affects both maintainability and build time.

Sharing makes it possible that .h-files are indirectly in-

cluded by other .h-files, which reduces understandability

and hence maintainability. It also affects build time. When

a symbol of an interface is changed that is shared by other

interfaces all users of the shared interface and the sharing

interfaces (recursively) have to be rebuilt.

The level of encapsulation is only related to maintain-

ability. A general design principle is to limit the visibility

of elements to the scope in which they are used.

Functional coherence is important for maintainability.

Although it is related to dependency, no objective measures

exists for this criterion. It is, however, the criterion archi-

tects predominantly use for the design of interfaces.

The final criterion, stability, is related to the rate at which

changes are made to interfaces. This rate should be as low

as possible. This criterion is related to what symbols are

defined by the interfaces, and not by which interface defines

which symbol.

For these and some other criteria that can be measured,

ASML specified desired values. For dependency and shar-

ing these are specified relative to a system-wide average.

For encapsulation, absolute values are specified. Based on

the extent to which these measures for a particular inter-

face deviate from the desired values, each interface can be

assigned a compliancy score. All interfaces with a compli-

ancy score above a certain threshold need to be redesigned.

Currently, ASML uses a step-by-step, manual approach

to optimize interfaces with respect to these criteria. This

guideline is based on two principles: 1) grouping func-

tional coherent symbols in an interface, and 2) preventing

that symbols used at different architectural levels end up in

the same interface. Additionally, the number of resulting in-

terfaces needs to be limited. In this paper, we explore how

cluster analysis can be applied to automate this process.

5 Interface Regroup Wizard (IRW)

In order to be able to apply clustering techniques as de-

scribed in Section 3 to the setting described in the previous

section, we have developed a tool, called the Interface Re-

group Wizard (IRW). It aims at supporting software archi-

tects in the redesign of the interfaces of components in their

software system. The IRW consists of two parts: a parser

and a clustering application.

5.1 Parsing

Because parsing the source code of a system the size of

our case study is expensive, and to allow efficient use of the

IRW, the parsed interface data is persisted in a database. As

such, for a particular software system, parsing is a one-time

operation.

An existing third party source code analyzer is used to

extract the necessary information from ASML’s code base.

The results of this analysis are used to populate a relational

database, which contains tables for symbols, uses relation-

ships, users, symbols, and so forth.

Furtermore, the database is filled with information on the

architectural model containing the system decomposition in

terms of components, their subcomponents, and the inter-

faces they provide and require. The schema of this decom-

position is based on Figure 2. More details concerning the

design and implementation of the tool can be found in Ad-

nan [2].

5.2 Clustering

By storing the interface data in a database, we can sub-

sequently efficiently use the clustering application to inves-

tigate clusterings of the interface of choice. Using the IRW,

one or more interfaces can be selected. Then, for the set of

symbols defined in those interfaces clusterings can be gen-

erated. The architect selects one of the generated cluster-

ings using the variance-connectivity graph, and by inspect-

ing clustering candidates.

The main screen of the clustering application is depicted

in Figure 3. It consists of a number of toolbars and two lists

that show the interfaces of a particular component, and the

symbols of a particular interface respectively.

The top toolbar offers buttons to start the regrouping pro-

cess, to view the users of a selected symbol and to refresh

the two lists when changes to some configuration param-

eters are made. The horizontal toolbar below that consists

of controls for finding a particular interface to be regrouped.

On the left toolbar are controls to configure various parame-

ters for the clustering process: the clustering method, gran-

ularity of users, local boundary, whether or not to merge
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Figure 3. Main screen

clusters at different hierarchical levels, the maximum dis-

tance at which this will be considered, and whether or not

to include struct members, to consider local users, or to col-

lapse symbols generated from a single source symbol.

Once one or more interfaces are selected and configura-

tion parameters have been set, the user can start the clus-

tering process by pressing the regroup button. Depending

on the size of the selected interface(s) this may take up to a

minute.

During the regrouping process the user may be con-

fronted with questions regarding the merging of clusters at

different hierarchical levels. In principle the tool does not

allow such merging. However, when the distance between

two clusters at different visibility levels is below the thresh-

old that was set, the user can decide to merge them after all.

If there are too many questions the user can decide to can-

cel the process and lower the distance threshold or prevent

clustering of such clusters all together.

5.3 Selecting a Clustering

When the clustering process is completed, one of the

generated clusterings needs to be selected. To aid the archi-

tect with this, the IRW presents a graph that conveys infor-

mation about the quality of the generated clusterings. Fig-

ure 4 displays how the graph is presented to the user of the

IRW. The graph plots each generated clustering against its

variance (vertically) and connectivity (horizontally) values.

Agglomerative hierarchical clustering starts with a sep-

arate cluster for each entity. Such a clustering has low

variance and high connectivity and will be plotted in the

bottom-right of the graph. Each successive clustering has

fewer clusters, a lower connectivity (the clusters of neigh-

bouring entities that gave rise to a penalty might have

merged), and a higher variance. This trend can easily be

observed from the graph.

The architect can use this graph to select a suitable clus-

tering. By hovering over the plotted clusterings, a tooltip

appears that indicates how many clusters that clustering

contains. Assuming that the architect has an idea of the up-

per and lower bounds for the desired number of interfaces

in the new design, an area of the graph can be selected in or-

der to zoom in for closer inspection of the clusterings within

those bounds.

Handl and Knowles [7] propose to consider the ratio
∆σ2

∆Conn
for two successive clusterings. The idea is to search

for clusterings for which this ratio is maximal. More in-

formally, this selection criterion identifies a clustering for

which an extra agglomeration of two clusters results in a

large degradation of compactness (i.e., measured by vari-

ance), while connectivity is not improved much. Visually

such a clustering can be recognized by a ‘knee’ in the val-

idation graph. That clustering might be a good candidate

(e.g., the clustering indicated with the arrow in Figure 4).

Another indication of the quality of a clustering are the

values in the list in Figure 4 that indicate the minimum dis-

tance between any two clusters for a particular clustering.

Note that each line further indicates the clustering algorithm

by which the most recent clustering decision was made (this

is especially useful for our adaptive algorithm; C: complete,

M: median, A: average, S: single). For instance, the dis-

tance between the two closest clusters in the selected clus-

tering is 985 (i.e., 1.5% of the users of the two most distant

symbols of these two clusters are identical1).

Candidate clusterings can be further inspected. The IRW

can show the contents of the clusters for a clustering. Addi-

tionally, it displays:

• the hierarchical level at which the interface (and thus

all symbols it defines) are visible;

• a measure for the encapsulation of the interface e =
|Sl |
|St |

·100%, where Sl is the set of symbols used by users

at the same hierarchical level as the interface, and st is

the set of symbols the interface defines;

• the number of symbols used at each hierarchical level;

and

• a measure for the dependency that indicates the num-

ber of users that have to be rebuilt in the case one of

the symbols in the interface (cluster) changes.

The tool also displays average values for encapsulation

and dependency for the complete clustering. Using these

measures the architect can select a suitable clustering.

1Note that the IRW multiplies the Jaccard distance defined in Sec-

tion 3.1 by 1000.
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Figure 4. Selecting a clustering

5.4 Managing Interface Quality Criteria

The cluster similarity measures discussed above result in

clusterings that are optimized with respect to compactness

and connectivity. Considering the criteria that ASML uses

to evaluate interfaces discussed in Section 4.2, this only re-

lates to dependency. The IRW takes into account the other

criteria (except stability) as well.

To take encapsulation into account, the IRW in principle

does not merge clusters of which the symbols are used at

different architectural levels. Only when the distance be-

tween two clusters is smaller than a configurable threshold

(i.e., the number of users shared by the two clusters is above

a certain threshold) the architect is notified with the per-

centage of shared users and given the opportunity to merge

them. Although this negatively impacts encapsulation (by

not allowing such merging, encapsulation will always be

100%), in some cases it might be justifiable to sacrifice en-

capsulation for some other criterion.

Sharing is addressed similarly by a simple extension

of the architectural levels. For each defined architectural

level (that is, in the case of ASML, ‘component’, ‘build-

ing block’, ‘functional cluster’), we add an extra ‘shared’

level. To clusters that contain symbols that are used by .h-

files (i.e., are shared) we assign these ‘shared’ levels. For

instance, a cluster with shared symbols visible at the com-

ponent level, is assigned the level ‘component-shared’, in-

stead of ‘component’. Because, as explained above, the IRW

prevents as much as possible the merging of clusters with

different levels, the number of symbols in a shared cluster

(interface) is reduced.

Functional coherence is taken into account to the extent

that an architect can decide whether or not to merge clusters,

for which domain knowledge might be used. Similarly, the

architect needs to select a suitable clustering from all gen-

erated clusterings.

6 Case Study

To assess the usefulness of the IRW and to further im-

prove it, we applied IRW to a series of actual ASML in-

terfaces. We asked ASML’s high-level architects to pro-

pose interfaces in need of a redesign or ones that have re-

cently been redesigned manually. In total we applied the

IRW to twenty interfaces of which four had already been

redesigned. As such, for the latter, we could compare the

results with manually redesigned interfaces. To this end,

we considered to MoJo distance [14], that is, the number of

symbol moves and cluster joins required to transform IRW’s

proposal into the manual redesign.

For the remaining interfaces we considered the measur-

able criteria for interface quality defined by ASML (Sec-

tion 4.2).

On a 1.73 GHz, 1024 MB notebook, parsing of the two

input files and population of the database took several hours.

With the database filled, the wizard was used interactively

to refactor the interfaces suggested by ASML’s architects.

Since we do not have room to discuss all these refactor-

ings we only discuss one refactoring that we evaluated with

respect to ASML’s measurable criteria for interface qual-

ity, and one refactoring for an interface for which a manual

refactoring was already made. The results for the other 18

interfaces we refactored are similar to those discussed be-

low.
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Table 3. Generated clustering 1
id #sym. enc. #dep.

1 43 100% 156

2 30 100% 32

3 20 95% 49

4 16 100% 3

5 9 100% 11

6 8 100% 8

7 7 100% 385

8 5 100% 32

6.1 Assessment Based on Interface Qual-
ity Criteria

The interface of the first refactoring we discuss defines

545 symbols, which is significantly larger than the average

size of an interface at ASML. After collapsing generated

symbols, and enumerations, 165 symbols remain for clus-

tering.

The dependency measure for this interface is 483, that

is, 483 files need to be rebuilt for each single change to this

interface. The encapsulation measure is 10%, that is, 90%

of the symbols this interface defines are visible on higher

hierarchical levels than they are used. This value for the

encapsulation measure is much lower than desired (80%).

Finally, this interface also shares more other interfaces than

desired. As such, this interface is one of the interfaces that

needs to be redesigned according to ASML’s compliancy

criteria.

We used the IRW to find a clustering of the symbols in this

interface, such that all resulting clusters comply to ASML’s

interface criteria. The generation of clusterings for the in-

terface we selected takes approximately half a minute of

computation time on the same notebook as before. Using

the heuristic explained earlier, we select the clustering con-

sisting of 22 clusters from the validation graph in Figure 4.

The eight largest clusters are depicted in Table 3. These

eight clusters contain 138 of the 165 interface symbols.

Each of the generated clusters complies to ASML’s inter-

face criteria. Only one clusters has an encapsulation value

of less than 100%. One cluster remains with a relatively

high dependency value, but all other clusters have much

lower dependency values.

Figure 5 displays a pie chart that shows which part of the

users (of all symbols in the clustering), uses symbols in a

certain number of clusters. This chart can be used to illus-

trate the quality of a clustering. Investigation of this chart

(by hovering the mouse pointer over the different slices),

reveals, for instance, that the maximum number of clusters

used by any user is eight and that only 7% of the users use

symbols in more than four clusters.

The architects at ASML want to split an interface in only

two to seven pieces. The IRW, however, proposes many

more clusters than that. Looking closer at Table 3 it can be

Figure 5. User distribution

Table 4. CC interfaces
interface #sym.

CC1 326

CC1xB 12

CC2 4

CC3 90

CC3xA 17

seen that the clustering consists of only a few large clusters

and many small clusters. These should be merged manu-

ally with the target clusters by the architect using domain

knowledge.

6.2 Comparison with Manual Refactoring

The interface of the component named CC was already

refactored manually. To compare the proposals of the IRW

with those of the architects, we analyse the differences in

terms of the operations (symbol moves, clusters merges) re-

quired to transform IRW’s proposal into that of the architect.

The original CC interfaces define 449 symbols that are

used by 128 different .c-files. After collapsing generated

symbols and enums, 272 symbols remain. When viewed

as a single interface the encapsulation value is 1%. The

ASML architects decided to split this interface into five in-

terfaces. The number of symbols in each of these interfaces

is depicted in Table 4. This allows us to use this manual

refactoring to evalute the result of the IRW.

Using the validation graph and information on the dis-

tance of between the two closest cluster in a clustering, we

select one of the generated clusterings. This clustering con-

tains 28 clusters of which the clusters with two or more

symbols are listed in Table 5. The table shows for each

cluster the number of symbols it contains, the encapsulation

value, the number of users for all its symbols, which of the
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Table 5. Generated clustering 2
id #sym. enc. #dep. interface #errors

1 25 92% 71 CC1 2

2 23 65% 39 CC1 0

3 22 100% 5 CC1 0

4 20 100% 23 CC3 0

5 17 100% 8 CC1 0

6 16 31% 4 CC3xA 0

7 15 100% 34 CC1 1

8 15 100% 22 CC1 2

9 15 100% 3 CC3 0

10 13 100% 2 CC1 0

11 12 100% 2 CC1 0

12 9 100% 3 CC1 0

13 8 100% 8 CC1 1

14 8 100% 1 CC1 1

15 8 100% 16 CC3 0

16 8 100% 4 CC3 0

17 7 100% 2 CC1 2

18 6 100% 3 CC1 0

19 6 100% 9 CC1xB 0

20 5 100% 100 CC1 0

21 3 100% 1 CC1 0

22 3 100% 1 CC1xB 0

23 2 100% 18 CC1 0

24 2 100% 1 CC2 0

manually created interfaces its symbols correspond to, and

the number of misplaced symbols. The latter is the count of

the symbols that had been placed in a different interface by

the architect than the majority of the cluster’s symbols. In

total 9 out of 272 symbols were misplaced.

The difference between IRW’s refactoring proposal for

the CC interfaces and the refactoring done manually is ex-

actly 23 cluster merges and 9 symbol moves. As such, the

number of decissions required to refine the automatically

generated refactoring is significantly less than is required

for the complete manual refactoring of an interface consist-

ing of 272 symbols.

7 Discussion

Overall, the architects at ASML concluded that the inter-

face refactoring proposals generated by the IRW are a valu-

able starting point for manual refinement and that effort is

saved by application of the tool; the required refinements

require less effort than a complete manual refactoring.

When we evaluate the IRW-proposals with respect to the

number of symbols that end up in a wrong cluster, we con-

clude that this number increases considerably for cluster-

ings with only a few clusters. The reason for this is that the

decisions to merge two clusters become less obvious during

the clustering process. For the interfaces of the CC compo-

nent discussed in Section 6, for instance, the percentage of

identical users of the two clusters closest together dropped

below 15% as soon as the remaining number of clusters was

17. Our other experiments showed similar results.

As such, we envision the IRW to be used to obtain a refac-

toring proposal consisting of a set of clusters that is larger

than desired. The architects at ASML typically aim at refac-

toring an interface into 2-7 pieces It is up to the architect to

finish the restructuring using domain knowledge. By taking

a clustering consisting of more than the desired number of

clusters, the final work mainly consists of merging instead

of moving symbols around, which requires more effort and

is error-prone. To summarize, from our experiments we can

conclude that automating the restructuring makes sense as

long as the decisions made by the tool are obvious, in the

sense that there is a considerable amount of overlap between

the users of the two clusters to be merged.

To aid the architect with the selection of a generated clus-

tering that mainly requires cluster merges instead of symbol

moves to finish, the distance between the two closest clus-

ters in the current clustering is particularly useful informa-

tion (see Figure 4). It gives an indication of the meaning-

fulness of the next step in the clustering process. And as

the decisions with the type of clustering implemented by

the IRW will never be reversed later on (i.e., this value only

increases), it gives a clue on what clustering to select.

Important to note here is that for our experiments the user

of the IRW had very little domain knowledge. This user had

to make a number of manual decisions during the refactor-

ing process. For instance, the tool requires a confirmation

for merging two clusters with different visibility levels (see

Section 5.2). Also the selection of an appropriate clustering

requires manual input. In our experiments these decisions

were primarily based on the measures and information the

tool provides. As such, we expect that even better results

are obtained when the tool is used by domain experts, which

will generally be the case.

A final issue is that sometimes the IRW places definitions

that should be together from a functional perspective in dif-

ferent clusters. A possible solution would be to make to

tool more interactive to allow architects to indicate that such

symbols should be kept together. Although we leave this is

future work, a potential way to solve this is to replace such

pairs (or sets) with a single symbol during clustering, like

we do with generated symbols. In the final proposal such

symbols would have to be expanded again.

8 Conclusion

In this paper we investigated the applicability of auto-

mated techniques for the redesign of software interfaces. To

this end we developed a tool, the Interface Regroup Wizard

(IRW), which we applied to several interfaces of the embed-

ded control software of a complex manufacturing system.

We consider the following as our key contributions:

• A demonstration that automated cluster analysis can be

successfully to the redesign of C interfaces, a realistic

industrial task actually conducted by ASML.
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• An analysis concerning the level of automation that

can be achieved, and guidelines indicating when the

automation should stop, and when the software archi-

tect should take over the clustering process.

• An operationalization of quality criteria guiding inter-

face redesign.

• An interactive tool, IRW, which supports the software

architect in the redesign of a software system’s inter-

faces.

From our experiments we conclude that our tool provides

a useful starting point for the refactoring of software inter-

faces as described in this paper. However, one of the lessons

learned is that this type of clustering can only partly auto-

mate the solution to this problem. In this case, this means

that the tool gives a starting point (typically containing too

many clusters) that architects can use to further refine (i.e.

reduce the number of clusters based on different criteria

than common users).

Naturally, the architect is likely to use domain knowl-

edge for selecting one of generated clusterings generated

by the IRW for use as a starting point for refactoring an in-

terface. In addition to that, means to objectively assess the

quality of the generated clusterings exist. We provide such

means by displaying different metrics for compactness and

connectivity, as well as an indication of how obvious the

next clustering decision is (by showing the distance between

the current closest clusters).

The IRW helps to directly improve three of the five inter-

face quality criteria defined by ASML: dependency, shar-

ing, encapsulation. Furthermore, when used by a domain

expert, the interactive nature of our tool (to a lesser extent)

also addresses functional coherence.

As part of our future work, ASML has expressed interest

in conducting further experiments with the tool, which will

certainly lead to further improvements and refinements to

the method and the tool. In addition to that, we are inter-

ested in applying the approach to other (non-ASML) sys-

tems, for example from the open source domain.
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