Reducing Features to Improve Bug Prediction

Shivkumar Shivaji, E. James Whitehead, Jr., Ram Akella Sunghun Kim
University of California Santa Cruz Hong Kong University of Science and Technology
{shiv,ejw,ran} @soe.ucsc.edu hunkim@cse.ust.hk

Abstract—Recently, machine learning classifiers have emerged The large feature set comes at a cost. The addition of
as a way to predict the existence of a bug in a change mademany non-useful features reduces a classifier's accuraty. A
to a source code file. The classmer. is first trained on software ditionally, the time required to perform classification ieases
history data, and then used to predict bugs. Two drawbacks of ith th b f feat L ¢ | d
existing classifier-based bug prediction are potentially insufficient wi __e Ijum er of features, rising 1o several secon S per
accuracy for practical use, and use of a large number of feature ~ classification for tens of thousands of features, and m&ute
These large numbers of features adversely impact scalability and for large project histories.
accuracy of the approach. This paper proposes a feature seléoh A standard approach (in the machine learning literature) fo
technique applicable to classification-based bug prediction. This handling large feature sets is to perform a feature sefectio

technique is applied to predict bugs in software changes, and . . .
performance of Nave Bayes and Support Vector Machine (SVM) Process to identify that subset of features providing thet be

classifiers is characterized. classification results. This paper introduces a featurecteh
Index Terms—Reliability; Bug prediction; Machine Learning; process that discards features with lowest gain ratio until
Feature Selection optimal classification performance is reached for a given
performance measure.
|. INTRODUCTION This paper explores the following research questions.

Question 1. Which choices lead to best bug prediction

Classifiers, when trained on historical software projetada performance using feature selection?
can be used to predict the existence of a bug in an individughe two variables affecting bug prediction performance tha
file-level software change, as demonstrated in prior work Rye explored in this paper are: (1) type of classifierigda
the second and fourth authors [1] (hereafter called Kim ¢t alBayes, Support Vector Machine), and (2) which metric (fdecal
in work by Hata et al. [2], and others. The classifier is firgt-measure) is optimized for the classification. Results are
trained on information found in historical changes, andlean reported in Section IV-A.
used to classify a new change as being either buggy (predicte Results for question 1 are reported as averages across all
to have a bug) or clean (predicted to not have a bug). Thougfbjects in the corpus. However, in practice it is useful to
these results rank among the best bug prediction algorjithrRow the range of results across a set of projects. This leads
they are perhaps not strong enough to be used in practiceto our second question.

We envision a future where software engineers have bugQuestion 2. Range of bug performance using feature selec-
prediction capabilities built into their development eovi- tion. What is the range of performance of the best-performing
ment. Software engineers will receive feedback from a elasBayesian (F-measure optimized) classifier across all gioje
fier on whether each change they commit is either buggy when using feature selection? (see Section IV-B)
clean. In recent work we have created a prototype displayingThe primary contribution of this paper is the process of
server-computed bug predictions inside the Eclipse IDEA3] using Gain Ratio for feature selection, along with the char-
bug prediction service must provide highly precise preditst. acterization of bug prediction results achieved when using
If engineers are to trust a bug prediction service, it mutature selection. A comparison of this paper’s resultd wit
provide very few “false alarms”, changes that are preditted those found in related work (see Section V) show that change
be buggy but which are really clean. If too many clean changelassification with feature selection outperforms othéstang
are falsely predicted to be buggy, developers will losenfait classification-based bug prediction approaches. Furtherm
the bug prediction system. when using Néve Bayes (F-measure optimized) buggy preci-

The prior change classification bug prediction approach ussion averages .96, indicating the bug predictions are géyer
by Kim et al. involves the extraction of “features” (in thehighly precise, thereby avoiding the “false negativesybem.
machine learning sense, which differ from software feaure In the remainder of the paper, we begin by presenting
from the history of changes made to a software project. These overview of the change classification approach for bug
features include everything separated by whitespace, én trediction, and then detail the new algorithm for feature
code added or deleted in a change. This leads to a large nunmgedection (Section II). Following, we describe the expefirtal
of features, in the thousands, and low tens of thousands. Eontext, including our data set, and specific classifierst{@e
larger project histories which span thousand revisionsarem Ill). The stage is now set, and in subsequent sections we
this can stretch into hundreds of thousands of features. explore the research questions described above (Sectiefs |

- IV-B). The paper ends with a summary of related workracking system hook. As a result, we did not have to rely on

(Section V), and the conclusion. change log messages for JCP.
The bug-introducing change identification algorithm pro-
[I. CHANGE CLASSIFICATION posed bySliwerski, Zimmermann, and Zeller (SZZ algorithm)

The primary steps involved in performing change classifi®] 1S used in the current paper. After identifying bug fixes,
cation on a single project are outlined as follows: SZZ uses a difference tool to determine what changed in the

Creating a corpus: bug-fixes.
1. File level changes are extracted from the revision hystog Feature Extraction

fa proj redini M r itor ri) . -
ic; gepcgi)enalllis) stored in its SCM repository (describechizirt A file change involves two source code revisions (an old

5 The bua fix chanaes for each file are identified brevision and a new revision) and a change delta that records

exa.minin keg ords in %CM chanae lod messages (Secti%ne added code (added delta) and the deleted code (deleted

I1-A) g keyw ge log 9 8elta) between the two revisions. A file change has assaciate
3. The bug-introducing and clean changes at the file le

are identified by tracing backward in the revision histoignfr texts is used as a feature

bug fix changes (Section II-A). We gather eight features from change metadata: author,
4. Features are extracted from all changes, both buggg

and clean. Features include all terms in the complete souggmmit hour, commit day, cumulative change count, cumu-
code, the lines modified in each change (delta), and cha lve bug count, length of change log, changed LOC (added

fita LOC + deleted delta LOC), and new revision source code
metadata such as author and change time. Complexity metric),

gx?r\;iltl%t:?ec?r:ﬁi UUS:Sd a?; tr}gg;ﬁga Ii:;etsae"stigr? IJI[T]LS s€ featureWe compute a range of traditional complexity metrics of the
ques are pres ~ . source code by using the Understand C/C++ and Java tools [6].
Al of the s'Feps untll. this point are the same as in Kim et To generate features from source code, we use a modified
al. The followmg.step is the new contribution in this paper. version of the bag-of-words approach (BOW) [7], called
Feature Selection:) BOWH+, that extracts operators in addition to all terms ex-
5. Perform a feature selection process that employs Gl e by BOW, since we believe operators such as =, ++, and
Ratio to compute a reduced set of features, as descrlbed&@ are important terms in source code. We perform BOW+

Section II-C. I_:or eqch iteration of feaFure sglectlon,ml‘m extraction on added delta, deleted delta, and new revision
performance is optimized for a metric (typically F-measurg; e code

or accuracy). Feature selection is iteratively performetlu

optimum points are reached. At the end of Step 5, thereds Feature Selection Algorithm

a red_u_ced feqture set that performs optimally for the chosenThe number of features gathered during the feature ex-
classifier metric. traction phase is quite large, ranging from 6,127 for Plone

Classification: o to 41,942 for JCP (Table I). Such large feature sets lead to

6. Using the reduced feature set, a classification modghger training and prediction times, requiring large antsu
is trained. Although many classification techniques cowd by memory to perform classification. A common solution to
employed, this paper focuses on the use ofvidayes and thjs problem is the process of feature selection, in which
SVM. only the subset of features that are most useful for making

7. Once a classifier has been trained, it is ready to use. NgWssification decisions are actually used.
changes can now be fed to the classifier, which determinesrhe primary tool used in this paper to determine the most
whether a new change is more similar to a buggy change @feful features is Gain Ratio based feature selection. Gain
a clean change. Ratio improves upon Information Gain [8], a well known
entropy based measure of the amount by which a given feature
contributes information to a classification decision.

In order to find bug-introducing changes, bug fixes must Gain ratio plays the same role as information gain, but in-
first be identified by mining change log messages. We ustead provides a normalized measure of a feature’s cotitibu
two approaches: searching for keywords in log messages steh classification decision [8]. We found Gain Ratio to be one
as “Fixed”, “Bug” [4], or other keywords likely to appearof the best performing feature selection techniques on bug
in a bug fix and searching for references to bug reports likgediction data after investigating many others. More itleta
“#42233". This allows us to identify whether an entire coden how the entropy based measure is calculated for Gain Ratio
change transaction contains a bug fix. If it does, we then nesod its inner workings can be found in an introductory data
to identify the specific file change that introduced the bugining book, e.g. [8].

For the systems studied in this paper, we manually verifiedGain Ratio is used in an iterative process of selecting
that the identified fix commits were, indeed, bug fixes. Fancrementally smaller sets of features, as detailed in Aligm
JCP, all bug fixes were identified using a source code to blig The feature selection algorithm begins by cutting the

leetadata, including the change log, author, and commit date
Every term in the source code, change delta, and change log

A. Finding Buggy and Clean Changes

TABLE |

Algorithm 1 Feature selection algorithm for one project SUMMARY OF PROJECTSSURVEYED

1) Start with all featuresf’

2) Compute Gain Ratio ovel, and select the top 50% of| Project Period hC|ean Euggy Features
features with the best Gain Ratif/2 - e c agg‘;s c a’igis —
PACHE 1. -
3) Selected featuresglF = F/2 ¢ 011997 ’
4) While |selF| > 0.1%|F|, perform steps (a)-(d) COLUMBA 05/2003- 1,270 530 | 17,411
- 09/2003
n
a) Compute and store buggy and clean precisign.— SBTe00- 15 JET 9781
recall, accuracy, F-measure and ROC AUC using 03/2001
the a machine learning classifier (e.g.,\aBayes | GForGe 01/2003- 339 334 8,996
or SVM), using 10-fold cross validation 03/2004
. . JEDIT 08/2002- 626 377 | 13,879
b) Compute Gain Ratio ovesel 03/2003
c) ldentify removeF’, the 10% of features ofelF’ [MoziLLa 0872003~ 395 169 | 13,648
with the lowest Gain Ratio. These are the least 03@884 - . —
useful features in this iteration. EcLIPSE 11/2001- ° 7| 18l
d) selF' = selF' — removel PLONE 07/2002- 457 112 | 6,127
5) For a given classifier metric (e.g., accuracy, F-measurg) 02/2003
) g. (e.g . Y s PoSTGRESQL | 11/1996- 853 273 23,247
determine the best result recorded in step 4.a. The 02/1997
percentage of features that yields the best result [iSusvErsion | 01/2002- 1,925 288 | 14,856
optimal for the given metric. 03/2002
JCP 1 year 1516 403 | 41,942
[Total [N/A [9,294 3,125] 183,054]

initial feature set in half, to reduce memory and processing
requirements for the remainder of the algorithm. Sincenoalti These are all mature open source projects with the exception
feature sets are typically found at under 10% of all featuresf JCP. These projects are collectively referred to in tlaisgw
this reduces algorithm iterations. Projects with large bera as the corpus.
of features can be even more aggressive in the initial featur Using the project's CVS (Concurrent Versioning System)
selection; for PostgreSQL only 25% and for JCP only 12.5% SVN (Subversion) source code repositories, we collected
of all features were used for the initiaklF'. revisions 500-1000 for each project, excepting Jedit,[iselj

In the iteration stage, each iteration finds those 10% ahd JCP. For Jedit and Eclipse, revisions 500-750 were col-
remaining features that are least useful for classification lected. For JCP, a year's worth of changes were collected.
eliminates them (if, instead, we were to reduce by one featurable | provides an overview of the projects examined in this
at a time, this step would be similar to backward featumesearch and the duration of each project examined.
selection [9]). The benefit of using our proposed number of
10% of features at a time is improved algorithm speed while
maintaining result quality. So, for exampleglF starts at The following sections present results obtained when ex-
50% of all features, then is reduced to 45% of all featureloring the three research questions.
then 40.5%, and so on. At each step, change classificatign
bug prediction usingselF' is then performed over the entire
revision history, using 10-fold cross validation to redube

IV. RESULTS

Classifier performance comparison
The two main variables affecting bug prediction perfor-
possibility of over-fitting to the data mance that are explored in this paper are: (1) type of classifi

This iteration terminates when there are only a few featur%gi\/?aiayiefr’nizzpzt \tfgt;;?s{ifggrmg)(’) apr?].(z(a) dW:r']Cf_'anee;gc
remaining. At this point, there is a list of (feature %, clfiss uracy, ure) er 1S optimiz '

evaluation metric) tuples. The final step involves a pass 0\}%ermutatmns of these variables are explored across all 11

this list to find the feature % at which a specific classifié?{oil%afd'c Ithe dfatra ISEII'(iFor S\d/MI":S’ ra Ilnﬁarrkerrlelf W'tthr
evaluation metric achieves its greatest value. The twoigsetr> andard vaiues for slack Is used. For each project, teature

s%ection is performed, followed by computation of perjpco

explored in this paper are accuracy, and buggy F-measuU = uracy. b recision. b ecall. and b F-mea
(aggregate of buggy precision and recall), though other m uracy, buggy precision, buggy r ' uggy - su
nce all projects are complete, average values across all

rics could be further investigated. Definitions of accurac oiects are computed. Results are reported in Table I
F-measure, ROC can be found in an introductory machi °) P ' P '

learning text. B. Effect of feature selection

In the previous section, aggregate average performance of
different classifiers and optimization combinations is eom

We gathered software revision history for Apache, Columbpared across all projects. In actual practice, changeifitass
Gaim, Gforge, Jedit, Mozilla, Eclipse, Plone, PostgreSQLipn would be trained and employed on a specific project. As
Subversion, and a commercial project written in Java (JCR).result, it is useful to understand the range of performance

IIl. EXPERIMENTAL CONTEXT

TABLE Il

AVERAGE CLASSIFIER PERFORMANCE ONCORPUS Fig. 1. Classifier Accuracy by Project
1
_ 0.95
Technique Features Accuracy | Buggy Buggy | Buggy 0.9
Percentage Precision | Recall | F-measure . '
Bayes F-measurd_6.83 091 0.96 067 [0.9 g 08
SVM F-measure | 7.49 0.81 0.82 0.54 0.62 2 08 Tg—
Bayes accuracy | 6.92 0.86 0.92 0.53 0.65 < 075 ~—#—Bayes F-measure
SVM accuracy 7.83 0.86 0.96 0.51 0.65 0.7 SUM Accuracy
065 ——Kim et al.
TABLE III 06 ' ‘e '
T (72 \ 2 % o 2 N 4
NAIVE BAYES USING F-MEASURE OPTIMIZED FEATURE SELECTION @0& QQ@QHO\\\@ & & S o
& PSR <
Project Features| Accuracy | Buggy Buggy | Buggy Buggy
Name Precision | Recall F-measure| ROC Project Name
APACHE 465 0.92 1 0.56 0.72 0.78
CoLUMBA | 1618 0.9 0.99 0.67 0.8 0.83
ECLIPSE 802 0.98 0.98 0.79 0.88 0.88
GAIM 1065 0.86 0.96 0.65 0.78 0.83 . - .
GFORGE 2054 0.83 0.8 0.83 0.82 0.01 Flg 2. Classifier F-measure by PI’Oject
JCP 1041 0.95 1 0.77 0.87 0.89
JEDIT 847 0.9 0.99 0.73 0.84 0.88 0.9
MOZILLA 496 0.92 1 0.73 0.85 0.87 .’0"—/
PLONE 277 0.91 0.98 0.57 0.72 0.84 . 08
PSQL 2504 0.87 0.88 0.54 0.67 0.78 5 | n
SVN 438 0.94 0.96 056 | 0.71 0.78 g 07 T~ '
[Average | 1137 | 091 [096 [067 [079 [084 | TR —4+—Bayes F-measure
05 SVM Accuracy
==Kim et al.
achieved using change classification with a reduced featur 04 N ' '
. . . NG & (I 2 2 e
set. Table Il reports, for each project, overall predictio & s & < b@‘iﬁ é@% \e,b\@ex&%\&"
accuracy, buggy precision, recall, F-measure, and ROC are v @
under curve (AUC) for the Nae Bayes classifier using F- Project Name
measure optimized feature selection.

Observing these two tables, a striking result is that three
projects with the Ni&ve Bayes classifier achieve a buggy
precision of 1, indicating that all buggy predictions arereot a decrease in classification time from several seconds to a
(no buggy false positives). While the buggy recall figuresplit second in many of the projects. This helps promote
(ranging from 0.54 to 0.83, with a average buggy recall fteractive use of the system within an Integrated Develepm
0.69 for projects with a precision of 1) indicate that not aknvironment.
bugs are predicted, still, on average, more than half of all
project bugs are successfully predicted. V. RELATED WORK

Figures 1 and 2 summarize the relative performance of theGiven a software project containing a set of program units
two classifiers and compare against the prior work by Kim ¢fles, classes, methods or functions, or changes depeinding
al. Examining these figures, it is clear that feature sedactiprediction technique and language), a bug prediction akgor
significantly improves both accuracy and buggy F-measus@tputs one of the following.
of bug prediction using change classification. As precision Totally Ordered Program UnitsA total ordering of program
can often be increased at the cost of recall and vice-versajts from most to least bug prone [10] using an ordering
we compared classifiers using buggy F-measure. Good rhetric such as predicted bug density for each file [11]. If
measure’s indicate overall result quality. desired, this can be used to create a partial ordering (see

Kim et al’s results in both figures are taken from [1]below).
where they were computed using the same corpus (with thePartially Ordered Program Units.A partial ordering of
exception of JCP, which was not in Kim et al.’s corpus angrogram units into bug prone categories (e.g. the 1@
two projects which did not distinguish buggy and new featiremost bug-prone files in [11]-[13])
using an SVM classifier trained on a set of features where noPrediction on a Given Software UnitA prediction on
feature selection was performed (i.e., Kim et al’s workdusevhether a given software unit contains a bug. Prediction
substantially more features for each project). Table Ie&ds granularities range from an entire file or class [2], [14] to
the drastic reduction in the average number of features gesingle change (e.g., Change Classification [1]).
project when using classifiers trained on a reduced feagire s
as compared to Kim et al.’s prior work. A. Totally Ordered Program Units

The additional benefits of the reduced feature set includeKhoshgoftaar and Allen have proposed a model to list
better speeds of classification and scalability. We havechotmodules according to software quality factors such as éutur

fault density using stepwise multiregression [10], [13]6]. feature set yielded optimal classification results. Theiced

Ostrand et al. identified the top 20 percent of problematisfil feature set permits better and faster bug predictions.

in a project [11] using future fault predictors and a linear The most important results in the paper are found in Table

regression model. [ll, which present F-measure optimized results for thévda
Bayesian classifier. It is astonishing that three projeetela

B. Partially Ordered Program Units

buggy precision of 1, indicating no false positives in thaig

The previous section covered work which is based on totaledictions. The average buggy precision is .96, also viglty. h
ordering of all program modules. This could be converted inFrom the perspective of a developer receiving bug predistio
a partially ordered program list, e.g. by presenting theXdp on their work, these figures mean that if the classifier says a
of modules as performed by Ostrand et al. above. Hassan @hdnge has a bug, it is almost always right.
Holt use a caching algorithm to compute the set of fault-pron In the future, when software developers have advanced bug
modules, called the top-10 list [13]. Kim et al. proposed thgrediction technology integrated into their software depe
bug cache algorithm to predict future faults based on ptsvioment environment, the use of classifiers with feature selec-

fault localities [12].

tion will permit fast, precise, accurate bug predictionsthw

widespread use of integrated bug prediction, future soétwa

C. Prediction on a Given Software Unit

engineers can increase overall project quality in reduired,t

Using decision trees and neural networks that empldyy catching errors as they occur.

object-oriented metrics as features, Gyimothy et al. [14]
predicted fault classes of the Mozilla project across saver
releases. Their buggy precision and recall are both abdat 70 [1]
resulting in a buggy F-measure of 70%. Our buggy precision
for the Mozilla project is around 100% (+30%) and recallj2]
is at 73% (+3%), resulting in a buggy F-measure of 85%
(+15%). In addition they predict faults at the class level 01‘[3]
granularity (typically by file), while our level of granuity

is by code change, typically spanning only 20 lines of code.
Aversano et al. [17] achieved 59% buggy precision and reca
using KNN (K nearest neighbors) to locate faulty modulesis)
Hata et al. [2] showed that a technique used for spam filterin%
of emails can be successfully used on software modules
classify software as buggy or clean. They achieved abouyt)
63.9% precision, 79.8% recall, and 71% buggy F-measure
on the best data points of source code history for 2 eclip
plugins. We obtain buggy precision, recall, and F-measure
figures of 98% (+34.1%), 79% (-0.8%) and 88% (+17%d}0]
respectively with our best performing technique on thepseli
project (Table IIl). Menzies et al [18] achieve good resultgi]
on their best projects. However, on average the precision is
low ranging from a minimum of 2%, a median of 20%, tq,,
a max of 70%. Both Menzies and Hata focus on the file
level of granularity. Kim et al. showed that using suppoifi3]
vector machines on software revision history informatian c , ,
provide an average bug prediction accuracy of 78%, a buggy
F-measure of 60%, a precision and recall of 60% when tested
on twelve open source projects [1]. Our corresponding tes
are an accuracy of 91% (+13%), a buggy F-measure of 79%;
(+19%), a precision of 96% (+36%), and a recall of 67%
(+7%). [17]

VI. CONCLUSION

This paper has explored the use of a feature selecti 2]
algorithm to substantially decrease the number of features
used by a machine learning classifier for bug prediction. An
important pragmatic result is that feature selection can be
performed in increments of 10% of all features, allowing it
to proceed quickly. Between 4.1% and 12.52% of the total

REFERENCES

S. Kim, E. W. Jr., and Y. Zhang, “Classifying Software Chas: Clean
or Buggy?” |IEEE Trans. Software Engvol. 34, no. 2, pp. 181-196,
2008.

H. Hata, O. Mizuno, and T. Kikuno, “An Extension of Faultene
Filtering using Precise Training and a Dynamic ThreshdRigc. MSR
2008 2008.

J. Madhavan and E. Whitehead Jr, “Predicting Buggy Charggide an
Integrated Development EnvironmenEtoc. 2007 Eclipse Technology
eXchange2007.

[ﬁl] A. Mockus and L. Votta, “Identifying Reasons for SoftveaChanges

using Historic DatabasesProc. ICSM 2000p. 120, 2000.

J. Sliwerski, T. Zimmermann, and A. Zeller, “When Do Changedulce
Fixes?"Proc. MSR 2005pp. 24-28, 2005.

S. T. http://www.scitools.com/, “Maintenance, Undersding, Metrics
and Documentation Tools for Ada, C, C++, Java, and FortrabQ52
S. Scott and S. Matwin, “Feature Engineering for TextsSlfcation,”
Machine Learning-International Workshppp. 379-388, 1999.

] E. Alpaydin, Introduction To Machine Learning MIT Press, 2004.

H. Liu and H. Motoda,Feature Selection for Knowledge Discovery and
Data Mining Springer, 1998.

T. Khoshgoftaar and E. Allen, “Predicting the Order cduf-Prone
Modules in Legacy Software,Proc. 1998 Int'l Symp. on Software
Reliability Eng, pp. 344-353, 1998.

T. Ostrand, E. Weyuker, and R. Bell, “Predicting the aton and
Number of Faults in Large Software SystemHZEE Trans. Software
Eng, vol. 31, no. 4, pp. 340-355, 2005.

S. Kim, T. Zimmermann, E. W. Jr., and A. Zeller, “Predictinguits
from Cached History,Proc. ICSE 2007 pp. 489-498, 2007.

A. Hassan and R. Holt, “The Top Ten List: Dynamic Faultdicgon,”
Proc. ICSM'05 Jan 2005.

] T. Gyimothy, R. Ferenc, and |. Siket, “Empirical Validation of Oltjec

Oriented Metrics on Open Source Software for Fault PreatictiEEE
Trans. Software Engvol. 31, no. 10, pp. 897-910, 2005.

5] T. Khoshgoftaar and E. Allen, “Ordering Fault-Proneft®&are Mod-

ules,” Software Quality J.vol. 11, no. 1, pp. 19-37, 2003.

R. Kumar, S. Rai, and J. Trahan, “Neural-Network Techef) for

Software-Quality Evaluation,Reliability and Maintainability Sympo-
sium 1998.

L. Aversano, L. Cerulo, and C. Del Grosso, “Learning nfraBug-

introducing Changes to Prevent Fault Prone Code Piaceedings of
the Foundations of Software EngineeringcACM New York, NY, USA,

2007, pp. 19-26.

T. Menzies, J. Greenwald, and A. Frank, “Data Mining tBtaCode

Attributes to Learn Defect Predictors|[EEE Trans. Software Eng.
vol. 33, no. 1, pp. 2-13, 2007.

