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Abstract—A design issue that often appears in real-world
services is that their interfaces are not cohesive, i.e., they consist
of many and possibly unrelated operations. This issue may
complicate the comprehension of the services functionalities
and the maintenance of the applications that use them. Cur-
rently, the state of the art on case studies that focus on the
evaluation of the cohesion of services offered by major service
providers is limited, while research efforts on corresponding
cohesion metrics are at a quite early stage. In particular, there
exist coarse-grained metrics of cohesion lack, which consider
that the operations of a service interface are related if the
types of certain of their input/output data exactly match. The
problem in this approach is that operations which operate
on data characterized by similar, but not exactly matching,
types are treated as being totally unrelated. Consequently, the
aforementioned metrics may overestimate the cohesion lack of
service interfaces. In this paper, we undertake a more elaborate
approach to evaluate a set of real world services provided by
Amazon. Specifically, we propose two fine-grained metrics of
cohesion lack, which are defined with respect to the structural
similarity of the input/output data types of interface operations.
The proposed metrics are formally defined and analytically
assessed with respect to fundamental properties of software
metrics. Finally we report the results from our case study.

Keywords-cohesion; service; interface; communicational; se-
quential;

I. INTRODUCTION

The service-oriented architecture (SOA) paradigm aims

at facilitating the work of distributed application developers

[14], [5]; software reuse is promoted via services that are

available to anyone who wishes to compose them towards

constructing a novel customized application. Nevertheless,

the rapid and low-cost aspects of the overall development

process should not be taken for granted. These aspects

depend on how well-designed are the services, used for

building service-oriented applications. In this paper, we

investigate the issue of cohesion. Cohesion was introduced

in the early 70s [13] and refers to the degree to which
the elements of a module belong together. The lack of

cohesion leads to poorly designed systems that are hard to

comprehend and maintain.

In general, cohesion can be regarded from different

perspectives [13], [17]. According to [13], [17], the best

possible types of cohesion are functional, sequential and

communicational. In a functionally cohesive module, all the

elements of the module contribute in a single well defined

task. In a sequentially cohesive module, the outputs of

one element are used as inputs for other elements. In a

communicationally cohesive module, the elements operate

on the same data.

Generally, in service interfaces, cohesion concerns the
degree to which the operations of a service interface belong
together. However, since functional cohesion is a purely

conceptual notion that can not be quantified, we specifically
focus on the notions of sequential and communicational
cohesion.

Taking a real-world case, Amazon is a major service

provider that offers a variety of Web services. Among

these services, the Amazon Simple Queue Service (SQS)

enables communication via message queues, allocated on

the Amazon infrastructure. Figure 1 shows one of the main

interfaces of the SQS service, called MessageQueue1.

This interface provides a quite large number of operations,

which enable deleting a queue, getting/setting certain queue

attributes/timeouts, adding/removing/listing access permis-

sions for a particular queue, sending messages to a queue,

receiving messages from a queue and changing the visibility

of messages.

Figure 1. The Amazon MessageQueue interface.

The MessageQueue interface is not cohesive, in

the sense that it includes various functionalities that do

not belong together (queue attributes management, access

1
http://docs.amazonwebservices.com/AWSSimpleQueueService/2007-05-01/SQSDeveloperGuide/
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rights management, message exchange operations). Conse-

quently, a developer who aims at building a queue client

(QueueClientApplication in Figure 1) that commu-

nicates with other queue clients through an existing queue is

supposed to study the specification of the MessageQueue
interface (which consists of 838 lines of WSDL and XML

schema definitions) and a 49 pages API reference guide.

Nevertheless, amongst the various operations offered by the

MessageQueue interface, only 4 are actually related to the

exchange of messages. A more cohesive decomposition of

the provided operations into separate interfaces that relate

to the management of queue attributes, the management of

access rights and the exchange of messages would simplify

the comprehension of the functionalities that the developer

actually needs. Regarding the queue client application, we

may further consider maintenance scenarios that involve new

releases of the MessageQueue interface. Such scenarios

may be quite frequent. Specifically, since 2006 there have

been various different releases of MessageQueue, which

were not always backwards compatible. In the 2008 release,

the access rights management operations (ListGrants(),

AddGrant(), RemoveGrant()) were removed from the

interface. Dealing with such situations, amounts to reasoning

about whether the changes from one release to the other

actually affect the queue client application. Again, a more

cohesive decomposition of the provided operations that

groups the message exchange operations into a separate

interface would simplify the aforementioned reasoning.

Cohesion metrics have already been proposed both in the

OO and the SOA paradigm. The OO cohesion metrics are

based on relationships between class methods/operations and

attributes. On the contrary, the SOA metrics differentiate

from the OO ones since service interfaces consist exclusively

of operations and the metrics should be based on the

relationships between the operations themselves. However,

the so far proposed SOA cohesion metrics are quite limited.

Specifically, for sequential and communicational cohesion,

there exist coarse-grained metrics of cohesion lack, which

consider that the operations of a service interface are related

if the types of certain of their input/output data exactly

match [10], [11], [12]. A limitation of these metrics is

that operations which operate on data characterized by

similar, but not exactly matching, types are treated as being

totaly unrelated. Such cases of operations are frequent in

real world services. For instance, in our example, several

operations of the MessageQueue interface use similar but

not exactly matching data types (e.g., see Figure 2 for the

input/output data of the GetQueueAttributes() and

the SetQueueAttributes() operations). Consequently,

the state of the art metrics for sequential and communi-

cational cohesion may overestimate the cohesion lack of

service interfaces.

Based on the previous discussion, in this paper we propose

two fine-grained metrics of cohesion lack, which are defined

with respect to the structural similarity of the input/output

data types of interface operations. The proposed metrics are

formally defined and analytically assessed with respect to

fundamental properties of software metrics. Following, we

focus on our case study that aims at evaluating the cohesion

of Amazon services, based on the aforementioned metrics

of cohesion lack.

The rest of the paper is structured as follows: Section 2

defines formally the proposed metrics and validates them

with respect to fundamental software metrics properties.

Section 3 details the methodology of the evaluation and

analyzes the experimental results. Section 4 focuses on

related work. Finally, Section 5, summarizes the contribution

of the paper and discusses the future work.

II. COHESION OF SERVICE INTERFACES

Our overall approach for the definition of the proposed

metrics is based on a generic conceptual model for ser-

vices, derived from the W3C standard services architec-

ture2. According to this model, a service is characterized

by a name and provides a set of interfaces (Table I(1,

2)). An interface is characterized by a name and a set of

operations (Table I(3, 4)). An operation corresponds to a

particular functionality; its execution requires at most one

input message and produces at most one output message
(Table I(5)). A message is modeled as an unordered rooted

tree (Table I(6-9)). The tree root represents the message.

The non-leaf vertices correspond to complex elements, i.e.,

elements characterized by a name and a complex XML

type, which consists of further constituent elements. The

leaves of the tree represent primitive elements, i.e., elements

characterized by a name and a XML build-in type.

Table I
SERVICE MODEL.

Service = (name : string, I) (1)

I = {si : Interface} (2)

Interface = (name : string, O) (3)

O = {op : Operation} (4)

Operation = (name : string, (5)

in : Message, out : Message)

Message = (V, E) (6)

V = {v : Element} (7)

Element = (name : string, type : anyType) (8)

E = {(vi, vj) ∈ V × V |i �= j} (9)

A. Communicational & Sequential Cohesion Metrics

The fundamental notions of communicational and sequen-

tial cohesion can be adapted in the case of services as

follows.

2http://www.w3c.org/TR/ws-arch.

589



Definition 1: Sequential cohesion: An interface si ∈ s.I
of a service s is sequentially cohesive to some extent,

if it includes pairs of operations, opi, opj , such that the

input message of opj (resp. opi) and the output message

of opi (resp. opj) comprise common (complex or primi-

tive) elements. More specifically, for complex elements the

term common refers to elements characterized by the same

complex XML type, while for primitive elements the term

common refers to elements, characterized by the same name

and build-in type. In this case, the operations opi, opj are

sequentially related, in the sense that certain output data

produced by opi (resp. opj) may be used as input for opj

(resp. opi).

Definition 2: Communicational cohesion: An interface

si ∈ s.I of a service s is communicationally cohesive

to some extent, if it includes pairs of operations opi, opj ,

such that their input messages and/or their output messages

comprise common (complex or primitive) elements. In this

case, the operations are communicationally related, in the

sense that they may use similar input data and/or produce

similar output data.

The common elements of messages play an important role

in both of the previously defined types of cohesion. The

following definition reflects the similarity of messages more

formally.

Definition 3: Message similarity: Let Smi,mj
be the set

of the common elements of two messages mi, mj . Accord-

ing to our model, each ti ∈ Smi,mj is a common bottom-up

subtree of mi and mj
3. In the trivial case, where |ti.V | = 1,

ti corresponds to a common primitive element, otherwise

ti corresponds to a common complex element. Then, the

similarity MS(mi, mj) of mi, mj is defined as the sum of

the orders of the common bottom-up subtrees of Smi,mj ,

divided by the order of the message that results from the

union of mi and mj (Table II(1)).

By definition, the values MS(mi, mj) range from 0

to 1; MS(mi, mj) = 1 if the messages exactly match,

while MS(mi, mj) = 0 if the messages are completely

unrelated. The similarity between two messages increases

with the number of the bottom-up subtrees that they have in

common and the orders of these subtrees. Technically, the

specification of every service includes references to XML

schemas that contain the definitions of the complex XML

data types used in the definitions of the interfaces provided

by the service. These complex XML data types constitute

the set of candidate bottom-up subtrees that may be common

in two messages. In this way, constructing the set Smi,mj

amounts to checking whether a complex XML data type is

used in mi and mj .

Nevertheless, when constructing Smi,mj
special attention

must be paid to certain common elements. In practice,

3In general, a tree t is a bottom-up subtree of t′ if the root v of t is a
vertex of t′ and the rest of the vertices of t are the descendants of v in t′
[15]

Table II
DEFINITIONS OF METRICS.

MS(mi, mj) =

∑
∀ti∈Smi,mj

|ti.V |
|mi.V ∪mj .V | (1)

OpSseq(opi, opj) =
MS(opi.in, opj .out)

2
+ (2)

MS(opi.out, opj .in)

2

OpScom(opi, opj) =
MS(opi.in, opj .in)

2
+ (3)

MS(opi.out, opj .out)

2

Csi = {(opi, opj) ∈ si.O × si.O| (4)

(opi �= opj) ∧ (opj , opi) �∈ Csi}

LoCS(si) = 1−
∑
∀(opi,opj)∈Csi

OpSseq(opi, opj)

|si.O|∗(|si.O|−1)
2

(5)

LoCC(si) = 1−
∑
∀(opi,opj)∈Csi

OpScom(opi, opj)

|si.O|∗(|si.O|−1)
2

(6)

the operations of many service interfaces use input mes-

sages and/or produce output messages that have common

bottom-up subtrees, which correspond to generic meta-data

elements. These elements are not related to the particular

functionality of the operations and may result in misleading

values of cohesion lack for the service interfaces. Dealing

with this issue, when measuring the value of MS(mi, mj)
amounts to filtering out from Smi,mj

the common bottom-

up subtrees that correspond to generic meta-data elements.

Apparently, excluding the aforementioned subtrees from

MS(mi, mj) requires user intervention so as to identify the

generic meta-data elements. However, this task is quite sim-

ple; the generic meta-data elements can be easily identified,

since they are included in all input, or in all output messages.

Based on message similarity, we can define the similarity

of operations. In particular, OpSseq reflects the similarity

of operations from the perspective of sequential cohesion,

while OpScom reflects the similarity of operations from the

perspective of communicational cohesion.

Definition 4: Sequential similarity: The sequential simi-

larity between two operations opi, opj ∈ si.O of an interface

si is defined as (Table II(2)) the average of:

1) the similarity of the input message of opi and the

output message of opj and

2) the similarity of the output message of opi and the

input message of opj .

Definition 5: Communicational similarity: The communi-

cational similarity between two operations opi, opj ∈ si.O
of an interface si is defined as (Table II(3)) the average of:

1) the similarity of the input messages of opi and opj

and

590



Figure 2. Examples of MessageQueue operations.

2) the similarity of the output messages of opi and opj .

Based on the previous notions of similarity between oper-

ations, we define the proposed metrics of cohesion lack for

service interfaces. In particular, LoCS evaluates sequential

cohesion (i.e., whether interfaces consist of sequentially

similar operations), while LoCC evaluates communicational

cohesion (i.e., whether interfaces consist of communication-

ally similar operations).

Definition 6: Lack of cohesion metrics: Let Csi be the

set of all pairs of operations of an interface si ∈ s.I of

a service s, formed such that it contains either (opi, opj),
or (opj , opi) (Table II(4)). The lack of sequential cohesion,

LoCS(si) for si is defined as the complement of the average

sequential similarity of the pairs of operations that belong

to Csi (Table II(5)). Similarly, the lack of communicational

cohesion, LoCC(si) for si is defined as the complement

of the average communicational similarity of the pairs of

operations that belong to Csi (Table II(6)).

B. Analytic Validation

To provide a first analytical assessment of the proposed

metrics we follow the approach of Chidamber & Kemerer

[6]. Specifically, the goal is to examine the behavior of

LoCS and LoCC with respect to the properties of software

metrics that have been proposed by Weyunker [16] (i.e.

non-coarseness, non-uniqueness, design-details-importance,

monotonicity, non-equivalence and increased-complexity).

As discussed in detail in this subsection, the proposed

metrics exhibit a similar behavior with the Lack of Cohesion

of Methods (LCOM ) metric proposed by Chidamber &

Kemerer [6] in their object-oriented metrics suite. Moreover,

the behavior of LoCS and LoCC with respect to the exam-

ined properties is the same. Therefore, hereafter we use the

term LoC∗ to refer to either LoCS , or LoCC .

Briefly, non-coarseness states that the values of LoC∗ are

not the same for all interfaces, whilst non-uniqueness states

that the values of LoC∗ are not different for all interfaces.

The design-details-importance property states that different

interfaces that offer the same functionality, may have dif-

ferent LoC∗ values. As discussed below, proving that these

properties are satisfied by LoC∗ can be done, by following

similar steps as in [6] for the case of LCOM . The remaining

three properties considered in [6], concern the behavior of

LoC∗ when merging two interfaces si, sj; the merging of

two interfaces si
⋃

sj results in a service interface that

provides the union of the operations of si and sj, i.e.,

(si
⋃

sj).O = si.O
⋃

sj.O. Following, we show that the

monotonicity property is not satisfied, i.e., LoC∗ may not

increase monotonically when merging si with sj. Moreover,

we show that the non-equivalence property is satisfied, i.e.,

if si, sj are characterized by the same LoC∗ value and

each one of them is merged with the same interface sk, the

resulting two interfaces may be characterized by different

LoC∗ values. Finally, we show that the increased-complexity
property is not satisfied, i.e., the value of LoC∗ for the

interface that results from merging si, sj may be less than

the sum of the LoC∗ values of the merged interfaces.

Property 1: (Non-coarseness) Given an interface si, an-

other interface sj can always be found such that LoC∗(si) �=
LoC∗(sj).

Proof: To prove this proposition we rely on the ap-

proach followed by Chidamber and Kemerer [6]. Specifi-

cally, in [6] the authors assume that the numbers of methods

and attributes that characterize different classes are inde-

pendent identically distributed random variables. Similarly,

we can assume that the orders of the common bottom-

up subtrees of the messages that characterize operations

which belong to different service interfaces are independent

identically distributed random variables. Based on this as-

sumption, for any interface si there is a nonzero probability

that there exists an interface sj, such that LoC∗(si) �=
LoC∗(sj).

Property 2: (Nonuniqueness) There can exist interfaces

si, si, such that LoC∗(si) = LoC∗(sj).
Proof: As in the proof of Property 1 we can rely on

the assumption that the orders of the common bottom-up

subtrees of the messages that characterize operations which
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belong to different service interfaces are independent iden-

tically distributed random variables. Thus, for any interface

si, there is a nonzero probability that there exists an interface

sj, such that LoC∗(si) = LoC∗(sj).
Property 3: (Design-details-importance) Given two inter-

faces si, sj, the fact that si and sj provide the same

functionalities does not imply that LoC∗(si) = LoC∗(sj).
Proof: In general, the definition of an interface that

provides certain functionalities is a design choice that is

not restricted in any sense. For the same functionality it is

possible, for instance, to define alternative operations whose

input/output messages are structured differently.

Property 4: (Monotonicity) There can exist service inter-

faces si, sj, such that LoC∗ is not monotonically increasing

with respect to their merging, i.e. the following inequality

may not hold: LoC∗(si) ≤ LoC∗(si
⋃

sj).
Proof: Let si, sj be the two interfaces that are going

to be merged. If due to design flaws the operations of si are

not related (communicationally or sequentially) with each

other, while certain of them are related with the operations

of sj, then obviously after merging the two interfaces we

shall have that LoC∗(si) > LoC∗(si
⋃

sj).
Property 5: (Nonequivalence) There exist service inter-

faces si, sj, sk such that, LoC∗(si) = LoC∗(sj) does not

imply that LoC∗(si
⋃

sk) = LoC∗(sj
⋃

sk).
Proof: Let si, sj, sk be three interfaces, such that

LoC∗(si) = LoC∗(sj). However, sk may be such that its

operations are related (communicationally or sequentially)

with the operations of si, but unrelated with the operations

of sj. Then, obviously LoC∗(si
⋃

sk) �= LoC∗(sj
⋃

sk).
Property 6: (Increased-complexity) There can exist ser-

vice interfaces si, sj, such that the following inequality does

not hold: LoC∗(si) + LoC∗(sj) < LoC∗(si
⋃

sj).
Proof: Let si, sj be the two interfaces that are going to

be merged. If due to design flaws the operations of si are not

related (communicationally or sequentially) with each other,

while certain of them are related with the operations of sj,

and the same holds for sj, then obviously after merging the

two interfaces we shall have that LoC∗(si) + LoC∗(sj) >
LoC∗(si

⋃
sj).

As in the case of the LCOM metric [6], the fact that

the monotonicity and the increased-complexity properties are

not satisfied is not a negative result. In general, merging and

splitting interfaces are candidate solutions for improving the

cohesion of interfaces and the non-satisfaction of the afore-

mentioned properties shows that the benefits of applying any

of these solutions are reflected by the values of the metric.

C. Example: Lack of cohesion of MessageQueue.

Returning to the case of the SQS service, Fig-

ure 2 gives examples of operations provided by the

MessageQueue interface. An example that highlights

the negative effect of generic meta-data elements involves

the ResponseStatus element. ResponseStatus is

a complex element that contains general purpose re-

sponse meta-data; the element is included in all of

the output messages that are used in SQS. Then, for

the output messages of SetQueueAttributes and

DeleteQueue, for instance, there exists a common

bottom-up ResponseStatus subtree. In other words,

the output messages of the two operations appear to

be similar, despite the fact that their functionalities are

completely unrelated. According to the SQS specification,

the SetQueueAttributes operation manipulates cer-

tain queue attributes, while the DeleteQueue operation

deletes a particular queue. Applying the filtering discussed

earlier solves the problem. In particular, if we filter out

the ResponseStatus elements, the output messages

of SetQueueAttributes and DeleteQueue are no

longer similar to each other.

In our example, we can further observe a common

bottom-up subtree (solid-line) in the input message of the

SetQueueAttributes operation and the output message

of the GetQueueAttributes operation. This tree con-

sists of 3 vertices, while the union of the two messages

consists of 7 vertices. Hence, the similarity of the two

messages is 3
7 . On the other hand, the similarity between

the input message of GetQueueAttributes and the

output message of SetQueueAttributes is 0 because

these messages do not contain common bottom-up subtrees.

Therefore, the value of the sequential similarity OpSseq for

the operations is
3
7
2 .

Finally, we can observe a trivial common bottom-

up subtree (dashed-line) in the input message of the

SetQueueAttributes operation and the input message

of the GetQueueAttributes operation. The subtree

consists of a single vertex named Attribute. The union

of these two messages comprises 7 vertices. Therefore,

the similarity of the two messages is 1
7 . Since the output

messages of these two operations are not similar, the overall

communicational similarity OpScom for the operations is
1
7
2 .

Overall, for the MessageQueue interface there are 78

pairs of operations, that contribute to the values of the

proposed lack of cohesion metrics. Specifically, we have:

LoCS(MessageQueue) = 0.98 and

LoCC(MessageQueue) = 0.98. As expected, in both

cases, the values of the metrics are very close to 1, reflecting

the cohesion lack of the MessageQueue interface.

III. CASE STUDY: EVALUATING THE COHESION OF

AMAZON SERVICES

The purpose of the case study is to assess the cohesion

of a set of Amazon services. To automatically calculate

the value of the metrics, we implemented a prototype that

consists of two core components as depicted in Figure 3.

The ServiceParser component of the prototype takes as input

the WSDL-based specifications of services, and populates

a data structure that corresponds to the conceptual model
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of Table I. The CohesionLackCalculator component of the

prototype can be customized so as to calculate the value of

any of the metrics given in Table II(5, 6).

Figure 3. The prototype implementation.

In the rest of this section we describe the methodology

of the evaluation, the case studies that were used, and the

results that we obtained.

A. Methodology of the Evaluation

Our case study focuses on the Amazon services4 because

we consider them as a representative dataset that comprises

services that vary both in size and behavior. However, we

plan to assess services from further service providers in

our future work. The strategy of our evaluation process

comprises two steps. Firstly, for every interface the values

of the communicational and the sequential cohesion metrics

are calculated. Secondly, if the value of any of the two

metrics is close to 1, we turn to a manual inspection of

the interface. The purpose of the manual inspection is to

check the relatedness of the operations within the interface

based on its documentation.

B. Case Studies

Amazon provides 21 services that are available through

the Web. Amongst these services, 16 were used for the

purpose of our evaluation. The remaining 5 services were ex-

cluded due to a technical constraint of our current prototype.

Our prototype accepts as input WSDL-based specifications

of service interfaces, while for the 5 services that were

excluded from the evaluation, Amazon does not provide

specifications in the aforementioned format. The 16 Amazon

services provide an overall number of 19 interfaces; 14 of

the examined services provide a single interface, while the

remaining 2 services (the Fulfilment Web Service (FWS)

and the SQS service that served as an example in previous

sections) provide 3 and 2 interfaces, respectively.

Hereafter, for reasons of simplicity we use identifiers A1-

A19 to refer to the interfaces of the Amazon services. The

4Amazon services - http://aws.amazon.com/

mapping of identifiers to service interfaces and the sizes of

the interfaces (i.e., the number of provided operations) are

given in detail in Table III. In general, we can observe that

Amazon provide interfaces that consist of large numbers of

operations; more than 50% of the interfaces provide more

than 10 operations, while the largest interface is A18 that

comprises 87 operations.

Table III
AMAZON SERVICE INTERFACES.

Service Interface

Name Size ID

CloudWatchPortType 2 A1
ElasticMapReducePortType 4 A2
AmazonFBAOutboundPortType 7 A3
AmazonSNSPortType 13 A4
MechanicalTurkRequesterPortType 27 A5
ElasticLoadBalancingPortType 13 A6
AmazonFPSPortType 27 A7
ImportExportPortType 5 A8
QueueService 2 A9
AmazonFWSInventoryPortType 4 A10
AmazonLSPortType 6 A11
AmazonSDBPortType 9 A12
MessageQueue 13 A13
AutoScalingPortType 13 A14
AmazonFWSInboundPortType 18 A15
AmazonVPCPortType 21 A16
AmazonRDSv2PortType 23 A17
AmazonEC2PortType 87 A18
AmazonS3 16 A19

C. Results

The results that we obtained are provided in detail in

Table IV. Starting from the largest interface (A18) of our

case studies, we observe that the values of LoCS and LoCC

are 0.99 and 0.98 respectively, indicating the existence of a

cohesion problem. Obviously, the problem was expectable

because of the very large number of operations (A18 con-

tains 87 operations). In this case, the interface contains lots

of unrelated operations leading to metric values very close

to 1.

Turning into the manual inspection of A18, its overall

purpose is to give access to a virtual computing

environment. The operations of A18 can be divided

into 22 groups. The operations of each group are more

similar to each other than to the operations of the other

groups. Indicatively, we enumerate the operations of two

groups. The first group consists of operations for the

manipulation of IP addresses: AllocateAddress(),

AssociateAddress(), DescribeAddresses(),

DisassociateAddress(), and

ReleaseAddress(). The second group concerns

the manipulation of account keys, and comprises the

operations: CreateKeyPair(), DeleteKeyPair(),

and DescribeKeyPairs().

Continuing with the medium sized interfaces (A5, A7,

A15-A17, and A19), whose number of operations is between

15 and 30, we observe that the values of the metrics range

from 0.84 to 0.95. Even if the size of the interfaces is almost
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Table IV
RESULTS FOR THE CASE STUDIES.

Cohesion Type

ID LoCS LoCC

A1 0.86 1.00
A2 0.94 0.97
A3 0.94 0.94
A4 0.97 0.96
A5 0.84 0.91
A6 0.97 0.93
A7 0.97 0.91
A8 0.96 0.93
A9 1.00 0.90

A10 0.99 0.83
A11 0.97 0.95
A12 0.97 0.94
A13 0.98 0.98
A14 0.98 0.96
A15 0.96 0.93
A16 0.98 0.95
A17 0.96 0.91
A18 0.99 0.98
A19 0.97 0.88

the 25% of the size of A18, the lack of cohesion values

are still very high. Again, the manual inspection showed

cohesion problems that justify the values of the metrics. For

instance, the A16 interface provides a secure and seamless

bridge between a company’s existing information technol-

ogy (IT) infrastructure and the cloud of Amazon. In this

case, we identified 6 groups of closely related operations.

Indicatively, we enumerate the operations of two groups.

The first group consists of operations for the manipulation

of a connection between a company’s infrastructure and

the Amazon cloud: CreateVpc(), DeleteVpc(), and

DescribeVpcs(). The second group concerns the manip-

ulation of subnets within the Amazon cloud, and comprises

the operations: CreateSubnet(), DeleteSubnet(),

and DescribeSubnets().

Turning to the small sized interfaces (A1-A4, A6, A8-

A14), we were intuitively expecting lower values of the

metrics than the cases of the medium sized interfaces.

However, we observe that this assumption does not hold

because the values of the metrics range in nearly the same

level as before (from 0.83 to 0.98). The inspection of the

interfaces showed that although the size of the interfaces is

small, their operations are not similar to each other.

As an example, we discuss the A13 interface, which also

served as an example in previous sections. We observe

that the value of both metrics is equal to 0.98 indicating

a cohesion problem. Based on the documentation, we

identified 4 groups of tightly related operations. The first

group comprises operations for adding/removing/listing

access permissions for a particular queue: AddGrant(),

ListGrants(), and RemoveGrant(). The second

group concerns getting/setting certain queue timeouts, and

consists of the operations: GetVisibilityTimeout(),

and SetVisibilityTimeout()). The third

group consists of operations for sending mes-

sages to a queue, receiving/deleting messages

from a queue and changing the visibility of

messages: SendMessage(), PeekMessage(),

ReceiveMessage(), DeleteMessage(), and

ChangeMessageVisibility(). The last group

enables the deletion of a queue and consists of only one

operation: DeleteQueue().

Overall, based on our results we can conclude in the

following point: the proposed metrics succeed in indicating

cohesion problems for real-world service interfaces. More-

over, in our services set, we observed that the definition

of cohesive interfaces was not a primary priority of the

designers. This does not necessarily mean that the design

of the services is flawed. However, cohesion should not

be neglected from the design of widely used services,

given that the effects of cohesion lack may affect numerous

applications all over the Web that depend on these services.

IV. RELATED WORK

The metrics proposed in this paper are inspired from

various cohesion metrics that have been proposed in the

context of OO software development. In particular, in [6]

the authors propose the well known LCOM metric (Lack

of Cohesion of Methods), which is defined in terms of the

number of pairs of class methods that use common class

attributes and the number of pairs of class methods that

do not use common class attributes. Moreover, in [8] the

authors propose metrics of cohesion lack defined in terms

of the number of methods that use each one of the attributes

of a given class. In [9], [3] the authors propose metrics that

further take into account class methods which use other class

methods. In [2] the authors propose a cohesion metric that

is based on the parameter types of the methods that belong

to a given class. Given the variety of OO metrics that have

been proposed in the literature, certain approaches proposed

unified frameworks for the quality analysis of software [1]

and frameworks for the comparison of existing metrics [4],

[7].

In the context of service-oriented development, the afore-

mentioned OO metrics can be used to assess the internal

implementation of services. However, they can not be used

to reflect the relevance of the operations of service interfaces.

Generally, in SOA the state of the art on cohesion metrics for

service interfaces is limited to the work of Perepletchikov et

al. [10], [11], [12]. In this line of research the authors con-

sider various notions of cohesion and propose corresponding

metrics. Specifically, certain metrics focus on measuring

the cohesion between a service interface and the internal

service implementation (SIIC). The values of these metrics

are calculated as a function of the number of operations

that use the same internal implementation elements. Certain

other metrics concentrate on the cohesion between the users

of a service and the service (SIUC). In this case, the values

of the proposed metrics are calculated as a function of the

number of service consumers that use all of the operations.
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Regarding sequential and communication cohesion, which

are amongst the most desirable fundamental notions of co-

hesion [13], [17], the authors proposed two metrics, namely

SISC and SIDC. According to SIDC, a service interface is

cohesive if its operations are characterized by common types

of input parameters and common types of output parameters.

Similarly, regarding SISC, a service interface is cohesive

if its operations are sequentially dependent, in the sense

that the types of certain output parameters of one operation

match the types of certain input parameters of another oper-

ation. SISC and SIDC are quite coarse grained, compared to

the metrics that we proposed in this paper. In particular, in

the case of our metrics the relatedness between operations is

measured with respect to the similarity of their input/output

data types, while in SISC and SIDC the relatedness between

operations is measured with respect to exactly matching

input/output data types. As already discussed (Section 1),

the latter requirement (i.e., exactly matching input/output

data types) may lead to the overestimation of cohesion

lack. Another problem that may also negatively affect the

precision of SISC and SIDC is that the approach proposed

in [10], [11], [12] for the calculation of the metrics values

does not make any distinction between normal input/output

data and meta-data that are common in all operations.

V. CONCLUSION AND FUTURE WORK

This paper investigated the notion of cohesion in ser-

vice interfaces. We proposed two fine-grained metrics that

measure the lack of communicational and sequential cohe-

sion. The metrics were formally defined with respect to

the structural similarity of the input/output data types of

interface operations, and analytically validated with respect

to fundamental properties of software metrics. Then, we

reported our findings from a real-world case study that aimed

at evaluating the cohesion of a set of Amazon services.

An interesting issue that we currently work on is to

provide automated support for improving the cohesion of

a service interface. A possible way to do it is to develop

a restructuring mechanism that makes use of the proposed

metrics in order to divide the interface into groups of closely

related operations. Each group corresponds to a separate

interface which is more cohesive than the original one.

To this end, we plan to investigate the use of hierarchical

clustering algorithms along with the metrics that have been

proposed in this paper.
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