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Abstract—Recently, machine learning classifiers have emerged
as a way to predict the existence of a bug in a change made
to a source code file. The classifier is first trained on software
history data, and then used to predict bugs. Two drawbacks of
existing classifier-based bug prediction are potentially insufficient
accuracy for practical use, and use of a large number of features.
These large numbers of features adversely impact scalability and
accuracy of the approach. This paper proposes a feature selection
technique applicable to classification-based bug prediction. This
technique is applied to predict bugs in software changes, and
performance of Näıve Bayes and Support Vector Machine (SVM)
classifiers is characterized.

Index Terms—Reliability; Bug prediction; Machine Learning;
Feature Selection

I. I NTRODUCTION

Classifiers, when trained on historical software project data,
can be used to predict the existence of a bug in an individual
file-level software change, as demonstrated in prior work by
the second and fourth authors [1] (hereafter called Kim et al.),
in work by Hata et al. [2], and others. The classifier is first
trained on information found in historical changes, and canbe
used to classify a new change as being either buggy (predicted
to have a bug) or clean (predicted to not have a bug). Though
these results rank among the best bug prediction algorithms,
they are perhaps not strong enough to be used in practice.

We envision a future where software engineers have bug
prediction capabilities built into their development environ-
ment. Software engineers will receive feedback from a classi-
fier on whether each change they commit is either buggy or
clean. In recent work we have created a prototype displaying
server-computed bug predictions inside the Eclipse IDE [3]. A
bug prediction service must provide highly precise predictions.
If engineers are to trust a bug prediction service, it must
provide very few “false alarms”, changes that are predictedto
be buggy but which are really clean. If too many clean changes
are falsely predicted to be buggy, developers will lose faith in
the bug prediction system.

The prior change classification bug prediction approach used
by Kim et al. involves the extraction of “features” (in the
machine learning sense, which differ from software features)
from the history of changes made to a software project. These
features include everything separated by whitespace, in the
code added or deleted in a change. This leads to a large number
of features, in the thousands, and low tens of thousands. For
larger project histories which span thousand revisions or more,
this can stretch into hundreds of thousands of features.

The large feature set comes at a cost. The addition of
many non-useful features reduces a classifier’s accuracy. Ad-
ditionally, the time required to perform classification increases
with the number of features, rising to several seconds per
classification for tens of thousands of features, and minutes
for large project histories.

A standard approach (in the machine learning literature) for
handling large feature sets is to perform a feature selection
process to identify that subset of features providing the best
classification results. This paper introduces a feature selection
process that discards features with lowest gain ratio until
optimal classification performance is reached for a given
performance measure.

This paper explores the following research questions.
Question 1. Which choices lead to best bug prediction

performance using feature selection?
The two variables affecting bug prediction performance that
are explored in this paper are: (1) type of classifier (Naı̈ve
Bayes, Support Vector Machine), and (2) which metric (recall,
F-measure) is optimized for the classification. Results are
reported in Section IV-A.

Results for question 1 are reported as averages across all
projects in the corpus. However, in practice it is useful to
know the range of results across a set of projects. This leads
to our second question.

Question 2. Range of bug performance using feature selec-
tion. What is the range of performance of the best-performing
Bayesian (F-measure optimized) classifier across all projects
when using feature selection? (see Section IV-B)

The primary contribution of this paper is the process of
using Gain Ratio for feature selection, along with the char-
acterization of bug prediction results achieved when using
feature selection. A comparison of this paper’s results with
those found in related work (see Section V) show that change
classification with feature selection outperforms other existing
classification-based bug prediction approaches. Furthermore,
when using Näıve Bayes (F-measure optimized) buggy preci-
sion averages .96, indicating the bug predictions are generally
highly precise, thereby avoiding the “false negatives” problem.

In the remainder of the paper, we begin by presenting
an overview of the change classification approach for bug
prediction, and then detail the new algorithm for feature
selection (Section II). Following, we describe the experimental
context, including our data set, and specific classifiers (Section
III). The stage is now set, and in subsequent sections we
explore the research questions described above (Sections IV-A



- IV-B). The paper ends with a summary of related work
(Section V), and the conclusion.

II. CHANGE CLASSIFICATION

The primary steps involved in performing change classifi-
cation on a single project are outlined as follows:

Creating a corpus:
1. File level changes are extracted from the revision history

of a project, as stored in its SCM repository (described further
in Section II-A).

2. The bug fix changes for each file are identified by
examining keywords in SCM change log messages (Section
II-A).

3. The bug-introducing and clean changes at the file level
are identified by tracing backward in the revision history from
bug fix changes (Section II-A).

4. Features are extracted from all changes, both buggy
and clean. Features include all terms in the complete source
code, the lines modified in each change (delta), and change
metadata such as author and change time. Complexity metrics,
if available, are used at this step. Details on these feature
extraction techniques are presented in Section II-B.

All of the steps until this point are the same as in Kim et
al. The following step is the new contribution in this paper.

Feature Selection:
5. Perform a feature selection process that employs Gain

Ratio to compute a reduced set of features, as described in
Section II-C. For each iteration of feature selection, classifier
performance is optimized for a metric (typically F-measure
or accuracy). Feature selection is iteratively performed until
optimum points are reached. At the end of Step 5, there is
a reduced feature set that performs optimally for the chosen
classifier metric.

Classification:
6. Using the reduced feature set, a classification model

is trained. Although many classification techniques could be
employed, this paper focuses on the use of Naı̈ve Bayes and
SVM.

7. Once a classifier has been trained, it is ready to use. New
changes can now be fed to the classifier, which determines
whether a new change is more similar to a buggy change or
a clean change.

A. Finding Buggy and Clean Changes

In order to find bug-introducing changes, bug fixes must
first be identified by mining change log messages. We use
two approaches: searching for keywords in log messages such
as “Fixed”, “Bug” [4], or other keywords likely to appear
in a bug fix and searching for references to bug reports like
“#42233”. This allows us to identify whether an entire code
change transaction contains a bug fix. If it does, we then need
to identify the specific file change that introduced the bug.
For the systems studied in this paper, we manually verified
that the identified fix commits were, indeed, bug fixes. For
JCP, all bug fixes were identified using a source code to bug

tracking system hook. As a result, we did not have to rely on
change log messages for JCP.

The bug-introducing change identification algorithm pro-
posed byŚliwerski, Zimmermann, and Zeller (SZZ algorithm)
[5] is used in the current paper. After identifying bug fixes,
SZZ uses a difference tool to determine what changed in the
bug-fixes.

B. Feature Extraction

A file change involves two source code revisions (an old
revision and a new revision) and a change delta that records
the added code (added delta) and the deleted code (deleted
delta) between the two revisions. A file change has associated
metadata, including the change log, author, and commit date.
Every term in the source code, change delta, and change log
texts is used as a feature.

We gather eight features from change metadata: author,
commit hour, commit day, cumulative change count, cumu-
lative bug count, length of change log, changed LOC (added
delta LOC + deleted delta LOC), and new revision source code
LOC.

We compute a range of traditional complexity metrics of the
source code by using the Understand C/C++ and Java tools [6].

To generate features from source code, we use a modified
version of the bag-of-words approach (BOW) [7], called
BOW+, that extracts operators in addition to all terms ex-
tracted by BOW, since we believe operators such as !=, ++, and
&& are important terms in source code. We perform BOW+
extraction on added delta, deleted delta, and new revision
source code.

C. Feature Selection Algorithm

The number of features gathered during the feature ex-
traction phase is quite large, ranging from 6,127 for Plone
to 41,942 for JCP (Table I). Such large feature sets lead to
longer training and prediction times, requiring large amounts
of memory to perform classification. A common solution to
this problem is the process of feature selection, in which
only the subset of features that are most useful for making
classification decisions are actually used.

The primary tool used in this paper to determine the most
useful features is Gain Ratio based feature selection. Gain
Ratio improves upon Information Gain [8], a well known
entropy based measure of the amount by which a given feature
contributes information to a classification decision.

Gain ratio plays the same role as information gain, but in-
stead provides a normalized measure of a feature’s contribution
to a classification decision [8]. We found Gain Ratio to be one
of the best performing feature selection techniques on bug
prediction data after investigating many others. More details
on how the entropy based measure is calculated for Gain Ratio
and its inner workings can be found in an introductory data
mining book, e.g. [8].

Gain Ratio is used in an iterative process of selecting
incrementally smaller sets of features, as detailed in Algorithm
1. The feature selection algorithm begins by cutting the



Algorithm 1 Feature selection algorithm for one project
1) Start with all features,F
2) Compute Gain Ratio overF , and select the top 50% of

features with the best Gain Ratio,F/2

3) Selected features,selF = F/2

4) While |selF | ≥ 0.1%|F |, perform steps (a)-(d)

a) Compute and store buggy and clean precision,
recall, accuracy, F-measure and ROC AUC using
the a machine learning classifier (e.g., Naı̈ve Bayes
or SVM), using 10-fold cross validation

b) Compute Gain Ratio overselF
c) Identify removeF , the 10% of features ofselF

with the lowest Gain Ratio. These are the least
useful features in this iteration.

d) selF = selF − removeF

5) For a given classifier metric (e.g., accuracy, F-measure),
determine the best result recorded in step 4.a. The
percentage of features that yields the best result is
optimal for the given metric.

initial feature set in half, to reduce memory and processing
requirements for the remainder of the algorithm. Since optimal
feature sets are typically found at under 10% of all features,
this reduces algorithm iterations. Projects with large numbers
of features can be even more aggressive in the initial feature
selection; for PostgreSQL only 25% and for JCP only 12.5%
of all features were used for the initialselF .

In the iteration stage, each iteration finds those 10% of
remaining features that are least useful for classification, and
eliminates them (if, instead, we were to reduce by one feature
at a time, this step would be similar to backward feature
selection [9]). The benefit of using our proposed number of
10% of features at a time is improved algorithm speed while
maintaining result quality. So, for example,selF starts at
50% of all features, then is reduced to 45% of all features,
then 40.5%, and so on. At each step, change classification
bug prediction usingselF is then performed over the entire
revision history, using 10-fold cross validation to reducethe
possibility of over-fitting to the data.

This iteration terminates when there are only a few features
remaining. At this point, there is a list of (feature %, classifier
evaluation metric) tuples. The final step involves a pass over
this list to find the feature % at which a specific classifier
evaluation metric achieves its greatest value. The two metrics
explored in this paper are accuracy, and buggy F-measure
(aggregate of buggy precision and recall), though other met-
rics could be further investigated. Definitions of accuracy,
F-measure, ROC can be found in an introductory machine
learning text.

III. E XPERIMENTAL CONTEXT

We gathered software revision history for Apache, Columba,
Gaim, Gforge, Jedit, Mozilla, Eclipse, Plone, PostgreSQL,
Subversion, and a commercial project written in Java (JCP).

TABLE I
SUMMARY OF PROJECTSSURVEYED

Project Period Clean Buggy Features
Changes Changes

APACHE 1.3 10/1996- 579 121 17,575
01/1997

COLUMBA 05/2003- 1,270 530 17,411
09/2003

GAIM 08/2000- 742 451 9,281
03/2001

GFORGE 01/2003- 339 334 8,996
03/2004

JEDIT 08/2002- 626 377 13,879
03/2003

MOZILLA 08/2003- 395 169 13,648
08/2004

ECLIPSE 10/2001- 592 67 16,192
11/2001

PLONE 07/2002- 457 112 6,127
02/2003

POSTGRESQL 11/1996- 853 273 23,247
02/1997

SUBVERSION 01/2002- 1,925 288 14,856
03/2002

JCP 1 year 1,516 403 41,942

Total N/A 9,294 3,125 183,054

These are all mature open source projects with the exception
of JCP. These projects are collectively referred to in this paper
as the corpus.

Using the project’s CVS (Concurrent Versioning System)
or SVN (Subversion) source code repositories, we collected
revisions 500-1000 for each project, excepting Jedit, Eclipse,
and JCP. For Jedit and Eclipse, revisions 500-750 were col-
lected. For JCP, a year’s worth of changes were collected.
Table I provides an overview of the projects examined in this
research and the duration of each project examined.

IV. RESULTS

The following sections present results obtained when ex-
ploring the three research questions.

A. Classifier performance comparison

The two main variables affecting bug prediction perfor-
mance that are explored in this paper are: (1) type of classifier
(Näıve Bayes, Support Vector Machine), and (2) which metric
(accuracy, F-measure) the classifier is optimized on. The four
permutations of these variables are explored across all 11
projects in the data set. For SVMs, a linear kernel with
standard values for slack is used. For each project, feature
selection is performed, followed by computation of per-project
accuracy, buggy precision, buggy recall, and buggy F-measure.
Once all projects are complete, average values across all
projects are computed. Results are reported in Table II.

B. Effect of feature selection

In the previous section, aggregate average performance of
different classifiers and optimization combinations is com-
pared across all projects. In actual practice, change classifica-
tion would be trained and employed on a specific project. As
a result, it is useful to understand the range of performance



TABLE II
AVERAGE CLASSIFIER PERFORMANCE ONCORPUS

Technique Features Accuracy Buggy Buggy Buggy
Percentage Precision Recall F-measure

Bayes F-measure 6.83 0.91 0.96 0.67 0.79
SVM F-measure 7.49 0.81 0.82 0.54 0.62
Bayes accuracy 6.92 0.86 0.92 0.53 0.65
SVM accuracy 7.83 0.86 0.96 0.51 0.65

TABLE III
NAÏVE BAYES USING F-MEASURE OPTIMIZED FEATURE SELECTION

Project Features Accuracy Buggy Buggy Buggy Buggy
Name Precision Recall F-measure ROC

APACHE 465 0.92 1 0.56 0.72 0.78
COLUMBA 1618 0.9 0.99 0.67 0.8 0.83
ECLIPSE 802 0.98 0.98 0.79 0.88 0.88
GAIM 1065 0.86 0.96 0.65 0.78 0.83
GFORGE 2954 0.83 0.8 0.83 0.82 0.91
JCP 1041 0.95 1 0.77 0.87 0.89
JEDIT 847 0.9 0.99 0.73 0.84 0.88
MOZILLA 496 0.92 1 0.73 0.85 0.87
PLONE 277 0.91 0.98 0.57 0.72 0.84
PSQL 2504 0.87 0.88 0.54 0.67 0.78
SVN 438 0.94 0.96 0.56 0.71 0.78

Average 1137 0.91 0.96 0.67 0.79 0.84

achieved using change classification with a reduced feature
set. Table III reports, for each project, overall prediction
accuracy, buggy precision, recall, F-measure, and ROC area
under curve (AUC) for the Naı̈ve Bayes classifier using F-
measure optimized feature selection.

Observing these two tables, a striking result is that three
projects with the Näıve Bayes classifier achieve a buggy
precision of 1, indicating that all buggy predictions are correct
(no buggy false positives). While the buggy recall figures
(ranging from 0.54 to 0.83, with a average buggy recall of
0.69 for projects with a precision of 1) indicate that not all
bugs are predicted, still, on average, more than half of all
project bugs are successfully predicted.

Figures 1 and 2 summarize the relative performance of the
two classifiers and compare against the prior work by Kim et
al. Examining these figures, it is clear that feature selection
significantly improves both accuracy and buggy F-measure
of bug prediction using change classification. As precision
can often be increased at the cost of recall and vice-versa,
we compared classifiers using buggy F-measure. Good F-
measure’s indicate overall result quality.

Kim et al.’s results in both figures are taken from [1],
where they were computed using the same corpus (with the
exception of JCP, which was not in Kim et al.’s corpus and
two projects which did not distinguish buggy and new features)
using an SVM classifier trained on a set of features where no
feature selection was performed (i.e., Kim et al.’s work used
substantially more features for each project). Table II reveals
the drastic reduction in the average number of features per
project when using classifiers trained on a reduced feature set,
as compared to Kim et al.’s prior work.

The additional benefits of the reduced feature set include
better speeds of classification and scalability. We have noted

Fig. 1. Classifier Accuracy by Project

Fig. 2. Classifier F-measure by Project

a decrease in classification time from several seconds to a
split second in many of the projects. This helps promote
interactive use of the system within an Integrated Development
Environment.

V. RELATED WORK

Given a software project containing a set of program units
(files, classes, methods or functions, or changes dependingon
prediction technique and language), a bug prediction algorithm
outputs one of the following.

Totally Ordered Program Units.A total ordering of program
units from most to least bug prone [10] using an ordering
metric such as predicted bug density for each file [11]. If
desired, this can be used to create a partial ordering (see
below).

Partially Ordered Program Units.A partial ordering of
program units into bug prone categories (e.g. the topN%

most bug-prone files in [11]–[13])
Prediction on a Given Software Unit.A prediction on

whether a given software unit contains a bug. Prediction
granularities range from an entire file or class [2], [14] to
a single change (e.g., Change Classification [1]).

A. Totally Ordered Program Units

Khoshgoftaar and Allen have proposed a model to list
modules according to software quality factors such as future



fault density using stepwise multiregression [10], [15], [16].
Ostrand et al. identified the top 20 percent of problematic files
in a project [11] using future fault predictors and a linear
regression model.

B. Partially Ordered Program Units

The previous section covered work which is based on total
ordering of all program modules. This could be converted into
a partially ordered program list, e.g. by presenting the topN%

of modules as performed by Ostrand et al. above. Hassan and
Holt use a caching algorithm to compute the set of fault-prone
modules, called the top-10 list [13]. Kim et al. proposed the
bug cache algorithm to predict future faults based on previous
fault localities [12].

C. Prediction on a Given Software Unit

Using decision trees and neural networks that employ
object-oriented metrics as features, Gyimothy et al. [14]
predicted fault classes of the Mozilla project across several
releases. Their buggy precision and recall are both about 70%,
resulting in a buggy F-measure of 70%. Our buggy precision
for the Mozilla project is around 100% (+30%) and recall
is at 73% (+3%), resulting in a buggy F-measure of 85%
(+15%). In addition they predict faults at the class level of
granularity (typically by file), while our level of granularity
is by code change, typically spanning only 20 lines of code.
Aversano et al. [17] achieved 59% buggy precision and recall
using KNN (K nearest neighbors) to locate faulty modules.
Hata et al. [2] showed that a technique used for spam filtering
of emails can be successfully used on software modules to
classify software as buggy or clean. They achieved about
63.9% precision, 79.8% recall, and 71% buggy F-measure
on the best data points of source code history for 2 eclipse
plugins. We obtain buggy precision, recall, and F-measure
figures of 98% (+34.1%), 79% (-0.8%) and 88% (+17%)
respectively with our best performing technique on the eclipse
project (Table III). Menzies et al [18] achieve good results
on their best projects. However, on average the precision is
low ranging from a minimum of 2%, a median of 20%, to
a max of 70%. Both Menzies and Hata focus on the file
level of granularity. Kim et al. showed that using support
vector machines on software revision history information can
provide an average bug prediction accuracy of 78%, a buggy
F-measure of 60%, a precision and recall of 60% when tested
on twelve open source projects [1]. Our corresponding results
are an accuracy of 91% (+13%), a buggy F-measure of 79%
(+19%), a precision of 96% (+36%), and a recall of 67%
(+7%).

VI. CONCLUSION

This paper has explored the use of a feature selection
algorithm to substantially decrease the number of features
used by a machine learning classifier for bug prediction. An
important pragmatic result is that feature selection can be
performed in increments of 10% of all features, allowing it
to proceed quickly. Between 4.1% and 12.52% of the total

feature set yielded optimal classification results. The reduced
feature set permits better and faster bug predictions.

The most important results in the paper are found in Table
III, which present F-measure optimized results for the Naı̈ve
Bayesian classifier. It is astonishing that three projects have a
buggy precision of 1, indicating no false positives in theirbug
predictions. The average buggy precision is .96, also very high.
From the perspective of a developer receiving bug predictions
on their work, these figures mean that if the classifier says a
change has a bug, it is almost always right.

In the future, when software developers have advanced bug
prediction technology integrated into their software develop-
ment environment, the use of classifiers with feature selec-
tion will permit fast, precise, accurate bug predictions. With
widespread use of integrated bug prediction, future software
engineers can increase overall project quality in reduced time,
by catching errors as they occur.
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