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Abstract—This paper proposes Flow Permissions, an extension
to the Android permission mechanism. Unlike the existing per-
mission mechanism our permission mechanism contains semantic
information based on information flows. Flow Permissions allow
users to examine and grant explicit information flows within an
application (e.g., a permission for reading the phone number
and sending it over the network) as well as implicit information
flows across multiple applications (e.g., a permission for reading
the phone number and sending it to another application already
installed on the user’s phone). Our goal with Flow Permissions is
to provide visibility into the holistic behavior of the applications
installed on a user’s phone. Our evaluation compares our
approach to dynamic flow tracking techniques; our results with
600 popular applications and 1,200 malicious applications show
that our approach is practical and effective in deriving Flow
Permissions statically.

I. INTRODUCTION

Android is a popular platform for mobile devices. Applica-
tions for Android are written mainly in Java and referred to
as ’apps.” Unlike other mobile OSes, Android has a unique
permission mechanism. At development time, an app writer
needs to explicitly request permissions by including them in
an app configuration file (AndroidManifest.xml). We
refer to this configuration file simply as the manifest’ in the
remainder of the paper. During installation, each user needs
to review the permissions that the app requests and explicitly
grant them for the duration the app is installed.

Currently, there are over 130 permissions which Android
apps can request in API level 17. Generally, an application can
ask for permissions to use protected APIs for phone resources
(e.g, storage, NFC, WiFi, etc.) or information available on the
phone (e.g., contacts, location, call logs, etc.). For example,
if an application wants to use APIs that control the camera,
it needs to request the android.permission.CAMERA
permission. For perspecuity we will use the shorthand
PERM when referring to a specific permission of the form
android.permission.PERM.

Although considered to be robust, the current Android
permission mechanism has a number of deficiencies. There
is no validation that the permissions requested by an app
are actually needed by the app at runtime (i.e. the app is
over privileged with respect to APIs it uses). The burden of
deciding to grant permissions is placed on the user, but the
permissions themselves provide little contextual information
on how sensitive APIs are leveraged by the app. For example,
it is unclear if an app with the permission to access the internet,
as well as the phone’s SIM card, exposes the private telephony

data stored on the SIM card to the outside world. Apps
can collude with one another to effectively gain permission
they were not explicitly given (a danger that is compounded
if apps are over privileged), through the many inter-process
communication mechanisms Android provides.

To address these issues, we propose a new permission
mechanism, called Flow Permissions, that extends the existing
Android permission mechanism with information on informa-
tion flows between permission domains (e.g. reading from the
SIM card and sending over the network). We also introduce
cross-app Flow Permissions that identify how apps can interact
explicitly through IPC mechanisms, and deployment permis-
sions — implicit Flow Permissions granted when installing an
application based on indirect interactions possible between
apps installed on a phone (i.e. a deployment) and a newly
installed app. To help developers as well as users, we provide
an automated tool, called Blue Seal, for synthesizing Flow Per-
missions. Blue Seal integrates techniques based on automated
checkers [1] to remove unnecessary permissions from over
privileged apps and then synthesizes Flow Permissions for the
app. Blue Seal includes a lightweight cross app analysis that
can analyze multiple apps to discover cross app flows or can
be leveraged at installation time to detect implicit deployment
permissions.

In this paper, we make the following contributions:

o Flow Permissions: A new permission mechanism based
on information flows between permission domains within
an app, as well as across multiple apps. Cross app flow
detection can be leveraged at installation time to alert the
user to implicit deployment permissions.

e Blue Seal: A tool, called Blue Seal, for automatically
generating Flow Permissions, as well as a primer on how
to modify classic program analyses to analyze Android
specific constructs statically. Blue Seal generates Flow
Permissions for an app statically in order to display the
Flow Permissions before a user installs the app.

o Case studies: Detailed performance analysis including a
comparison study with state-of-the-art tools as well as a
large validation across 600 popular and 1,200 malicious
apps. We present results from a user survey as a prelim-
inary assessment of the utility of Flow Permissions.

The remainder of the paper is organized as follows: we
first present a series of motivating examples showing the
current problems with the Android permission mechanism in
Section II. Our Flow Permission extension to the Android



TABLE I
TABLE LISTING ANDROID APPS AND THEIR REQUESTED PERMISSION
EXAMPLES.

Android App |
MyCalendar

Category [ Permissions Requested

STORAGE
LOCATION
NETWORK
PHONE CALLS
STORAGE
NETWORK
PHONE CALLS
STORAGE
SYSTEM TOOLS
NETWORK
STORAGE

Productivity

MySpace Social

Blackmoon File Browser Productivity

Gmail Communication

permission mechanism is detailed in Section III along with
additional details on the Android platform that make infer-
ring Flow Permissions difficult. Blue Seal is presented in
Section IV. Case studies and comparisons to existing tools
are presented in Section V. Related work and conclusions are
given in Section VI and Section VII respectively.

II. MOTIVATION

To motivate the necessity of extending the current An-
droid permission mechanism, we examine four apps in detail:
MyCalendar, MySpace, Blackmoon File Browser, and Gmail.
MyCalendar (com.kfactormedia.mycalendarmobile) is a third-
party calendar app, MySpace (com.myspace.android) is a
social networking app with multimedia support, Blackmoon
File Browser (com.blackmoonit.android.FileBrowser) is a pop-
ular file manager, and Gmail (com.google.android.gm) is a
well-known email app from Google. Although these apps
have widely varying functionality, MyCalendar and MySpace
request similar permissions.

A partial and stylized set of permissions each app requests
is given in Table I. Notice that MyCalendar and MySpace
both request PHONE CALLS and NETWORK. The PHONE
CALLS permission grants the app a set of more fine grained
permissions, which we omit for brevity, including permission
to read the phone number, device ID, and the phone state.
Similarly, the permission NETWORK allows the app to access
the internet, either through wifi or cellular networking.

Savvy users may notice that by granting permissions to
read from the phone’s log and phone state as well as access
to the internet, they are also implicitly granting permission
to transmit data stored within the call log and phone state
over the internet to an external source. Once the app has
permission to read from a given piece of data stored on the
phone (i.e. a data source) as well as permission to send data
outside of the app (i.e. a data sink), the app also implicitly has
permission to export the source data via the sink. Importantly,
the permissions offer no insight if the apps leverage the APIs
to ex-filtrate data.

A. Flows as Permissions

The goal of the Flow Permission mechanism is to show
whether or not an app contains a flow between a source and

TABLE I
TABLE LISTING ANDROID APPS AND THEIR REQUESTED PERMISSIONS
ALONG WITH OUR PROPOSED FLOW PERMISSION EXTENSIONS.

Flow Permissions

PHONE NUMBER — NETWORK
IMEI NUMBER — NETWORK
STORAGE — NETWORK

Android App |

MyCalendar
MySpace
Blackmoon File Browser

a sink. The general structure of a Flow Permission is of:
source — sink. From Table II, we can see that, even though
MyCalendar and MySpace are granted the same permissions
(PHONE CALLS and NETWORK), MyCalendar is augmented
by our tool to contain the Flow Permission: PHONE NUMBER
— NETWORK. This Flow Permission indicates that data read
from the stored phone number was subsequently exported
through the use of the network. Additionally, we can deduce
that MySpace does not contain such a flow as it does not report
such a permission. The MySpace app does, however, transmit
the International Mobile Equipment Identity (IMEI) number
of the device, which is indicated by the IMEI NUMBER —
NETWORK Flow Permission.

In this manner, Flow Permissions provide the user additional
context on how the standard Android permissions and the
resources / data they protect are leveraged by the apps.
Nevertheless, it is up to the user to decide if these behaviors
should be allowed or not. The existence of a flow does not
indicate that the app is necessarily malicious. For example,
a social networking app might be expected to contain a flow
from the IMEI number to the network as this provides the
app a mechanism to uniquely identify the device for analytics.
However, some users may not be comfortable providing such
information to the app developer, as other mechanisms (e.g.
manual login screens) can be used without exposing such data.
In contrast, a calendar app should not have such a flow. We do
note, that certain Flow Permissions should never be granted,
namely exposure of the user’s International Mobile Subscriber
Identity ! (IMSI) number from the SIM card.

B. Interaction Between Apps

Consider a more complicated case that highlights how mul-
tiple apps can expose data sources and sinks to one another,
thereby acquiring additional implicit permissions [2]. The
Blackmoon File Browser app includes functionality to send
a file as an email attachment. However, the app cannot access
the network to send an email as it does not have the NETWORK
permission. Instead, the Blackmoon File Browser leverages
Gmail’s public interface to send files over the network. In
other words, the Blackmoon File Browser is implicitly granted
permission, if Gmail is also installed, to use the network with-
out overtly requesting such a permission. Flow Permissions,
on the other hand, highlight the flow between the Blackmoon

IThis number is used to uniquely identify the user, phone, and subscription
plan. Networks use this to establish roaming policies and charges associated
with non local network usage.



File Browser and the network, accomplished through the RPC
mechanism leveraged to transmit the file, as shown in Table II.

III. FLOW PERMISSIONS

Flow Permissions are an extension to the Android permis-
sion mechanism that characterizes the implicit interactions
between data and APIs protected by standard permissions. This
interaction is determined by the existence of an information
flow between the permission domains. Although there maybe
multiple Android permissions dealing with a domain (i.e.
READ_SMS, WRITE_SMS, RECEIVE_SMS, and SEND_SMS,
etc.), we only consider the domains themselves (e.g. SMS).
Domains are split into three categories: source domains, which
can be viewed as sources of data; sink domains, which can be
viewed as data export mechanisms; and cross-app domains,
domains which act as inputs or outputs between apps.

A. Permission Domain Types

Out of over 130 Android permissions, we have identified
thirteen canonical source domains: NETWORK, EMAIL, IME,
SMS, MIC, CALENDAR, ACCOUNTS, SDCARD, CONTACTS,
CAMERA, CALL LOG, SIMCARD 2, and LOCATION. Sim-
ilarly, we have identified five canonical sink domains:
NETWORK, EMAIL, SMS, SDCARD, and LOG. The third type
of domain (cross-app) consists of Android’s IPC mechanisms
that allow apps to share data or provide services to one another.
For example, Gmail exposes its email service to other apps via
an IPC mechanism as mentioned in Section II-B. These IPC
mechanisms can bridge a source domain in one app to a sink
domain in another app.

B. Permission Mechanism

Flow Permissions can be viewed as relations between the
three types of permission domains. There are four potential
types of Flow Permissions:

e Source — Sink: A flow from a source domain to a

sink domain.

e IPC — Sink: A flow from an IPC source domain to a

sink domain.

e Source — IPC: A flow from a source domain an IPC

sink domain.

e IPC — IPC: A flow from an IPC source domain to an

IPC sink domain.

Of the four types of Flow Permissions, those which deal
with flows to and from IPC, are not reported directly to the
user by default 3 Instead, these Flow Permissions, along with
meta-data to disambiguate the IPC, are leveraged at installation
time or during cross-app analysis to synthesize cross-app and
deployment flows. Abstractly, cross-app and deployment flows
are characterized by one app having a Flow Permission of the
form: Source — IPC, another app having a Flow Permission
of the form: IPC — Sink, and any number of apps having
Flow Permissions of the form: ITPC — IPC.

2We observe that the SIM Card stores two important numbers: IMSI and
ICCID and our Flow Permissions distinguish these two cases. Examples and
explanation are given in Sec. V-D1.

30ur tool can be configured to emit these as well.

C. Statically Deriving Flow Permissions

In order to present Flow Permissions at installation time,
we statically analyze Android apps to derive them. In doing
s0, we overcome a set of challenges unique to Android.

1) Android Programming: As with other GUI frameworks,
Android’s programming model is highly event-driven. Many
of the Android APIs are essentially event handler interfaces
that an app needs to implement to handle various events via
callbacks. The Android framework calls these event handlers
not only for user-generated events such as a button click, but
also for framework events such as app start, stop, and pause.
At the minimum, an app is required to extend one framework
component * class that defines handlers for framework events.
In addition, Android has introduced many new constructs,
including new thread types (e.g., AsyncTask), messages and
message handlers (e.g., Intent and Handler), and IPC
mechanisms (e.g., Binder). We detail the usage scenarios
of these constructs further in Section IV.

2) Challenges for Static Analysis: Android’s unique pro-
gramming model and constructs present the following set of
challenges for static analysis.

o All entry points for an app must be identified to leverage
standard analyses like deadcode elimination. The Android
standard library has over 1,700 possible entry points.

o Methods registered as callbacks and listeners for various
external and internal events must be identified, and their
invocation points tracked. Android allows callbacks and
listeners to be registered not only in the app code, but
also in configuration files. Thus, configuration files must
also be analyzed.

e Android provides new classes and methods for inter-
thread communication in a message passing style, neces-
sitating the pairing of possible send and receive points of
messages.

e The Android IPC mechanisms require disambiguation to
distinguish which apps communicate to other apps and
through which mechanisms.

o Android manages the execution of asynchronous tasks,
implicitly invoking methods during specific points its
lifetime. These methods must be handled explicitly and
their implicit invocation sites discovered.

IV. SYSTEM DESIGN

Our system design is built on top of the Soot Java Optimiza-
tion Framework [3], [4]. Since Soot is originally developed for
analyzing Java bytecode, Soot integrated the Dexpler Dex to
Java bytecode translator [5] to transform Dex bytecode into
Soot’s own intermediate represetation (Jimple). In addition,
we leverage the PScout Permission Map [6]; abstractly, a
permission map is a mapping between Android API calls

4 Android defines four framework components—activities, services, broad-
cast receivers, and content providers. An app extends Activity to handle
UI events; Service to perform background tasks; BroadcastReceiver
to handle broadcast events (e.g., a battery low event) from either the Android
framework or apps; and ContentProvider to provide a custom storage
with a database-like interface.



and the permissions required to enact those calls. The PScout
Permission Map was generated by statically analyzing the
entire Android source code and to our knowledge is the
most complete among known permission maps. Our compiler
leverages this precomputed mapping internally within the
analyses to associate specific permission to API calls.

At its core, our Blue Seal leverages classic forward and
backward intraprocedural dataflow analysis as well as inter-
procedural dataflow analysis based on graph reachability. As
outlined in Fig. 1, Blue Seal leverages six main analysis
passes to generate Flow Permissions: 1) entry point discovery,
2) call graph restructuring, 3) unused permission analysis,
4) resolution of intents, content providers, as well as uses
of the binder, 5) interprocedural permission flow analysis,
and 6) cross-app permission flow analysis. Abstractly, Blue
Seal uses analyses 2, 3, and 4 to disambiguate Android
specific constructs and identify source and sink points, prior
to tracking flows between sources and sinks in analysis 5.
Since Blue Seal is built from classic analysis techniques, we
tailor our discussion on Android specific linguistic constructs,
libraries, and IPC mechanisms and how to modify standard
analyses to support them. Currently, Blue Seal is not path or
context sensitive. Blue Seal implements Stowaway’s unused
permission analysis [1] to remove unnecessary permissions,
the details are omitted for brevity.

A. Entry Point Discovery

The Android platform is event driven and almost all apps
have multiple entry points. Prior to static analysis, precise
entry point detection should be performed to improve pre-
cision. As we describe below, there are three ways that an
app can register entry points and our entry point discovery
covers all three cases. Our approach complements the entry
point analysis given in CHEX [7] with support for entry points
specified in layout configuration files as well as discovering
potential entry points from the Android API documentation.

1) Framework Components: Any Android app is required
to implement one of the four main framework compo-
nents (Activity, Service, BroadcastReceiver, and
ContentProvider). These components have standard en-
try points and are declared in the manifest. Blue Seal discovers
framework components’ entry points by analyzing this file.

2) Ul Layout: A developer can also declare entry points
handling UI events such as button clicks in layout configura-
tion files. Discovering these entry points requires extra analysis
on the layout configuration files; this is due to the fact that
an app can contain multiple layout configuration files, one for
each layout it uses. Android internally maintains the mappings
between layouts and their configuration files by generating
another configuration file at compile time. Blue Seal analyzes
this internal configuration file to match classes corresponding
to the layouts the app uses, each of which is identified by
unique int, to handlers defined in that layout’s configuration
file.

3) API Callbacks: The third entry point option is imple-
menting callbacks pre-defined in the Android APIs. In order to

Android » Dex Manifest Layout
APK Bytecode File File
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Fig. 1. The Blue Seal Android app analysis framework architecture. Shaded
boxes represent components already present in Soot.

Implicit Deployment
Flow Permissions

discover these pre-defined entry points, we have implemented
a crawler that parsed the API documentation and discovered
that the current Android API documentation (API 17) has
1,738 callback methods that can serve as potential entry points.

B. Call Graph Restructuring

The Android framework is responsible for implicitly invok-
ing methods associated with many of the constructs it provides.
To correctly analyze an app, we must infer the association of
user-called methods to their corresponding framework-invoked
methods. We discuss the two most common cases below.

1) Async Tasks: AsyncTask is a new threading class
introduced in Android. It provides a simple way to write a
short lived thread that communicates with the UI thread in
an asynchronous fashion. An AsyncTask can implement
five methods—onPreExecute, doInBackground,
onProgressUpdate, onPostExecute, and
onCancelled, which dictate the control flow of the
asynchronous task. As an example consider the code snippet
in Fig. 2 and the corresponding control flow given in Fig. 3.

The doInBackground method performs the
actual computation for the async task. The methods



public class MainActivity extends Activity {
protected void onCreate(Bundle savedInstanceState) {

new Task().execute("http://www...");
~

~
} S .- — =

private class Task extends AsyncTask<String, String, Integer> {I|

/
/

—_—— -

4

protected void onPreExecute() {

}

v
protected Integer doInBackground(String... strs) {

publishProgress("intermediate result");

N\

4~ T —return intObj; ~

-_—-N

| protected void onProgressUpdate(String...strings) {

protected void onPostExecute(Integer intObj) {

3

Fig. 2. A code snippet illustrating the methods that comprise the control flow
of an async tasks in Android and the implicit flow of arguments provided by
the Android framework.

onPreExecute and onPostExecute run before
and after doInBackground and typically include
pre- and post-processing. The onCancelled method

is called when the async task is cancelled by another
thread. Notice that onPreExecute will execute in
the implicitly created thread backing the asynchronous
task, but onPostExecute callback will be executed
by the UI thread. Similarly, onProgressUpdate gets
executed as a callback in the UI thread after there is a
call to publishProgress within doInBackground.
An app writer can call AsyncTask’s execute and
executeOnExecutor to start an AsyncTask. Obviously,
a typical call graph generation process does not understand
this execution flow; hence, we identify all AsyncTask
instances and augment the call graph to include edges
corresponding to the async task control flow. We do this
by effectively replacing the invoke of execute with
invoke calls to onPreExecute, doInBackground, and
onPostExecute. Similarly, a call to publishProgress
is replaced with a onProgressUpdate call. Notice that
doInBackground implicitly passes its return value as an
argument to onPostExecute. publishProgress also
passes its arguments as arguments to onProgressUpdate.
The call graph and method bodies are updated accordingly.

2) Handler: Android also provides a message mechanism
for communicating between threads within an app, called
Handler (depicted in Fig. 4). Threads can communicate
through a shared Handler object. Receiving threads imple-
ment the handleMessage method to process received
messages and sending threads communicate through the

Ul Thread
( MainActivity.onCreate()

Implicit Thread

Task.onPreExecute()

Task.execute(..);

Task.dolnBackground()

(Task.onProgressUpdate()

[ Task.onPostExecute(),

publishProgress(..);

return val;

Fig. 3. The execution flow of async task methods in their respective threads
at runtime.

public class HandlerActivity extends Activity {

e -~
private Handler mHandler = new Handler‘()p{ \
public void handleMessage(Message msg) { \
\

7 \
} b\ =70 |
iH 1@
public void onClick(View v) { |
new Thread(new Runnable() { ]
public void run(Q) { /
try £ _ Vs

-4 \ L
,Msg.setData(data);

7 mHandler.sendMessage(msg);
e e 7 )
} catch (InterruptedException e) {

}
}
P .startQ;

Fig. 4. Flows based on pairing message sends to the appropriate message
handlers.

sendMessagex family of methods 3. Similar to async tasks,
Blue Seal effectively replaces a call to sendMessage* with
a call to handleMessage to restructure the call graph.

C. Content Provider Resolution Analysis

After restructuring the call graph, Blue Seal performs ad-
ditional analyses to identify permission domains discussed
in Section III. One mechanism for interaction between apps
is the Content Provider (CP). An app can provide content
to itself or other apps, can consume content hosted by a
CP, or both. CPs are uniquely identified by an URI object
(android.net.Uri) and to correctly pair uses of CPs
these objects must be tracked and disambiguated to the extent
possible by static analysis. To identify uses of CPs we track
the Content Provider API calls as well as the URI Objects
(as shown in Fig. 5). Our CP Resolution Analysis (CPRA) is
based on an interprocedural dataflow analysis that leverages
a backward intraprocedural data flow analysis. Abstractly, we

5By method family we mean any methods of similar form defined by the
same class (e.g. setData and setDataAndType belong to the method
family setDatax).



public class ContentProviderExampleActivity extends Activity {

public void onButtonClick(View v) {
Uri uri = ContactsContract.Contacts.CONTENT_LOOKUP_URT;

e _—-
rocessQueryCuri, ...)
F.)_ . Query PScout
1 - Permission Map
public void processQuery(Uri uri, ...) {
. e - CP Identity
results = getContentResolver().query(Curi, ...);

Fig. 5. The data flow of an URI object that identifies which CP is being
utilized. Dashed arrows indicate information derived from dataflow analyses
and block arrows how that information is used to disambiguate the CP.

track backward flows from uses of the CP mechanism to the
definitions of URI objects and from the definitions of URI
objects to the strings that uniquely identify them.

CP are accessed through two separate classes in Android:
ContentResolver and ContentProviderClient.
Within these classes the methods from which we begin
tracking flows are: insert, query, and update. Each
of these methods takes an URI object as an argument. Our
analysis identifies the creation points of the URI objects passed
into these methods. URI objects can be created in one of
two ways: they can be provided by the Android libraries or
they can be constructed by the app itself. In the former, the
identifying URI string is hidden. For precision, our analyses
leverages PScout, which also provides a mapping between
framework provided URI objects and their URI strings as
shown in Fig. 5. For app created URI objects we attempt to
discover this information in the compiler. Once the app created
URI object is identified, the analysis tracks the construction
of this object. There are two ways to construct an URI
object. One is to use Uri.parse and the other is to use
Uri.Builder. The first case is simple as the argument to
the parse method is the URI string. If Uri.Builder is
used, then Uri.Builder.scheme is used to set the scheme
and Uri.Builder.authority is used to set the authority.
For example, ‘content://edu.buffalo.cse.provider’, is a valid CP
identifier where the authority is ‘edu.buffalo.cse.provider’ and
‘content’ is the scheme. After the scheme and the authority are
set, Uri.Builder.build returns the actual URI object.
Thus, our analysis tracks calls to scheme and authority
and the arguments passed to them as shown in Fig. 6.

D. Intent Resolution Analysis

Intents are message objects that can be used to send data
between components within a single app as well as across
different apps. An app can receive intents in two ways, either
statically or dynamically. Static intents are declared in the
app’s manifest file on a per component basis. An app can
also register itself to receive intents dynamically at run time

public class UriExampleActivity extends Activity {
private final Uri mUri;

protected void onCreate(Bundle savedInstanceState) {

mUri = buildUri("content", "edu.buffalo.cse.provider™);

-
! A A

| } IEN =S

! private Uri buildUri(String scP|1eme, String auth‘or‘ity) {
! 7 N -

! Uri.Builder uriBuilder = new Uri.Builder();; \®
\ uriBuilder.scheme(scheme); = — — — — — - )

uriBuilder.authority(authority); — — — = — =
U] return uriBuilder.build();
}

Fig. 6. The data flow of an URI object initialization that is resolvable
statically.

public class IntentExampleActivity extends Activity {

public void onClick(View v) {

Intent intent = new Intent(Intent.ACTION_SEND);
_intent.putExtra(Intent.EXTRA_TEXT, "Test String");
@f - g
\ startService(intent);

A 4
=== ~ 3)

r ==~

Log.v("value", intent.getExtras().getString(Intent.EXTRA_TEXT));

Fig. 7. The data flow of an Intent passed from one app to another.

without declaring it in its manifest file.

To resolve dynamic intents on the receiver side,
our Intent Resolution Analysis (IRA) must first dis-
cover all classes that are registered to receive the in-
tent via Context.registerReceiver. The call to
registerReceiver requires an intent filter that identifies
which intents the class is able to receive. Intents that are to
be received by the filter can be specified at initialization time
via the intent filter constructor or dynamically via the add
method. In much the same was as CPRA, IRA also performs
an inter-procedural backwards flow analysis to disambiguate
between intents by tracking strings. An example is shown in
Fig. 7.

Once the intents are disambiguated, the analysis must
identify possible sources and sinks related to the intents.
Intent sinks are identified by any API call that inserts data
into the intent. In Android, this can be done through the
intent constructors Intent (...) as well as the method
call families put+*Extra and setData=. Intent sources
are identified by any API call that retrieves data from the
intent, namely the method family get . Intents themselves
can be sent between apps. Sinks related to the intents



used in this manner are the methods that can send out
intents to other apps and include the following method

families: sendxBroadcastx, startActivity=,
startIntentSender, startService, and
stopService. All the methods listed above require

an Intent object. Similar to intent filter, there are two main
ways to specify an action string that uniquely identifies the
intent. First is at the initialization time via the constructor. The
second is by using setAction. IRA does not track what
data flows through or from intents, it only serves to identify
and disambiguate how the app leverages intents. Effectively,
IRA computes points in the intermediate representation that
act as sources and sinks for the subsequent compiler passes.

E. Binder Resolution Analysis

Binder/IBinder, commonly referred to as just Binder,
is the default IPC mechanism on Android. It can be used for
inter-component communication within the same app (e.g.,
activity-to-service communication) as well as inter-process
communication between different apps. Android provides mul-
tiple ways to use the Binder mechanism, such as simply
extending the base Binder class or using AIDL (Android
Interface Definition Language) to define a customized inter-
face. Regardless of which method is used, a Binder server (i.e.,
an IPC callee) implements all the IPC methods in the Binder
class. A Binder client (i.e., an IPC caller) uses an IBinder
object which is the proxy for the server-side Binder. Fig. 8
shows an example.

Although Binder calls are mostly identical to local calls,
there are two cases to handle for correctness of our analysis.
First, for inter-component communication, we need to match
each call with an IBinder object to the corresponding
Binder implementation. Second, for inter-process commu-
nication, each client-side IBinder call is a potential sink,
which might result in a server-side Binder call which then
becomes a potential source.

A variation of Binder is Messenger, which allows a
process to send a message to another process. It relies on
Binder/IBinder to implement its functionalities under-
neath, but is simpler to use from the programmer’s point
of view. In order to receive a message, a server needs to
create a Messenger object; it also needs to implement
a Handler as described in Section IV-B2 and pass it to
the Messenger object. In order to send a message, a
client can use Messenger’s send method. We handle these
implicit calls by matching calls to send with Handler’s
handleMessage. If matches cannot be enumerated we
treat them as a potential sink (for send) or a source (for
handleMessage).

F. Interprocedural Permission Flow Analysis

To synthesize Flow Permissions we leverage an interpro-
cedural forward flow analysis to track flows between sources
and sinks. Our analysis is fixed point based, leveraging the
standard work list model and method summaries. The flow
analysis is parameterized by a listing of sources and sinks.

Sources and sinks are specified directly from API calls via
the PScout Permission Map or synthesized by CPRA, IRA,
and BRA. Sources and sinks synthesized by CPRA, IRA, and
BRA correspond to uses of IPC. The goal of this analysis is
to track data flows originating at sources and terminating at
sinks.

1) Computing and Applying Method Summaries: The in-
traprocedural forward flow analysis, leveraged by our interpro-
cedural analysis, builds a method summary for each reachable
method. The intraprocedural analysis is standard and builds
in-flow and out-flow sets for each statement in the method
body. The method summary constructed during this analysis
is a flow graph representing the flows between sources and
sinks within the method itself as well as arguments, returns,
and class variables the method reads or writes. We add nodes
to the graph for every argument, return statement, statement
containing a class variable read/write, and statements identified
as sources or sinks. Edges between nodes are added when a
flow is determined by the intraprocedural forward flow analy-
sis. Argument nodes and source nodes can have only outgoing
edges. Sinks and return nodes can have only incoming edges.
Nodes which represent class variable reads/writes can have
both incoming and outgoing edges. Thus, there are four types
of possible flows contained within the flow graph comprising
the method summary: 1) generative flows: flows from a source
to a return or class variable, 2) terminating flows: flows from
an argument or class variables to a sink, 3) local flows: flows
from a sources to a sink, and 4) transitive flows: flows from
arguments or class variables to other class variables or returns.
Orphan nodes, nodes with no incoming or outgoing edges, are
pruned.

At a method call site the analysis applies the summary
for that method. If the method summary contains transitive
flows, we add the arguments supplied at the call site to the
out-flow set for the call. For both generative and terminating
flows, we add a place holder node into the method summary.
This place holder node represents potentially multiple sources
and/or sinks, one for each generative and terminating flow.
The place holder nodes will be used to synthesize a global
flow graph once all method summaries have been computed
and the interprocedural analysis reaches a fixed point. Edges
between nodes in the flow graph and the place holder node
are added as if the place holder node was a source and/or sink
node.

2) Synthesizing a Global Flow Graph: Once the interpro-
cedural analysis reaches a fix point, we synthesize a global
flow graph from the per method summaries. Place holder
nodes that were inserted when method summaries were applied
and class variable nodes serve as merge points for combining
method summaries. Once all method summaries are merged,
paths that do not originate from a source and terminate in a
sink are pruned. Flow Permissions can be generated from the
graph by enumerating all paths and removing duplicates (e.g.
an app may send contact data over the network in multiple
code blocks). Lastly, we remove any Flow Permissions that
correspond to permissions the app does not request. This



public class BinderActivity extends Activity {
private BinderExampleBinder mBinder;

private ServiceConnection mConnection =
new ServiceConnection() {

A mBinder.printStr("Test String");

}

public void onServiceConnected(..., IBinder service) {
(3) _ = mBinder = (BinderExampleBinder) service;
-

e } \ @

/ e f;':—-
I3 0 -~
| protected void onStart() { -7
| e -7
| bindService(..., mConnection, ...);
|
[

\ public void onClick(View v) {  _ _ _ _ _

~ - -

public class BinderService extends Service {
private IBinder mBinder = new BinderExampleBinder();
public IBinder onBind(Intent intent) {

£ Z — —return mBinder;

public class BinderExampleBinder extends Binder {
public void printStr(String str) {

-
—_—— =~

Fig. 8. Data and control flow relations between a binder activity and service.

step is necessary because ad libraries [8] check to see which
permissions an app has been granted and perform computation
based on these permissions. Thus, an app may contain code
that contains flows, but will never be executed at runtime.
In general, any flow that requires a permission the app has
not been granted cannot be executed at runtime. The Flow
Permissions are then added to the manifest file for the app.

Special consideration must be given to apps that leverage
Android’s shared user ID mechanism. This mechanism allows
for multiple apps to execute as a single process. This process is
granted the union of the permissions requested by the apps. In
this case, we do not remove any Flow Permissions, regardless
if the app requests the necessary permissions or not.

G. Cross App Permission Flows Analysis

Cross-app permission flow analysis simply enumerates a
permutations of pairs of Flow Permissions between apps such
that one app has a source to IPC flow and another has a
IPC flow to a sink, and the IPC mechanism is the same.
In the case where an IPC is not disambiguated statically in
either app, our analysis is conservative and assumes any IPC
mechanism of the same type can be potentially utilized. For
file reads/writes to external storage we track the file name(s)
if they are deducible statically. Notice that when an app is
installed on a phone, its Flow Permissions and associated
meta-data (e.g. types and identifiers of [PCs) can be compared
to the Flow Permissions of installed apps to synthesize implicit
deployment Flow Permissions.

V. RESULTS AND DISCUSSION

To test the validity of our approach, we tested Blue Seal on
600 of the top rated free apps available on the Google Play
Store, as of January 2013, and on 1,200 know malicious apps
identified by the MalGenomeProject ® [9]. We ran Blue Seal
on the Amazon EC2 [10] using their 8-core node instance with
7GB of ram.

The full dataset is publicly available at http://www.malgenomeproject.org.
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Fig. 9. Scatter plot showing the time taken to analyze all apps in seconds.

A. Performance

Blue Seal is able to analyze and synthesize Flow Permis-
sions for all but the largest apps in under two minutes. Only
79 apps require an analysis time greater than two minutes.
Full performance results are given in Fig. 9. However, Soot’s
front-end Dex bytecode parser, Dexpler, has limitations and
generates incorrect intermediate representations for 199 of the
apps. Of these apps, 169 are form the Google Play store and 30
are from the MalGenomeProject. We used an alternative tool,
dex2jar [11], to translate these 199 apps into Java bytecode.
Of the 199 apps, we were able to analyze 127 apps using the
dex2jar translation in Blue Seal. We are currently investigating
the causes of the mis-translation of the remaining 72 apps.

Cross-app analysis is executed over the Flow Permissions
generated by Soot. Effectively, this analysis generates per-
mutations of matches between Flow Permissions that share
a common IPC. As the majority of apps have less than 10
Flow Permissions (8.34 Flow Permissions on average), we can
calculate implicitly granted deployment permission on a phone
that has 400 installed apps in less than 5 seconds. Although
these experiments were executed in EC2, these preliminary
numbers indicate that with optimizations this analysis is viable
to be performed on an actual phone.



B. Flow Permission compared to Dynamic Taint Analysis

To test the correctness of our implementation we compared
against TaintDroid [12]—a custom Android OS that performs
a dynamic taint analysis for identifying malicious flows. We
have manually compared Blue Seal’s generated Flow Permis-
sions to TaintDroid’s dynamically discovered taints on over
thirty apps. Each app was executed for 15 minutes and fed
random key-presses. For every taint reported by TaintDroid
while using the app, we checked that a corresponding Flow
Permissions was synthesized by Blue Seal. Unsurprisingly, the
most common taints reported by TaintDroid mirrored our own
findings and that of prior work, namely: IMEI NUMBER —
NETWORK and LOCATION — NETWORK. Thus far we have
not discovered any taints reported by TaintDroid for which
Blue Seal does not generate a corresponding Flow Permission.

C. Limitations

Blue Seal performs static analysis to generate Flow Per-
missions and thus suffers from the classic limitations of this
approach. Although we analyze all of the Android specific
constructs, our current implementation does not yet identify
all classic Java sources and sinks. We have focused primarily
on file, network, and output stream APIs. Wherever possible,
Blue Seal leverages the fact that most RPCs, CPs, and Intents
are known and enumerated statically by unique integers or
unique strings. In most cases Blue Seal is able to disambiguate
the components, but in cases where it cannot, Blue Seal
necessarily needs to be conservative, leading to potentially
many false positives. Our only comparison points were the
comparison of synthesized Flow Permissions to TaintDroid
in Sec. V-B and manual introspection of the apps. In the
apps we tested, our Flow Permissions correctly identified the
same flows as Taintdroid. This process is unfortunately not
guaranteed to generate a flow if one exists. As such, we do
not yet have a good metric to quantify false positives.

D. Case Studies: Flow Permissions in the real world

Based on our results gathered, we observe that the
most common Flow Permissions generated for apps are:
IMEI NUMBER — NETWORK, IMEI NUMBER — LOG, and
LOCATION — NETWORK. In most cases these Flow Permis-
sions correspond to the ad libraries leveraged by the apps.
The IMEI number is typically used to uniquely identify the
user being tracked. The location, established either by GPS
or via networking data, is also frequently tracked. The most
common cross-app Flow Permissions are those that leverage
CPs, specifically CPs identified by URIs pertaining to contacts.
The vast majority of the Flow Permissions generated for this
CP (90%), use the CP as a source via the query method. The
most common sink for these Flow Permissions is SMS.

1) Transmitting SIM Card and Phone Data: Currently in
Android there is no easy way to anonymously identify a
phone. Apps skirt this issue typically in two manners: 1) user
login: the user must login to gain the benefit of leveraging
their usage history within the app, and 2) Phone State or

SIM Card data: the app accesses and transmits the low-
level identification of the phone (IMEI number), the low-
level identification of the SIM card (ICCID number), or the
international mobile subscriber identity (IMSI number) of the
user. Flow Permissions provide a mechanisms to distinguish
between these two methods as different Flow Permissions are
generated in each case. For the former, IME — NETWORK,
is generated by Blue Seal and corresponds to textual data
input by the user (IME) being sent across the network. In
the later cases the following Flow Permissions are generated:
IMEI NUMBER — NETWORK, ICCID — NETWORK, or
IMSI NUMBER — NETWORK. The IMSI number should be
transmitted as rarely as possible and third party apps should
not typically utilize this number. An app that is not provided
by the user’s service provider that has this Flow Permission
should be considered malicious. We note, however, that user
logins are not a universal solution. As an example, consider
PhoneLab at SUNY Buffalo [13], a state of the art smartphone
testbed with over 200 users. Participants run the PhoneLab
app in the background, which collects pertinent statistics on
the data and telephony usage. Data is collected for scientific
purposes and PhonelLab must be able to distinguish between
devices.

2) Incorrect Usage of the Log: Android provides a log-
ging service called logcat that apps leverage for debugging.
However, we believe that no app should use logcat at run
time as it is a form of permanent storage that malicious apps
can potentially access [14]. Based on our Flow Permissions,
we have discovered that most apps use logcat and the most
commonly stored sources are location and IMEI. To address
this problem, Google has recently changed its permission
mechanisms to restrict the READ_LOG permission to vetted
system apps.

E. User Study

To test the utility of Flow Permissions, we created a user
survey and tested first year masters and PhD students taking an
Android based distributed systems course. Our survey results
were obtained anonymously over 61 participants. The survey
presented a description of an anonymous app and its requested
permissions. Students then responded how likely they were to
install the app. The same question was asked including our
Flow Permissions synthesized for the app. At the end of the
survey, the anonymous app was revealed and the students were
once again asked how likely they were to install the app.

Table III presents the results of our survey. The percentages
shown in the table correspond to the percent of answers that
corresponded to “Likely” and “Very Likely” for installation of
the app. The first column presents results of the anonymized
app with standard Android permissions. The second column
shows results for our Flow Permission mechanisms for the
anonymized app and the last column shows how the answers
change once the app name is revealed.

Our results indicate that Flow Permissions can significantly
impact users decisions to install an app when the users are
unbiased—users do not have any preconceived notions about



TABLE III
USER SURVEY RESULT SHOWING HOW LIKELY THE USER IS TO INSTALL
THE APP.
App Name | Android Flow Permissions | Android
Anonymous | Anonymous Named
Twitter | 24.5 % 4.8 % 37.6 %
DropBox | 73.7 % ‘ 29.4 % ‘ 63.9 %

the app or the developer of the app. Flow Permissions have a
minor impact (DropBox installation rate was reduced by about
10%) on biased users. Although these results are preliminary,
they do give a positive indication that Flow Permissions can
be useful in a real-world setting, especially when users are not
familiar with an app or its developer.

VI. RELATED WORK

The growing popularity of Android has resulted in many
tools, case studies, and analysis engines. The most closely
related work to ours is CHEX [7], which provides a tool for
detecting highjack enabling flows with an app. It is the first
tool to tackle analysis of Android’s constructs such as async
tasks and handlers, though it uses a brute force permutation
approach for disambiguation. Our call graph restructuring
described in Section IV-B can refine CHEX’s approach since
we identify implicit calls in Android’s constructs whenever
possible. AndroidLeaks [15] is a static analysis tool imple-
mented in WALA that can find leaks of sensitive information
sent over the network from Android apps. It does not support
analysis of async tasks, intents, nor content providers and is
unable to track cross-app flows. SCanDroid [16] first proposed
a methodology for analyzing intents statically, but was never
tested on real-world apps. The approach also required the
original Java source of the programs. Mann et al. created
a framework to identify privacy leaks from the Android
APIs [17], but the framework has not been evaluated on real-
world applications. DroidChecker [18] is a static analysis tool
aimed at discovering privilege escalation attacks and thus only
analyzes exported interfaces and APIs that are classified as
dangerous. ScanDal [19] is an abstract interpretation frame-
work for tracking information flows within apps. Currently,
their framework is able to track flows between location infor-
mation, phone identifiers, camera, and microphone exported
to the network and SMS.

Besides static analysis tools, there is a plethora of tools
that perform dynamic analyses. Alazab et al. [20] provide
a dynamic analysis technique that runs apps in a sandbox
and can detect malicious apps. MockDroid [21] is a tool that
protects users’ privacy by supplying mock data instead of
sensitive data. Aurasium [22] provides user-level sandboxing
and policy enforcement to dynamically monitor an app for
security and privacy violations. Notably Aurasium does not
require modifications to the underlying OS. We believe that
Aurasium is complementary to Blue Seal, as our Flow Permis-
sions can provide a specification of possible malicious leaks.
CrowDroid [23] is an offline analysis over traces that can be
leveraged to identify malicious apps through examining their

behavior via. crowdsourcing. Moonsamy et al. [24] provided
a thorough investigation and classification of 123 apps using
static and dynamic techniques over the apps’ Java source code.
Grace et al. [8] showed that ad frameworks opportunistically
scan and leverage permissions granted by the app they are
called from. AdDroid [25] introduced a new advertisement
framework with privilege separation, accomplished through
a new set of advertising APIs and permissions. We believe
our tool can be extended to analyze their framework through
extensions to the permission map Blue Seal takes as parameter.
PiOS [26], a static analysis tool for iOS, leverages reachability
analysis on control-flow graphs to detect leaks.

Porscha [27] is a tool to extend Android with policy oriented
secure content handling to enforce DRM policies. Chen et
al. [28] propose identification of malware by the temporal
order in which an application uses APIs through static analysis
and model checking. Panorama [29] is a malware detection
system that leverages a graph based approach for dynamic
taint analysis. It focuses on identifying malware based on
access and processing patterns of sensitive information. We
believe this approach is complimentary to the analysis for Flow
Permissions and we envision extending our static analysis to
approximate how much sensitive data is accessed.

Although Android has a comprehensive permission mech-
anism, it has limitations. Most users do not understand what
each permission means [30], [31] and blindly grant them [31].
These studies have shown that the Android permission mech-
anism is not effective as a protection mechanism and suggest
allowing users to grant individual permissions [32], blocking
and sanitizing sensitive data [33], designing an app verifi-
cation mechanism [34], and analyzing apps to report over-
privilege [1]. Fragkaki et al, [35] propose an extension to the
Android permission mechanism for disallowing of flows of the
form: disallow-flow (A, B), and shows how interesting
policies can be built on top of such a mechanism. We be-
lieve our synthesized Flow Permissions could be leveraged to
conservatively check the adherence of an app to such policies
statically.

Previous case studies [31], [30] have reported that com-
prehension of permissions is reduced primarily due to the
“presentation” of the permissions and not the mechanism
itself. We believe our Flow Permissions can benefit from new
presentation styles as they are developed.

VII. CONCLUSION AND FUTURE WORK

In this paper, we present a flow based extension to the
Android permission mechanisms, called Flow Permissions.
We detailed a comprehensive primer on Android specific
mechanisms and libraries in our description of Blue Seal, an
automated infrastructure for synthesizing Flow Permissions.
We provided a comprehensive evaluation of Flow Permissions
in a wide variety of Android apps as well as a preliminary
user study indicating the utility of Flow Permissions on users’
decision to install apps. For future work, we plan on leveraging
Soot’s advanced features to improve Blue Seal’s precision,
including path and context sensitivity.
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