ReAssert: Suggesting Repairs for Broken Unit Tests

Brett Daniel, Vilas Jagannath, Danny Dig, and Darko Marinov

University of Illinois at Urbana-Champaign
Urbana, IL 61801, USA
Email: {bdaniel3,vbangal2,dig,marinov} @illinois.edu

Abstract—Developers often change software in ways that
cause tests to fail. When this occurs, developers must determine
whether failures are caused by errors in the code under test
or in the test code itself. In the latter case, developers must
repair failing tests or remove them from the test suite. Reparing
tests is time consuming but beneficial, since removing tests
reduces a test suite’s ability to detect regressions. Fortunately,
simple program transformations can repair many failing tests
automatically.

We present ReAssert, a novel technique and tool that
suggests repairs to failing tests’ code which cause the tests
to pass. Examples include replacing literal values in tests,
changing assertion methods, or replacing one assertion with
several. If the developer chooses to apply the repairs, ReAssert
modifies the code automatically. Our experiments show that
ReAssert can repair many common test failures and that its
suggested repairs correspond to developers’ expectations.

I. INTRODUCTION

Unit testing is becoming an important and widely prac-
ticed activity in software development. For example, reports
from Microsoft show that 79% of developers use unit
tests [1], and the code for unit tests is often larger than the
application code under test [2]. Developers manually write
(or automatically generate) unit tests for their application
code and frequently run them while changing the code.

When changes cause existing unit tests to fail, developers
should inspect the failures. There are two possible outcomes.
First, if failures are caused by regressions, then developers
must revise the application code to make the tests pass.
Second, if failures are caused by tests that no longer reflect
the intended behavior of the software, then the tests are
broken—developers must repair the broken tests or remove
them from the test suite. (In some cases, developers need
to change both the application code and the test code.) Re-
pairing broken tests is time consuming but often preferable
to removing tests since removing tests reduces a test suite’s
ability to detect regressions that appear in later versions of
the software.

The scenario described above assumes that developers
first change application code, then repair any broken tests.
In contrast, test-driven development advocates changing the
tests (to reflect the new requirements) before changing the
application code (to implement these requirements) [3], [4].
However, even with advances in change-impact analysis [5]—

[71, developers do not always know a priori all tests which
will be affected by a particular change, much less how a
failure will manifest. Therefore, a posteriori repair remains
the most common practice.

Unfortunately, developers may not take the time to repair
broken unit tests. The problem becomes particularly acute
when developers make a “deep” change that breaks many
tests or when developers have a large test suite produced
by an automatic test-generation tool [8]-[13]. Automatically
generated tests tend to be more fragile than manually written
tests, e.g., dozens of automatically generated tests can fail
on a seemingly simple code change. Developers are often
reluctant to manually repair a large number of broken tests—
particularly if they were automatically generated—opting
instead to remove them.

We present ReAssert, a novel technique and tool that
suggests repairs for failing unit tests while retaining their
power to detect regressions. When tests (manually written or
automatically generated) fail, ReAssert can suggest changes
to test code that cause the tests to pass. If the suggested
repairs match the developer’s intentions, then ReAssert can
repair the tests with one mouse click rather than a tedious
editing process.

One can compare ReAssert to automated refactoring tools
commonly included in modern integrated development en-
vironments. Both are code transformation tools that involve
well-defined sequences of structural changes [14]. Develop-
ers could perform these transformations manually, but doing
so is tedious and error-prone. Just as one can perform a
refactoring by selecting an item from a menu, ReAssert
allows one to repair a failing test at the push of a button.

Both automated refactorings and ReAssert perform non-
trivial analyses prior to transformation. ReAssert differs
from refactoring tools in that its transformations require
analysis of a test’s runtime execution (i.e., the values that
caused a test to fail) in addition to the static structure
of the code. Also, ReAssert suggests repairs that change
the behavior of test code (from failing to passing), while
refactorings perform structural code changes but preserve
code behavior.

The key challenge in repairing tests is to retain as much
of the original test logic as possible. One could trivially
“repair” a failing test by removing all of its code so that it

passes but reveals nothing about the correct (or incorrect)
behavior of the application code. Our design of ReAssert
follows these criteria:

o Make minimal changes: Retain as much of the test code
as possible and leave application code unchanged.

e Only change if needed: If no changes cause a test to
pass, then leave the test code unchanged. ReAssert may
not repair all test failures, but those it does will pass.

o Require developer approval: Allow a developer to in-
spect, modify, and approve the suggested repairs.

e Produce understandable test code: Produce code that
a developer can understand and could write manually;
use normal method calls and assertions similar to any
other unit test.

This paper makes the following contributions.

Idea: We propose automatic repair of failed unit tests as a
means toward reducing the manual effort required to update
test code.

Technique: We develop a technique that can automatically
suggest repairs to the test code that make failing tests pass.
While we present the technique for Java, the concepts gen-
eralize to other languages. The technique combines analysis
of a test’s dynamic execution (to recover failing values and
control flow) with analysis and transformation of the static
structure of test code.

Tool: We implemented our technique in a tool called Re-
Assert that can repair Java unit tests written using the
JUnit framework (http://junit.org). We also built a
plugin for the Eclipse IDE (http://eclipse.org) that
integrates seamlessly with the built-in test runner. It allows
the developer to easily compare the failing and repaired
test code and to update the code with one mouse click.
ReAssert can repair many common types of test failures
and is also extensible, allowing developers to write project-
specific repair strategies.

Evaluation: We evaluate ReAssert’s effectiveness in three
ways. First, we describe two case studies in which re-
searchers used ReAssert to repair failures in their evolving
software. Second, we perform a controlled user study to
evaluate whether ReAssert’s suggested repairs match devel-
opers’ expectations. Third, we assess ReAssert’s ability to
suggest repairs for failures in open-source projects, consid-
ering both manually written and automatically generated test
suites.

Our tool and experimental results are publicly available
at http://mir.cs.illinois.edu/reassert.

II. EXAMPLE

We illustrate the use of ReAssert through a simplified
example based on the shopping cart application from the user
study described in detail in Section V-B. The example con-
siders a common code evolution scenario: a developer starts

public void testRedPenCoupon() {
Cart cart = new Cart();
cart.addProduct (new RedPen());
cart.addProduct (new RedPen());
cart.addCoupon(new AnniversaryCoupon());
assertEquals (3.0, cart.getTotalPrice ());
assertEquals (
”Discount: —$3.00, Total: $3.007,
cart. getPrintedBill ());

SO0 JWNBWN—

—_

Figure 1. Example test

from application code and passing tests, receives a change
request due to a change in requirements, and has to update
the code and/or tests to match the new requirements. We
discuss how ReAssert helps in repairing broken (manually
written or automatically generated) tests after code changes.

In our example, the application logic is in the classes
cart (which represents a shopping cart that can contain
products and coupons), Product (whose subclasses repre-
sent products such as red or black pens), and Coupon (whose
subclasses represent certain discounts that may apply). The
classes provide usual methods for adding/removing products
and coupons to/from the cart, computing prices, printing
bills, etc. One example coupon celebrates the store’s an-
niversary with a buy-one-get-one-free discount for any pen.

Figure 1 shows an example, manually written JUnit test
for the anniversary coupon. In object-oriented code, each
test creates one or more objects, invokes a sequence of
methods on these objects, and asserts that certain properties
of these objects hold. This test checks that the discount
correctly applies when the cart contains two red pens,
which in the example cost $3 each without the coupon.
JUnit’s assertEquals method compares the expected (first
argument) value and the actual (second argument) value.
This test is one of the many tests for coupons and products.

All the tests pass for the original code, but the require-
ments change: the anniversary coupon should now apply to
black pens only. When the developer correctly changes the
AnniversaryCoupon class, this test, as well as several oth-
ers, fail because they no longer reflect the correct application
logic.

ReAssert adds a “Fix Failing Tests” option to Eclipse’s
JUnit runner. Choosing the option brings up a compare
dialog such as that shown in Figure 2. The top part lists test
files with suggested repairs, and the bottom right part shows
the repairs. The user can inspect the repairs and modify the
code if necessary. Pressing the “Confirm” button applies the
repairs to the test code.

In this example, ReAssert suggests to repair the assertions
at lines 6 and 7 by changing the expected values in the
assertions. Note that ReAssert suggests repairs for both
assertions at once, although the failure at line 6 would
normally “hide” the failure at line 7. To determine these
repairs, ReAssert re-runs the test to record the actual values

(= Structure Compare

¥ = cart
|5 Text Compare

Original Test File
public wvoid testRedPenCoupon () |
Cart cart = new Cart ();
cart.addProduct (new RedPen());
cart.addProduct (new RedPen()) ;
cart.addCoupon (new AnniversaryCoupon ()

Fixed Test File
public void testRedPenCoupon() |
Cart cart = new Cart ();
cart.addProduct (new RedPen());
cart.addProduct (new RedPen());
cart. addCoupon (new AnniversaryCoupon ()) ;

assertEquals (3.0, cart.getTotalPrice ()

)
i

assertEquals (6.0, cart.getTotalPrice());

assertEquals (
"Discount: -$3.00, Total:
cart.getPrintedBill ());

53.00",

[«I] |

(<11 |

assertEquals (
"Discount: $0.00, Total:
cart.getPrintedBill () ;

56.00",

Cancel

Figure 2. The suggested repair in Eclipse

1 public void testRedPenCoupon() {

2 Cart cart = new Cart();

3 cart.addProduct (new RedPen());

4 cart.addProduct (new RedPen ());

5 cart.addCoupon(new AnniversaryCoupon());
6 checkCart(cart, 3.0,

7 ”Discount: —$3.00, Total: $3.00”);

8

9 protected void checkCart(

10 Cart cart, double total , String bill) {
11 assertEquals (total , cart.getTotalPrice ());
12 assertEquals (bill , cart.getPrintedBill ());
13}

Figure 3. Example test with a helper method

in the assertions and then writes the recorded values back
into the code.

Internally, ReAssert applied one of its repair strategies
called Replace Literal in Assertion. This is just one of several
strategies described in Section IV. It is a simple but effective
strategy that illustrates two important characteristics of all
repair strategies. First, the strategy requires analysis of the
dynamic execution of the test. In this case, the actual
values are a double and a string, which can be written
directly as literals into the code. Second, each strategy is
tailored to a particular code structure. The Replace Literal
in Assertion strategy only applies to an assertEquals
invocation located in the test method (not a helper method).
If these conditions are not met, ReAssert chooses a different
strategy.

For example, Figure 3 shows another test for the same
functionality, but which uses a helper method to check the
price and bill. Developers commonly write such helper meth-

ods to reuse several assertions across many tests. (One of the
participants in our user study wrote such a helper method for
several tests.) The Replace Literal in Assertion strategy does
not apply because changing the failing assertions directly in
the helper method would break other tests that call the same
helper method.

ReAssert can still suggest a repair for this test but applies
another strategy, Trace Declaration-Use Path. This strategy
traces a variable’s use from an assertion back to its definition
(across the dynamic call chain from the test execution) and
then writes the values recorded from the test run into the
definition. This strategy exploits the fact that test helpers
rarely modify the expected value, so it suffices to track
declarations rather than control flow. In this example, the
strategy changes the arguments to checkCart on line 6.

6
7

checkCart(cart ,
”Discount:

6.0,

$0.00, Total: $6.007);

While the previous two examples have shown the use of
ReAssert to repair manually written tests, ReAssert is also
useful for repairing and maintaining automatically generated
test suites. For example, we applied the Randoop tool [13]
on the shopping cart application, and Randoop generated
a regression test suite with 1,598 tests (for the default
time limit for generation). The assertions in those tests are
similar to the assertions in Figure 1, but tests generated
by Randoop are usually longer than manually written tests.
After changing the shopping cart code (Section V-B), 834
of these tests failed. We applied ReAssert, and it repaired
all tests such that they passed.

TestClasst#testMethod

Compiled

— Instrument
Test Classes

Instrumented Classes

ired!
Execute Passes — Repaired!
Test Fails
Limit Not
Reached Repaired

Recorded Stack Trace

Find Location

Test Code to Repair

Annotated Parse Tree
4

Choose Strategy None Not
and Apply Aeply ~ Repaired

Modified Parse Tree

Recompile

Figure 4. ReAssert’s repair process

III. REPAIR PROCESS

ReAssert’s repair process starts when the user chooses
a set of failing tests to repair. For each test (which can
have more than one failing assertion), ReAssert iteratively
attempts repairs until the test passes, no strategies apply, or
the iteration limit is reached.

To repair a single failure in a test, ReAssert follows the
five-step process shown graphically in Figure 4. ReAssert
first instruments the test classes to record values of method
arguments for failing assertions (Section III-A). It then re-
executes the test and catches the failure exception that con-
tains both the stack trace and recorded values (Section III-B).
It next traverses the stack trace to find the code to repair
(Section III-C) and examines the structure of the code and
the recorded values to choose a repair strategy to apply to
change the code (Section III-D). It finally recompiles the
code changes and repeats these steps if the test has another
failure (Section III-E).

A. Instrumenting Assertions

ReAssert instruments some methods to dynamically
record the runtime values that the repair strategy will use
when repairing the test code. ReAssert does not instrument
all methods; only those that are assertion methods and are
declared in classes referenced (perhaps indirectly) by the
current test. By default, JUnit’s standard assertions (such as
assertEquals) are instrumented as assertion methods, and
ReAssert provides a general mechanism for instrumenting
additional methods.

public static void assertEquals(
Object expected ,
Object actual) {

try {
// ... original code of assertEquals
} catch (Error e) {
throw new RecordedAssertFailure (
e, expected, actual);

Figure 5. Instrumentation of an assertion method

The instrumentation records values by wrapping the
exception thrown by a failing assertion with an excep-
tion holding the values of the assertion’s arguments.
Recalling the example from Figure 1, ReAssert instru-
ments the assertEquals method to record the expected
and actual values. Normally, assertEquals throws a
java.lang.AssertionError. ReAssert instruments the
method such that it catches any exception and re-throws
ReAssert’s own RecordedAssertFailure. This exception
holds the original exception and the expected and actual val-
ues. Figure 5 shows conceptually how ReAssert instruments
the method.

This form of instrumentation has several good character-
istics. First, it re-throws an exception only on the failing
assertions that ReAssert cares about. There is no global
state and no runtime overhead for non-failing calls. Second,
ReAssert instruments bytecode dynamically using Java’s
class loaders, allowing one to instrument arbitrary methods
without requiring recompilation or source code (though
ReAssert necessarily requires the source of calls to the
method so it can repair them). Finally, one can record
values from multiple assertions at different points on the call
stack. These last two benefits enable custom repair strategies
described in Section I'V-H.

B. Re-Executing Tests

ReAssert uses JUnit to re-execute failing (instrumented)
tests. JUnit catches the exception thrown by a failing test
(likely a RecordedAssertFailure) and returns it to Re-
Assert. Even though ReAssert delegates to JUnit in our
current implementation, ReAssert is effectively decoupled
from a particular test framework. It could just as easily re-
pair tests written using TestNG (http://testng.org/) or
another framework. ReAssert simply requires the exception
thrown by the test. This exception contains recorded values
of method arguments and information about the cause of the
test failure, including the stack trace.

C. Finding the Code to Repair

Repair strategies explore the stack trace of a failing test
to find the static code location to repair. Java’s stack traces
include source code line numbers as shown in Figure 6.
ReAssert parses the test code into an annotated parse

edu.illinois.reassert.RecordedAssertFailure:
org.junit.AssertionFailedError:
expected:<3.0> but was:<6.0>
at org.junit.Assert.assertEquals (Assert.java:116)
at CartTest.checkCart (CartTest.java:11l)
at CartTest.testRedPenCoupon (CartTest.java:6)

at org.junit...JUnitCore.run (JUnitCore.java:109)
Caused by: java.lang.AssertionError:
expected:<3.0> but was:<6.0>
at org.junit.Assert.fail (Assert.java:71)
at org.junit.Assert.failNotEquals (Assert.java:451)
at org.junit.Assert.assertEquals (Assert.java:99)
at org.junit.Assert.assertEquals (Assert.java:116)

Figure 6. Stack trace for the failure shown in Figure 3

tree [15] that contains all line numbers and type information.
Thus, given a location from the stack trace, a particular
strategy can easily find the appropriate code fragment.

Most repair strategies simply change the failing assertion’s
call site one stack frame below the instrumented method.
Some strategies require a more complex analysis. For in-
stance, the Trace Declaration-Use Path strategy follows the
stack trace to find the location in the source code of the
literal value that flowed into the expected side of a failing
assertEquals call (if such a value exists). Figure 3 shows
one test that uses this strategy, and Figure 6 shows the stack
trace produced by the failure of the assertion at line 11.

The Trace Declaration-Use Path strategy examines the
code at the failing assertion’s call site (line 11) and finds that
the expected side is a variable. The variable is declared as the
second formal argument of the helper method checkCart,
so the strategy retrieves the code one stack frame lower at
line 6. The tracing stops because the second actual argument
of the call is the literal value 3.0, and the strategy can
replace it with the recorded value. Had the argument been
another variable, tracing would have continued, following
the dynamic call chain from the stack trace and looking
for declaration of variables. (Since test code rarely changes
method arguments, it suffices to follow declarations rather
than control flow.) The repair may occur many frames lower
in the stack trace than the failed assertion.

D. Repairing Test Code

ReAssert chooses a repair strategy by looping over all
strategies to determine which one can apply to the given
failure. ReAssert passes the exception, the parse tree, and
the recorded values to each strategy. Each strategy checks a
set of preconditions to determine whether it can repair the
failure. The first strategy whose preconditions are satisfied
updates the parse tree. If no strategies apply, then ReAssert
cannot repair the failure. The next section describes individ-
ual strategies in more detail. We give here only one example.

In the test shown in Figure 1, the Replace Literal in
Assertion strategy applies. Figure 7 shows this strategy’s
simplified pseudocode. Its preconditions require that the

public class ReplaceLiteralStrategy
implements RepairStrategy {
public void fix (
Error failure ,
MethodInvocation assertion ,
Object[] recordedArgValues) {
if (failure instanceof AssertionError
&& “assertEquals”.equals(assertion.getName())
&& isLiteral (recordedArgValues[1])) {
assertion.setArgument (0, recordedArgValues[1]);
}
}
}

Figure 7. Pseudocode for the Replace Literal in Assertion strategy

failure be an instance of java.lang.AssertionError,
the failing method be assertEquals, and the recorded
actual value can be written directly into the code. (There
is also the implicit precondition that the expected side is
not a variable, since if it was, the Trace Declaration-Use
Path strategy would apply.) The test code in Figure 1 meets
these conditions, so the strategy writes the recorded actual
value into the expected side of the assertEquals as shown
in Figure 2.

E. Iteratively Repairing Failures

Once a repair strategy completes, ReAssert recompiles the
changed test code and repeats the entire repair process until
the test passes, no more strategies apply, or a limit on the
maximum number of repair attempts is reached. In this way,
ReAssert is able to repair multiple assertions in a single test:
it repairs the first, recompiles, repairs the second, and so on.

IV. REPAIR STRATEGIES

ReAssert’s library of repair strategies determines its abil-
ity to repair broken tests in meaningful and useful ways. Re-
Assert currently implements seven general repair strategies
for common types of assertions and failures. Additionally,
ReAssert is extensible so that developers can add new
strategies tailored to a particular project or test suite.

Due to space limitations, this section briefly lists all the
strategies. See [16] for more information, including the types
of failures that can be repaired, how each strategy modifies
test code, and applications of each strategy on examples
encountered in the evaluation described in Section V.

A. Replace Assertion Method

This strategy replaces a failing assertion with a similar
assertion that passes or that can be repaired by another
strategy. For example, if the argument to assertTrue is a
call to equals or the identity operator (==), then the strategy
creates an assertEquals invocation, which other strategies
can repair when the test is re-executed. This strategy often
serves as a “preprocessing step” for other strategies.

B. Invert Relational Operator

This strategy inverts a relational operator in the argument
to an assertTrue Or assertFalse assertion. This ap-
proach works particularly well for assertions against objects
that implement the java.lang.Comparable APIL

C. Replace Literal in Assertion

This strategy replaces the expected (left) side of an
assertEquals assertion with the literal value computed by
the actual (right) side. This strategy is applicable to primitive
types and certain reference types such as string and Class
that can be written directly into code. The running example
in sections II and III describes this strategy in more detail.

D. Replace with Related Method

This strategy applies when the argument to assertTrue
or assertFalse is a call to a common library method
that is closely related to another. There are many ex-
amples of such related methods in common APIs, in-
cluding java.util.Date’s after and before, String’s
contains and indexOf, and java.util.Collection’s
isEmpty and size. In each case, the assertion fails on a
boolean accessor (e.g., isEmpty) and can be repaired by
asserting against the value returned from the related method.

In the following example, a call to isEmpty on a non-
empty collection object causes the assertTrue to fail.

assertTrue (collection .isEmpty ());

Rather than trivially changing assertTrue to
assertFalse, this strategy asserts against the actual

size of the nonempty collection:

assertEquals (5, collection.size ());

E. Trace Declaration-Use Path

It is common for developers to write helper methods
that bundle several assertions for reuse across many tests.
Repairing such helper methods requires tracing an argument
used in a failing assertion back to its definition (following
dynamic call chain and static declaration-use paths) and
replacing the value there. Section III-C explains this process
in detail.

FE Accessor Expansion

All of the previous strategies operate on primitive values;
this strategy differs in that it repairs failures related to
object inequality. It replaces a failing assertEquals whose
arguments are reference types with a list of assertions that
test values returned from both arguments’ accessor methods.

An assertEquals likely fails because a small number
of the actual object’s fields are not equal to the expected
object’s. This strategy makes the differing values explicit
by matching the actual side’s accessors with the expected
side’s. If the two differ, then the strategy asserts against
a literal value or, if the accessors’ values are reference

types, expands further. This process is similar to how some
automatic test generation [10] or test augmentation tools [12]
produce assertions.

G. Surround with Try-Catch

Sometimes developers change code to throw an exception
rather than return an error value or silently fail. In these
cases, the exception is expected, and a test should verify
that it was thrown. This repair strategy surrounds a failing
method call with a try-catch block that asserts that a partic-
ular exception is caught.

H. Custom Repair Strategies

ReAssert provides an extension API which can be used
to instrument arbitrary methods and to define custom repair
strategies. This capability allows one to repair application-
specific failures or tests written in a custom test framework.
An extension needs to provide a class that implements the
repair strategy interface and give ReAssert the names of
methods to instrument. Section V-A2 describes a case study
that required custom repair strategies to update the content
of external files.

V. EVALUATION

To evaluate ReAssert’s effectiveness, we answer the fol-
lowing research questions:

Q1 How often can ReAssert suggest repairs for failing unit
tests?

Q2 Are the repairs suggested by ReAssert usable for devel-
opers? Do the developers accept the changes suggested
by ReAssert?

Q3 Does ReAssert give false confidence to the developers
such that they mask regression errors by repairing
failing tests?

We describe two case studies in which ReAssert was
used to repair failures in evolving research software, which
provided some quantitative data for Q1 and Q2, and some
qualitative data for Q3. We also performed a controlled user
study that addressed all three questions directly. For Q1, we
assess ReAssert’s ability to repair failures in open-source
applications. Finally, we discuss reasons why ReAssert is
unable to repair certain failures.

A. Case Studies

We asked two teams of researchers to try ReAssert when
changes to their evolving research software caused unit
tests to fail. ReAssert successfully (Q1) and usefully (Q2)
repaired the failures and revealed regressions in the software
(Q3). The following sections describe these case studies.

Project Tests | Failures | Accepted Repairs
Basset - 17 15 (88%)
DPJ compiler 86 6 5 (83%)
DPlJizer 78 14 9 (64%)
Figure 8. Using ReAssert to repair tests in Basset, DPJ, and DPJizer
projects.
1 public class TestReductionModes
2 extends TestActor {
3 private static String language = ...
4
5 @Test public void clientserver_jpfcomp () {
6 options = ...
7 runAndCheck (language , Driver.class, options,
8 null, 5, 1, 24, 2, 5, 0, 0);
9 }
10
11}

Figure 9. Example Basset unit test

1) Case Study: Basset: Java PathFinder (JPF) [17] is a
system for verifying Java programs using an explicit-state
model checker that acts on Java bytecode. JPF offers a
powerful extension mechanism that allows one to verify
programs in many domains. Basset [18] is one such exten-
sion currently under development that verifies programs that
utilize the actor model of concurrency. This extension has a
large suite of JUnit tests that often break as both JPF and
Basset improve.

Figure 9 shows a simplified example of a Basset unit test.
Each test does nothing except pass several arguments to a
helper method called runandCheck declared in the super-
class TestActor. This method executes Basset using the
first four arguments. After Basset completes, runAndCheck
verifies that the latter seven arguments (which we will call
the “postcondition numbers”) match numbers derived from
Basset’s internal state.

These tests are exceptionally fragile and difficult to repair
manually. First, the postcondition numbers often change as
Basset improves. Second, The postcondition numbers are
difficult to calculate prior to running the test (yet reasonably
easy to check afterward). Third, each test takes tens of
seconds to run due to JPF’s high overhead. Therefore, when
tests failed due to changes in Basset, the developers were
forced to spend many minutes manually re-running each
failing test to calculate each of the seven postcondition
numbers.

ReAssert removes much of this manual labor since it au-
tomates re-execution and can fix multiple failures. Internally,
ReAssert applies the Trace Declaration-Use Path strategy to
replace postcondition numbers.

On one failing test run, shown in Figure 8, the Bas-
set developers accepted 15 of ReAssert’s 17 suggested
repairs (Ql and Q2). This corresponds to replacing 105
postcondition numbers. The remaining two failures were

due to null pointer dereferences, which, while repairable
using the Surround with Try-Catch strategy, were caused by
regressions (Q3).

2) Case Study: Deterministic Parallel Java: Determin-
istic Parallel Java (DPJ) [19] is an extension to the Java
language. DPJ gives static guarantees that a program that
type-checks with the DPJ compiler will be deterministic
(giving the same output for the same input) when executed
by any number of parallel tasks. DPJ incorporates a sophis-
ticated effect system to verify noninterference of parallel
tasks. DPJizer [20] is a tool that infers effect annotations in
DPJ programs.

Because the DPJ language is an evolving research lan-
guage, the DPJ compiler and the DPJizer tool must also
evolve. This evolution frequently causes tests to break and
requires a substantial manual effort to repair them.

Both DPJ compiler’s and DPJizer’s unit tests verify that
the output from the tool matches the expected content in a
prepared file. We implemented a custom repair strategy that
is conceptually similar to the Replace Literal in Assertion
strategy: it must record the expected content and write it to
the expected file.

This strategy instruments two “levels” of asser-
tions. The highest level is a helper method called
assertFilesAreTheSame that takes the expected and ac-
tual file names. The expected file contains the prepared
output, and the actual file contains the output from DPJ/D-
PJizer. The helper method reads the content of both files
to strings that it passes to JUnit’s assertEquals. Thus,
the instrumented assertFilesAreTheSame records the
expected file name, and assertEquals records the actual
content.

Figure 8 shows how many tests were repaired with Re-
Assert and this custom strategy. The repairs were correct—
in that they would have caused the test to pass (Q1)—in
all cases, and the developers accepted 14 out of 20 of the
suggested repairs (Q2). The remainder revealed regressions
in the system under test (Q3).

The developers expect to continue using ReAssert as DPJ
and DPlJizer evolve. They commented that ReAssert was
useful not only for updating existing tests but also for writing
new tests: they left the expected content blank, and ReAssert
filled it in with the actual content.

B. Controlled User Study

We performed a controlled user study to evaluate how
ReAssert assists developers in writing unit tests. We quan-
titatively answered all three of our research questions and
qualitatively assessed ReAssert’s usefulness using a simple
but realistic development project.

1) PFarticipants: Our study had 18 participants: 13 grad-
uate students, 3 undergraduate students, and 2 industry pro-
fessionals. They had an average of 5.1 years of experience
with Java, 2.4 years with JUnit, and 2.7 years with Eclipse.

Control Group

Test Suite Failures Repairs Matches

User written 26 26 (100%) | 25 (96%)

Provided 47 47 (100%) | 42 (89%)
ReAssert Group

Test Suite Failures Repairs Matches

User written 19 15 (79%) 12 (80%)

Provided 43 43 (100%) | 34 (79%)

Figure 10. User study results.

No rewards were offered for participating in the study.
Invitations to the study were sent out through class and
departmental mailing lists as well as individual emails.

We randomly split the participants into two groups: a
control group who were asked to perform the tasks described
below using the Eclipse IDE but without ReAssert, and a
ReAssert group who were asked to perform the tasks using
the Eclipse IDE with ReAssert. In the end, nine members of
the control group and nine members of the ReAssert group
finished the study. One participant from the ReAssert group
did not finish all tasks because the participant used an older
version of ReAssert that did not have the Trace Declaration-
Use Path strategy.

2) Tasks: The participants were given the application
code and passing unit tests for the shopping cart application
introduced in Section II. They were asked to first familiarize
themselves with the code/tests and then to perform the
following five tasks:

Task 1: Write some unit tests of their own to test previ-
ously untested functionality.

Task 2: Implement a requirement change which could
potentially cause some of their tests to fail.

Task 3: Repair all failing tests.

Task 4: Implement another requirement change which
would cause some of the initially provided tests to fail.

Task 5: Repair all failing tests.

The participants were asked to perform the tasks in order
and click on a button at the end of each task to indicate
completion. This helped us record the state of the code and
tests at the end of each task.

3) Quantitative Results: The quantitative results of the
user study provide some data for all three of our research
questions.

Q1: The first two columns of Figure 10 summarize the
number of failures caused by the participants’ code changes
in tasks 2 and 4 and the number of those failures that
ReAssert could repair such that they pass. Note that the
participants from the control group did not actually run
ReAssert, so we evaluated post-mortem whether ReAssert
would have suggested a repair that made their failing tests
pass.

In total, ReAssert could repair 98% (131 of 135) of
failures caused by the participants’ code changes. Three of
the failures were not repairable because a participant was
using an older version of ReAssert which did not implement
the Trace Declaration-Use Path strategy; those failures can
now be repaired with the latest version of ReAssert. The
remaining unrepaired failure was caused by the nondeter-
ministic iteration order of java.util.HashMap; common
practice dictates that tests should be deterministic, and thus
this test should have been written differently.

Q2: The final column of Figure 10 summarizes the num-
ber of ReAssert’s suggested repairs that exactly matched the
changes made by the participants to repair the failing tests
in tasks 3 and 5. We determined this match by structurally
comparing tests recorded at the end of task 3 or 5 with
the tests obtained by applying ReAssert’s suggested repairs
on the code written by the participants in the preceding
task 2 or 4, respectively. Our structural comparison ignored
white spaces, comments, variable names, and other code
differences that don’t affect code behavior.

For task 3, in which participants repaired tests they had
written themselves, 90% (37 of 41) of ReAssert’s suggested
repairs matched the participants’ repairs. For task 5, in which
participants repaired tests provided to them, 84% (76 of 90)
of ReAssert’s repairs matched.

These results show that the repairs suggested by ReAssert
are very useful because they very frequently match the
repairs made by the participants. In cases where the repairs
suggested by ReAssert did not match, the participants’
repairs most often involved changes to the test setup or the
addition of new assertions. We suspect that ReAssert could
have been useful even in these cases, and thus the exact
match is the lower limit for the number of usable repairs.

The participants found the Replace Literal in Assertion
strategy particularly useful when they changed how the shop-
ping cart printed the final bill. Those without the tool most
often copied and pasted the output from JUnit, essentially
replicating this strategy manually.

Q3: The participants introduced a total of 20 bugs in
their code. We expected some bugs since our requirements
were fairly vague, simulating real-life situations. Eleven
of the bugs were introduced in task 2, and nine were
introduced in task 4. Twelve of the bugs were introduced by
participants who used ReAssert, and eight were introduced
by participants who did not use ReAssert. One of the reasons
why ReAssert users introduced more bugs could be that they
become overly reliant on the tool. This can be mitigated by
training users to carefully inspect the repairs suggested by
ReAssert rather than accepting them blindly.

4) Qualitative Results: We obtained qualitative feedback
though a simple questionnaire and post-study interviews. We
modeled our questionnaire and analysis after a study by Saff
and Ernst [21].

Question

Useful for the study
Use for own projects
Include in Eclipse
Recommend to others

Responses
very 50%, yes 38%, no 12%
yes 56%, maybe 33%, no 11%
yes 67%, maybe 33%
yes 67%, maybe 33%

Figure 11. Responses to Qualitative Questions
Project Versions Description
Checkstyle 3.0,35 Code style checker
JDepend 28,29 Design quality metrics
JFreeChart | 1.0.7, 1.0.13 | Chart creator
Lucene 2.2.0, 2.4.1 | Text search engine
PMD 20,23 Java program analysis
XStream 1.2, 1.3.1 XML serialization

Figure 12. Subject applications

Questionnaire Responses: We asked the nine participants
in the ReAssert group four questions after they completed
their tasks. Figure 11 summarizes their responses. The
majority of the participants found ReAssert useful for the
user study tasks and thought that it would also be useful
for their own development and testing tasks. Most would
recommend ReAssert to other people and thought that it
should be included as part of the Eclipse IDE.

Positive Feedback: The participants who found ReAssert
useful liked the fact that ReAssert repairs all the assertions
in a test method at once rather than individually. Some
participants mentioned that they would write more tests if
they had a tool like ReAssert to help them maintain tests.
They also noted that some assertions were very tedious to
write (especially those involving large strings) and men-
tioned that they used ReAssert to build such assertions by
leaving assertions “empty” and letting the tool compute the
real expected value. This shows that ReAssert could also be
helpful when creating new tests.

Cautionary Feedback: Most participants expressed con-
cerns that ReAssert could induce carelessness in developers.
These concerns do hold merit as shown by the results for
Q3 in Section V-B3. However, we believe that this problem
can be mitigated by explicitly informing developers that they
should carefully inspect each repair suggested by ReAssert
before applying it.

C. Failures in Open-Source Projects

We address Q1 by measuring how many failed tests Re-
Assert can successfully change such that they pass. Doing so
requires many examples of failing tests in real applications.
We consider the open-source projects listed in Figure 12. All
are widely used and actively developed Java applications
whose source code is available online. Several have been
used in previous studies [22]-[24]. More importantly, they
each had a large, manually written test suite and evolved in
ways that would cause some tests to fail.

public void testclasses25 () {

int var25 = 0;
ArrayDeque var26 = new ArrayDeque(var25);

short var28 = 1;
var26.addLast(var28);

Object var30 = var26.peekLast();
Object var31l = var26.pop();

assertEquals (1, var30);
assertEquals (1, var31);
}
Figure 13. A simplified test generated by Randoop

We executed both manually written and automatically
generated test suites. Manually written tests came from
the projects’ source code repositories. For a subset of the
projects, we generated many regression tests using Ran-
doop [13], a feedback-directed random test generator.

We obtained failing tests by applying tests (manually
written or automatically generated) from an early version
of the software to a newer version of the system under test.
This procedure mimics the evolution of the system under
test, but differs in that the tests would have also evolved.
We removed any tests that did not compile, ran the tests,
and recorded the number of failures. ReAssert attempted to
repair the failures, and we recorded the number of successful
repairs as well as the repair strategies used.

1) Generating Tests with Randoop: Randoop is one ex-
ample of an automatic test generator. Given a system to
test, it produces a regression test suite with minimal user
input. It does so using a process called feedback-directed test
generation. This process starts from short method sequences
that it extends by adding randomly selected method calls. It
runs the resulting sequences and feeds the results back into
the generation process. The resulting regression tests assert
against some observed values from the generated sequences.

Figure 13 shows a simplified test generated by Randoop.
Like many automatic test-generation tools, the tests it pro-
duces are particularly well-suited to automatic repair. First,
many are likely to break on seemingly simple changes. Sec-
ond, the generated tests tend to have very simple structure
and assertions (although they can be quite long).

For our evaluation, we directed Randoop to generate tests
for a subset of classes in the subject applications. See [16]
for details on our selection criteria and how we executed
Randoop.

2) Results: Figure 14 shows version difference failures
for both manually written and Randoop-generated test suites.
ReAssert’s success rate, measured as a ratio of repaired to
failing tests, is 45% on manually written tests and 97% (with
caveats explained in Section V-D) on tests that we generated
using Randoop.

ReAssert’s success rate is more dependent on the structure
of the tests than the type of failure. For example, almost

Manually Written

Tests | Failures Repairs
Checkstyle 143 34 9 (26%)
JDepend 53 6 6 (100%)
JFreeChart | 1696 18 16 (89%)
Lucene 663 47 12 (25%)
PMD 448 5 5 (100%)
XStream 726 60 28 (47%)

Randoop

Tests | Failures Repairs
JFreeChart | 2050 14 9 (64%)
Lucene 1077 278 75+203* (100%)
XStream 692 33 27 (82%)

Figure 14. Tests that fail due to version differences and how many

ReAssert repairs.

Strategy Manual | Randoop
Replace Assertion Method 14 0
Invert Relational Operator 2 0
Replace Literal in Assertion 95 130+203*
Replace with Related Method 0 0
Accessor Expansion 5 0
Trace Declaration-Use Path 11 0
Surround with Try-Catch 12 28

Figure 15. Repair strategies used.

all of the failures in JDepend, JFreeChart, and PMD can
be repaired since their tests have simpler control flow than
CheckStyle’s and Lucene’s. Similarly, Randoop-generated
tests are exceptionally simple, allowing ReAssert to repair
nearly all of them.

Figure 15 shows which repair strategies each evaluation
scenario used. It is clear that Replace Literal in Assertion
is a particularly useful strategy despite its simplicity; both
scenarios used it heavily. The distribution of other strategies
depends on the system under test, the structure of the test
code, and the types of failures.

The dependence on test code is particularly apparent
in the different strategies used to repair manually written
versus Randoop-generated tests. Since Randoop only pro-
duces simple assertTrue, assertFalse, assertNull,
and assertEquals calls, it has little need for complex
strategies like Accessor Expansion or Trace Declaration-Use
Path.

D. Unrepairable Failures

ReAssert cannot repair all tests, nor would we expect any
tool to be able to do so in a usable manner. Removing all
failing assertions would trivially cause a test to pass but
would not reveal anything about the correct (or incorrect)
behavior of the system under test. Alternately, some failures
require large changes to both test and application code. Since
ReAssert makes minimal changes to test code and leaves
application code unchanged, it is inevitable that it cannot
repair all broken tests. The following are common reasons
why this is the case.

Test Framework Restrictions: The starred number in fig-
ures 14 and 15 represents repairable assertions that cannot
be expressed in the test framework. In particular, Ran-
doop produced many assertNull invocations that failed
when passed a non-null array of primitive types. The Re-
place Literal in Assertion strategy can repair these failures
by changing the assertNull to assertArrayEquals.
However, Randoop’s tests require JUnit version 3 while
assertArrayEquals is implemented in JUnit version 4.

Shared Logic: If a failure occurs in code that is executed
multiple times in different contexts—for example if a com-
mon setup or teardown method fails, an assertion fails in a
loop, or a helper method cannot be repaired by the Trace
Declaration-Use Path strategy—then the failure is likely
unrepairable since a repair may break subsequent executions.

Too Many Assertions: Exceptionally large tests with many
failing assertions may exceed the maximum number of
failures that ReAssert can repair. By default the limit is 10,
but the number can be increased if needed.

Nondeterminism: Tests should generally execute deter-
ministically, but we encountered some that do not, causing
unrepairable failures. Similarly, if the Accessor Expansion
strategy asserts against a nondeterministic accessor, then the
test will probably fail. This is a common problem encoun-
tered by many test generation tools, including Randoop.

External Resources: Certain tests depend on external
resources such as input files. As discussed in Section V-A2,
such failures can be repaired but require custom strategies
tailored to the applications.

No Applicable Strategies: Certain failures may not meet
the preconditions of any repair strategy. For example, a
combination of helper methods, complex control flow, and
data operations may prevent both Trace Declaration-Use
Path and Replace Literal in Assertion from applying.

Repair Would Remove Test Logic: In certain cases a repair
is possible but would remove rather than update test logic.
In these cases, we do not implement a repair strategy. For
example, a hypothetical Remove Try-Catch strategy would
repair several failures in Randoop-generated tests, but would
be equivalent to removing an “assertion” that an exception
was thrown.

VI. RELATED WORK

While there has been much prior work in program repair
and maintenance, we are unaware of any other tools or
techniques that automatically repair general-purpose unit
tests. Most existing work focuses on repairing the system
under test rather than the test code. Those techniques that
act on test code often rely on test (re)generation or are
applicable only to a particular domain such as GUI test
scripts.

A. Fault Localization and Repair

Many researchers have proposed techniques for locat-
ing and fixing faults in the system under test. The first
step, finding those statements likely relevant to a partic-
ular failure, is referred to as fault localization [25]-[27].
Our technique—particularly the Trace Declaration-Use Path
strategy—Ilocates statements to repair in test code by travers-
ing the failure trace; this is conceptually similar to fault
localization using backward dynamic program slices [28]—
[31].

The second step, repairing the system under test to
remove the fault, is sometimes referred to as automated
debugging [32]. He and Gupta [33] introduce the concept of
path-based weakest preconditions and uses this formalism to
locate and repair erroneous statements. Arcuri [34], Jeffrey
et al. [35], and Weimer et al. [36] all model automated
debugging as a search problem solvable using genetic al-
gorithms and machine learning. Finally, Abraham and Er-
wig [37] describe a semi-automatic debugger for spreadsheet
formulas.

Other fault repair techniques focus on repairing program
state rather than code. Elkarablieh et al. [38] and Demsky
et al. [39] both describe techniques that repair faulty data
structures while a program executes.

B. Automatic Test Generation

Automatic test generation tools produce a suite of re-
gression tests (sometimes called characterization tests) with
minimal user input. We use one such tool, Randoop [13],
in our evaluation, but there are many other examples
utilizing automatic invariant detection [9], [40], symbolic
execution [10], software version differences [41], and static
program analysis [8].

When automatically generated tests fail due to changes in
the system under test, users rarely take the time to examine
the failures in detail or repair the tests. Instead it is much
more common to throw away the broken tests and re-run
the tool to generate new tests. ReAssert is complementary
to automatic test generation in that it provides a way to
maintain unit tests without re-generation.

ReAssert most frequently repairs unit tests by modifying
or creating assertions. Thus, it is closely related to test
augmentation techniques that aim to improve regression test
oracles [12], [42].

C. Maintaining GUI Test Scripts

Testing graphical user interfaces (GUIs) requires a great
deal of manual effort. Test engineers manually write test
scripts that interact with GUI widgets or use a record-and-
replay testing tool [43]. These scripts or recordings are very
fragile, and several researchers have proposed techniques for
maintaining GUI tests [44], [45]. In particular, Memon et al.
have done extensive work in generating and repairing GUI
tests [46]-[48].

Techniques for GUI test repair are conceptually similar
to ReAssert’s Replace Literal in Assertion strategy: both
must replace the incorrect portions of test code with the
correct value(s) derived from a test execution. Unlike GUI
test maintenance tools, ReAssert repairs general-purpose
unit tests and provides an extension mechanism for domain-
specific repair strategies.

VII. CONCLUSION

We presented ReAssert, a novel technique and tool that
automates repair of broken unit tests. ReAssert performs a
combined dynamic and static analysis to find repairs that
developers are likely to accept with a mouse click, relieving
them from a tedious editing process. Our experiments show
that ReAssert can propose repairs for a large percentage of
failing tests and that developers often find the suggested
repairs useful. We believe that by using ReAssert, developers
can write more unit tests or more effectively use automatic
test generation tools, improving their ability to detect regres-
sions.

ACKNOWLEDGMENTS

This work was supported in part by the National Science Foun-
dation under Grant No. CCF-0746856. We would like to thank
Rob Bocchino and Mohsen Vakilian for their help with DPJ and
DPlizer; Steve Lauterburg and Bobak Hadidi for their help with
Basset; the participants of our user study for providing an hour of
their time; and Milos Gligoric, Munawar Hafiz, Yun Young Lee,
and Samira Tasharofi for their valuable comments.

REFERENCES

[1] G. Venolia, R. DeLine, and T. LaToza, “Software develop-
ment at Microsoft observed,” Microsoft Research, TR, 2005.

[2] N. Tillmann and W. Schulte, “Unit tests reloaded: Param-
eterized unit testing with symbolic execution,” Microsoft
Research, TR, 2005.

[3] K. Beck, Test-Driven Development By Example, 2003.

[4] S. Fraser, D. Astels, K. Beck, B. W. Boehm, J. D. McGregor,
J. Newkirk, and C. Poole, “Discipline and practices of TDD,”
in OOPSLA Companion, 2003.

[5] B. Ryder and F. Tip, “Change impact analysis for object-
oriented programs,” in PASTE, 2001.

[6] X. Ren, F. Shah, F. Tip, B. Ryder, and O. Chesley, “Chianti:
a tool for change impact analysis of java programs,” in
OOPSLA, 2004.

[7] T. Apiwattanapong, A. Orso, and M. J. Harrold, “Efficient
and precise dynamic impact analysis using execute-after se-
quences,” in /CSE, 2005.

[8] Parasoft, “Jtest.” [Online]. Available:
http://www.parasoft.com/jsp/products/
home. jsp?product=Jtest

(91

[10]

(11]

(12]

[13]

(14]

(15]

(16]

(17]

(18]

(19]

[20]

[21]

(22]

(23]

[24]

[25]

[26]

[27]

M. Boshernitsan, R.-K. Doong, and A. Savoia, “From Daikon
to Agitator: lessons and challenges in building a commercial
tool for developer testing,” in ISSTA, 2006.

N. Tillmann and J. de Halleux, “Pex-white box test generation
for .NET,” in TAP, 2008.

C. Csallner and Y. Smaragdakis, “DSD-Crasher: A hybrid
analysis tool for bug finding,” in ISSTA, 2006.

T. Xie, “Augmenting automatically generated unit-test suites
with regression oracle checking,” in ECOOP, 2006.

C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball, “Feedback-
directed random test generation,” in /CSE, 2007.

M. Fowler, Refactoring: Improving the Design of Existing
Code. Addison-Wesley Professional, 1999.

J. Purtilo and J. Callahan, “Parse tree annotations,” CACM,
1989.

B. Daniel, V. Jagannath, D. Dig, and D. Marinov, “Re-
Assert: Suggesting repairs for broken unit tests,” Uni-
versity of Illinois at Urbana-Champaign, Tech. Rep.
http://hdl.handle.net/2142/13628, 2009.

W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda,
“Model checking programs,” Automated Software Engineer-
ing Journal, vol. 10, no. 2, 2003.

S. Lauterburg, M. Dotta, D. Marinov, and G. Agha, “A
framework for state-space exploration of Java-based actor
programs,” in ASE, 2009.

R. Bocchino, V. Adve, D. Dig, S. Adve, S. Heumann, R. Ko-
muravelli, J. Overbey, P. Simmons, H. Sung, and M. Vakilian,
“A Type and Effect System for Deterministic Parallel Java,”
in OOPSLA, 2009, (To Appear).

M. Vakilian, D. Dig, R. Bocchino, J. Overbey, V. Adve, and
R. Johnson, “Inferring method effect summaries for nested
heap regions,” in ASE, 2009.

D. Saff and M. D. Ernst, “An experimental evaluation of
continuous testing during development,” in ISSTA, 2004.

D. Schuler, V. Dallmeier, and A. Zeller, “Efficient mutation
testing by checking invariant violations,” Universitaet des
Saarlandes, TR, 2009.

B. Daniel and M. Boshernitsan, “Predicting effectiveness of
automatic testing tools,” in ASE, 2008.

L. Zhang, S.-S. Hou, C. Guo, T. Xie, and H. Mei, “Time-
aware test-case prioritization using integer linear program-
ming,” in ISSTA, 2009.

S. Hangal and M. S. Lam, “Tracking down software bugs
using automatic anomaly detection,” in /CSE, 2002.

J. A. Jones, M. J. Harrold, and J. Stasko, “Visualization of
test information to assist fault localization,” in ICSE, 2002.

H. Cleve and A. Zeller, “Locating causes of program failures,”
in ICSE, 2005.

(28]

[29]

(30]

(31]
(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]

(41]

(42]

[43]

[44]

[45]

[46]

(47]

(48]

F. Tip, “A survey of program slicing techniques,” Journal of
Programming Languages, vol. 3, no. 3, 1995.

B. Korel and J. W. Laski, “Dynamic slicing of computer
programs,” Journal of Systems and Software, vol. 13, no. 3,
1990.

H. Agrawal and J. R. Horgan, “Dynamic program slicing,” in
PLDI, 1990.

M. Weiser, “Program slicing,” in ICSE, 1981.

A. Zeller, “Automated debugging: Are we close,” Computer,
vol. 34, no. 11, 2001.

H. He and N. Gupta, “Automated debugging using path-based
weakest preconditions,” in FASE, 2004.

A. Arcuri and X. Yao, “A novel co-evolutionary approach to
automatic software bug fixing,” in CEC, 2008.

D. Jeffrey, M. Feng, N. Gupta, , and R. Gupta, “Bugfix: A
learning-based tool to assist developers in fixing bugs,” in
ICPC, 2009.

W. Weimer, T. V. Nguyen, C. L. Goues, and S. Forrest,
“Automatically finding patches using genetic programming,”
in ICSE, 2009.

R. Abraham and M. Erwig, “Goal-directed debugging of
spreadsheets,” in VL/HCC, 2005.

B. Elkarablieh, I. Garcia, Y. L. Suen, and S. Khurshid,
“Assertion-based repair of complex data structures,” in ASE,
2007.

B. Demsky and M. Rinard, “Automatic detection and repair
of errors in data structures,” in OOPSLA, 2003.

C. Csallner, Y. Smaragdakis, and T. Xie, “DSD-Crasher: A
hybrid analysis tool for bug finding,” TOSEM, 2008.

S. Person, M. Dwyer, S. Elbaum, and C. Pasareanu, “Differ-
ential symbolic execution,” in ESEC/FSE, 2008.

Y. Song, S. Thummalapenta, and T. Xie, “UnitPlus: assist-
ing developer testing in Eclipse,” in OOPSLA workshop on
Eclipse Technology eXchange, 2007.

J. H. Hicinbothom and W. W. Zachary, “A tool for automat-
ically generating transcripts of human-computer interaction,”
in HFES, 1993.

M. Grechanik, Q. Xie, and C. Fu, “Maintaining and evolving
GUI-directed test scripts,” in /CSE, 2009.

C. Kaner, “Improving the maintainability of automated test
suites,” Software QA, vol. 4, no. 4, 1997.

A. Memon, 1. Banerjee, N. Hashmi, and A. Nagarajan, “Dart:
A framework for regression testing “nightly/daily builds” of
GUI applications,” in /CSM, 2003.

A. Memon, “Automatically repairing event sequence-based
GUI test suites for regression testing,” TSE, vol. 18, no. 2,
2008.

A. Memon and M. L. Soffa, “Regression testing of GUIs,” in
ESEC/FSE, 2003.

