
More Effective Interpolations
in Software Model Checking

Cong Tian∗, Zhao Duan∗, Zhenhua Duan∗, and C.-H. Luke Ong†
∗ICTT and ISN Lab, Xidian University, Xi’an 710071, P.R. China

ctian@mail.xidian.edu.cn, duanzhao@stu.xidian.edu.cn, zhhduan@mail.xidian.edu.cn
†Department of Computer Science, University of Oxford, UK

Luke.Ong@cs.ox.ac.uk

Abstract—An approach to CEGAR-based model checking
which has proved to be successful on large models employs Craig
interpolation to efficiently construct parsimonious abstractions.
Following this design, we introduce new applications, universal
safety interpolant and existential error interpolant, of Craig inter-
polation that can systematically reduce the program state space to
be explored for safety verification. Whenever the universal safety
interpolant is implied by the current path, all paths emanating
from that location are guaranteed to be safe. Dually whenever
the existential error interpolant is implied by the current path,
there is guaranteed to be an unsafe path from the location. We
show how these interpolants are computed and applied in safety
verification. We have implemented our approach in a tool named
INTERPCHECKER by building on an open source software model
checker. Experiments on a large number of benchmark programs
show that both the interpolations and the auxiliary optimization
strategies are effective in improving scalability of software model
checking.

I. INTRODUCTION

Software model checking [1], [2] is an approach to program
verification that promises accurate analysis with push-button
automation. Model checking approaches can achieve precision
because they are path-sensitive. On the flip side, because they
often track too many facts, state explosion gets in the way of
scalability.

An extensively studied method, called Counterexample
Guided Abstraction Refinement (CEGAR) [4], [5], [6], [7],
[8], can automatically tune the precision of the analysis using
false positives. In a CEGAR analysis, predicate abstraction
[9] is used to extract a coarse abstract model from a program.
The model is iteratively refined by adding facts to make the
abstraction precise enough to refute spurious counterexamples.
These “facts” are predicates that relate values of program
variables.

The scalability of CEGAR-based analyses depends crucially
on the ability to efficiently analyze a false positive so as to
learn from it a small set of sufficiently accurate predicates,
and to use the discovered predicates parsimoniously. To this
end, Craig interpolation [10] has been employed effectively
to construct abstractions that are locally useful, and only
those that are required for proving correctness [25], [5]. By
integrating various techniques, notably lazy abstraction [28]
and parsimonious abstraction via Craig interpolation [25],

Zhenhua Duan is the corresponding author.

great strides have been made in the development of efficient
model checking that scales to large programs. Software model
checkers such as BLAST [5] and CPAChecker [13], [12] have
achieved impressive success in recent software verification
competitions [26], [27], [29], [30], [31]. However (see Sec-
tion V for details), the development of precise and scalable
model checking tools that are fit for real-world applications
remains a daunting challenge.

Our approach to scalable CEGAR-based model checking
[13] is to exploit Craig interpolation to learn abstractions that
can systematically reduce the program state space which must
be explored for a given safety verification problem. In addition
to the interpolants for parsimonious abstraction [25] (which is
called reachability interpolants in this paper for clarity), we
introduce two new kinds of interpolants, called universal safety
interpolants and existential error interpolants. A universal
safety interpolant (or safety interpolant for short) is useful
for determining whether all the paths emanating from a state
are safe, without exploring all the possible branches from it;
while an existential error interpolant (or error interpolant
for short) is useful for determining whether there exists an
unsafe path emanating from a state, without exploring all the
possible branches from it. The safety interpolant at a location
of a control flow graph (CFG) collects predicates that are
relevant to a yes-instance of the safety verification, so that
whenever the safety interpolant is implied by the current path,
all paths emanating from this location are guaranteed to be
safe. Dually, whenever the error interpolant at a location of a
CFG is implied by the current path, there is guaranteed to be an
unsafe branch from it, and so, one can immediately conclude
that the program is unsafe. We show how safety interpolants
and error interpolants are learnt from spurious error traces
throughout the CEGAR-based program verification process.
To maximise the effect of the proposed interpolations, we also
present two kinds of optimizing strategies.

We have implemented the approach in a tool named INTER-
PCHECKER by augmenting the open source tool CPAChecker
[12], [13] with the proposed interpolations and the optimizing
strategies. To evaluate it, a large number of experiments on
more than 58 million lines of C programs (mostly linux driver
programs between 10 to 80 KLOC) have been carried out.
Empirical results show that the proposed interpolations are
effective in reducing the explored state space so that more

programs can be successfully verified within the given time
bound. In particular, the experiments indicate that the tool is
most effective when all three kinds of interpolations and the
optimization strategies are applied together.

The rest of the paper is structured as follows. Section II
presents the preliminaries and a motivating example. In Sec-
tion III, we introduce error interpolants and safety interpolants,
and discuss their formalization and use in detail. Two optimiz-
ing strategies are then presented in Section IV. In Section V,
we present an empirical evaluation of our approach. Finally,
Section VI discusses related work and Section VII concludes
the paper.

II. PRELIMINARIES

This section briefly presents control flow graphs, abstract
reachability trees, Craig interpolation, and an interpolation-
aided CEGAR approach to program verification with a moti-
vating example.

A. Control Flow Graphs

A control flow graph (CFG) is a directed graph that captures
the control flow of a program. Formally, a CFG is a tuple
G = (L, T, l0, f), where L is the set of program locations,
l0 ∈ L is the initial location, f ∈ L is the final location,
T ⊆ L × Ops × L is the transition relation, and Ops is the
set of instructions. An instruction op ∈ Ops is (i) a basic
assignment statement, (ii) an assume predicate corresponding
to the condition that must hold for the control to flow across
an edge, (iii) a function call with call-by-value parameters,
or (iv) a return statement. A transition t ∈ T is a triple t =
(l, op, l′) denoting the flow of control from l to l′ by executing
the instruction op. An example CFG is depicted on the LHS
of Fig. 1.

To clearly express our approach, we further decorate a CFG
with three location attributes, E, S, and R respectively, and
one transition attribute W . Intuitively, l(E), l(S), and l(R),
respectively, denote the E-Interp, S-Interp, and R-Interp (to
be defined later) at a location l; and t(W) gives the weight
of the transition t. How these attributes are initialized and
updated throughout the verification process will be discussed
later.

B. Abstract Reachability Trees

An abstract reachability tree (ART) is generated by un-
winding a CFG. An ART A = (SA, EA) obtained from a
CFG G = (L, T, l0, f), consists of a set SA of abstract states
and a set EA of edges. An abstract state s ∈ SA is a triple
s = (l, c, p) where l is a location in the CFG, c is the current
call stack (i.e. a sequence of CFG locations representing
return addresses), and p is an abstract predicate indicating
the reachable region of the current state. (As we shall see,
the reachable region, i.e. s[2], of a state s is determined by
the reachable interpolant, R-Interp, of the location s[0] in the
CFG.) Given two states s and s′, we say s is covered by s′ just
if s[0] = s′[0], s[1] = s′[1], and s[2] → s′[2]. (Notation: for
a tuple e, we write e[i] for the i-th component of e.) Further,

if s is covered by s′ and all the future of s′ (i.e. all abstract
states reachable from s′) has been explored, then the future
of s can be saved from exploring (because the result will be
the same as the future of s′). An edge e ∈ EA is a triple
e = (s, op, s′) where s and s′ are abstract states in SA, and
op is an instruction in Ops, including assignment expression,
assume expression, function call and return expression.

A branch (path) Π of an ART, denoting a possible execution
of the program, is a finite alternating sequence of states and
edges, Π = 〈s0, e0, · · · , en−1, sn〉, such that for all 0 ≤ i < n,
ei[0] = si and ei[2] = si+1. The length of a path is the number
of edges occurring in it. Given a path Π of an ART, we write
Pf (Π) for the path formula

SSA(e0[1]) ∧ · · · ∧ SSA(en−1[1])

obtained from Π. Here SSA(op) is the static single assignment
(SSA) form [5] of an operation op where every variable
occurring in Π is assigned a value at most once. In this paper,
the SSA form is obtained by introducing a new subscript to a
variable whenever it is newly assigned. Fig. 2 gives an example
of an ART.

C. Craig Interpolation

Given two formulas A and B such that A ∧ B is unsat-
isfiable, a Craig interpolant C is a formula that satisfies the
following conditions: 1) A implies C; 2) the conjunction C∧B
is unsatisfiable; and 3) all variables in C are common to A
and B. For convenience, we use

C = Craig(A,B)

to denote the Craig interpolant of formulas A and B. In
software model checking, Craig interpolation has been used
successfully with abstraction refinement so that more precise
abstractions can be constructed from spurious counterexamples
in order to eliminate them. For clarity, the resulting inter-
polants are called reachability interpolants, or R-Interp for
short, in this paper.

Definition 1 (Reachability Interpolant, R-Interp): Let Π =
〈s0, e0, · · · , en−1, sn〉 be a spurious path of an ART. For
0 < i < n, set R-Interp(si[0]) := R-Interp(si[0]) ∪
Craig

(
Pf (s0, · · · , si), Pf (si, · · · , sn)

)
. Note that for every

location l of a CFG, initially, R-Interp(l) = {true}.

D. Interpolation-Aided CEGAR Verification Approach

We present a version of CEGAR safety verification that
uses R-Interp. The procedure starts with the most abstract
model (no predicates are considered) and checks whether a
counterexample (i.e. error path) can be detected. If no error
path is found, the procedure terminates, reporting the non-
existence of counterexamples. Otherwise, if a counterexample
path Π is found, we check satisfiability of the relevant path
formula, i.e. Pf (Π), to determine if Π is genuine. In case
Pf (Π) is satisfiable, the procedure terminates by reporting Π
as a counterexample. If Pf (Π) is unsatisfiable, new predicates
are discovered [25] at each location involved in Π according
to Definition 1. Observe that at each location of the path Π, we

infer the relevant predicates as an interpolant between the two
formulas that define the past and the future segments of the
path. Each interpolant, R-Interp(l), is a relationship between
current values of program variables, and is relevant only at the
particular location l.

In the following, we use an example program Exa.c shown
in the LHS of Fig. 1 to illustrate how R-Interp-aided CEGAR
works and motivate our work at the same time. In program
Exa.c, if the code in Line 16 is executed, the program is
unsafe; otherwise, it is safe. The RHS of Fig. 1 gives the
CFG of the program where L11 is the error location. Thus the
problem of whether the program is unsafe is reduced to the
reachability analysis of L11 in the CFG.

Fig. 1. Program Exa.c and its CFG

In the R-Interp-aided CEGAR approach, by depth-first
traversal of the CFG, the branch P1 in the ART of Fig. 2
is explored in the first run. In Fig. 2, we annotate each
abstract state s (i.e. node) of the ART with the R-Interp,
R : R, and reachability predicate, p : ψ, at that abstract state;
i.e. R-Interp(s[0]) = {φ | φ ∈ R} and s[2] = ψ. Note that
for clarity, if the R-Interp at a location is updated, we ignore
the element true in Fig. 2. Note that for every state s in P1,
we have R-Interp(s[0]) = {true} and s[2] = true . Then, the
verification process proceeds straightforwardly to the second
run where P2 is explored since L11 is not reached in P1.
Even though the error location is reached in P2, we need to
determine if the path is genuine or spurious.

To do so, we check satisfiability of the path formula
Pf (P2) = “(s1 = 1)∧!(a1 == 1)∧!(i1 > 1)∧(s2 = s1+2)∧(s2 > 3)”.

Obviously Pf (P2) is unsatisfiable since s2 = 3 and s2 > 3
are contradictory. Thus P2 is a spurious counterexample. As a
result, the R-Interp at each location of the CFG involved in P2

is updated, and s[2] at each state of P2 is updated, accordingly,
as illustrated in Fig. 2. Note that p = false at L10 of P2

indicates that L10 cannot be reached. Subsequently, in the third
run, P3 is explored. When L8 is analyzed, it is found that L8

in P3 is covered by L8 in P1. Thus, we can conclude that
P3 is not a counterexample at L8 without further exploration.
This process is repeated until a real counterexample, i.e. P8,

is found. Note that, similar to L8 in P3, L8 in P5 and P7 are
also covered by L8 in P1.

In summary, in Fig. 2, in the worst case, 3 states are saved
from being explored before the real counterexample P8 is
found. Nevertheless, as we can see, the explored state space
is still large. Thus, we are motivated to seek further reduction
of the state space by using more interpolations throughout
the verification process. Two ideas can be gleaned from this
example. (1) If we already know L10 in P2 is unreachable,
then L10 in P4 is also unreachable since the value of s at L7

of P4 is obviously smaller than the value of s at L7 of P2.
(2) By analyzing P6, we can infer that the error location is
reachable from L15 if s > 3 holds there. Thus, when exploring
L15 in P7, we can conclude that a real counterexample can
certainly be found if the path formula of the prefix from L1

to L15 satisfies ‘s > 3’.

III. MORE INTERPOLATIONS

To further reduce the state space to be explored, universal
safety interpolation and existential error interpolation, which
we abbreviate to S-Interp and E-Interp respectively, are for-
malized in this section.

A. Universal Safety Interpolation

Definition 2 (Universal Safety Interpolation, S-Interp): Let
l be a location of a CFG. The universal safety interpolation
(or safety interpolation for short) of l is a pair S-Interp(l) =
(F , Is), where F is a variable with value f or h indicating
whether the interpolant is full or half ; and Is is a conjunction
of predicates.

Initialization: For each location l in a CFG, the default
value of its safety interpolant is:

S-Interp(l) :=

 (f, false) if l is an error location
(f, true) if l is a final location
(h, true) otherwise

Update S-Interp: The safety interpolant at each location is
updated whenever a spurious counterexample is found (in an
ART). Let Π = 〈s0, e0, · · · , en−1, sn〉 be a prefix of a spurious
path 〈s0, e0, · · · , em−1, sm〉 where sn is the last reachable
state and n < m. For each 0 < i ≤ n, the first component
(F -value) of the safety interpolant at si[0], i.e. F (si[0]), is
updated by:

F (si[0]) :=

 f if S-Interp of all successors of si[0]
are full, or i = n

h otherwise.

The second component (Is-value) of the safety interpolant at
si[0], i.e. Is(si[0]), is updated by:

Is(si[0]) :=

 Is(si[0]) ∧ Craig(A,B) if 0 < i < n and
F (si+1[0]) = f

Is(si[0]) ∧ !Pf (si, ei, si+1) if i = n

where A = Pf (s0, · · · , si) and B = Pf (si, ei, si+1) ∧
!(Is(si+1[0])).

Fig. 2. Explored paths

Uses: Safety interpolants are helpful in checking whether
all the paths departing from a state are safe without exploring
all the possible branches emanating from it. For any prefix-
path Π = 〈s0, e0, · · · , ei−1, si〉 where i ≥ 0, we can conclude
that all the paths that have Π as a prefix are safe if

F (si[0]) = f and Pf (s0, e0, · · · , ei−1, si)→ Is(si[0])

When applying safety interpolation in verifying program
Exa.c, the state space explored is depicted in Fig. 3. First,
P1 is explored as usual. When P2 is explored, we still check
whether it is spurious and find that L7 is the last reachable
state. Then, by the update rule of S-Interp, we have

F (L7) = f, and Is(L7) = true ∧ (s ≤ 3).

Subsequently, the S-Interp of L6, L4, L3 and L2 are also
updated as shown in Fig. 3. Note that the S-Interp of L1 is
not updated since the S-Interp of L2 is half. After that, when
exploring L6 of P3, we can conclude that P3 is safe since

F (L6) = f, and Pf (L1 · · ·L6)→ Is(L6)

holds. Here Pf (L1 · · ·L6) = “(s1 = 1) ∧ (!(a1 == 1)) ∧ (i1 >

1) ∧ (s2 = s1 + 1)” and Is(L6) = “s2 ≤ 3” (obtained in P2).
This process is repeated until the real counterexample P8 is
found. Obviously, more states are saved from being explored
than using only R-Interp as shown in Fig. 3. Note that in this
ART, all the grey states (unexplored) reachable from the states
in green are pruned because of safety interpolation.

B. Existential Error Interpolations

In contrast to universal safety interpolation, existential error
interpolation is for checking whether there exists an unsafe
path departing from the current state without exploring all the
future ones.

Definition 3 (Existential Error Interpolation, E-Interp): Let l
be a location of a CFG. The existential error interpolation (or

error interpolation for short) at l is E-Interp(l) = Ie, where
Ie is a disjunction of predicates.

Initilization: For each location l of a CFG, its default error
interpolant is:

E-Interp(l) :=

 true if l is an error location
false if l is a final location
false otherwise

Update E-Interp: Error interpolants are also updated when-
ever a spurious counterexample is found. Given a spurious
counterexample Π = 〈s0, e0, · · · , en−1, sn〉 where sn[0] is an
error location, let Π′ = 〈si, ei, · · · , en−1, sn〉 with 0 < i ≤ n
be the maximal feasible suffix of Π. The E-Interp of locations
involved in Π = 〈s0, e0, · · · , si−1, ei−1, si〉 are updated by:

E-Interp(si[0]) := E-Interp(si[0]) ∨ Craig(A1, B1)

where A1 = Pf (si, · · · , sn) ∧ E-Interp(sn[0]) and B1 =
Pf (s0, · · · , si). For each 0 < j < i, set

E-Interp(sj [0]) := E-Interp(sj [0]) ∨ Craig(A2, B2)

where A2 = Pf (sj , ei, sj+1) ∧ E-Interp(sj+1[0]) and
B2 = Pf (s0, · · · , sj).

Uses: Error interpolants are useful for checking whether
there exists an unsafe path departing from a state without
exploring all the possible branches emanating from it. For any
prefix-path Π = 〈s0, e0, · · · , ei−1, si〉 with i ≥ 0, it can be
concluded that there exists at least one unsafe path with Π
being prefix if

Pf (s0, e0, · · · , si) is satisfiable, and
Pf (s0, e0, · · · , si)→ E-Interp(si)

Now we show how error interpolation is used in verifying
program Exa.c. As shown in Fig. 4, when P2 is explored
as a spurious counterexample, we first find out the maximal

Fig. 3. Explored paths under R-Interp and S-Interp

feasible suffix 〈L10, L11〉 of P2. Then, E-Interp(L10) is
updated by:

E-Interp(L10)
= E-Interp(L10) ∨ Craig

(
true, Pf (L1, · · · , L10)

)
= true

Then, E-Interps of locations L7, L6, L4, L3, and L2 are
updated in order:

E-Interp(L7) = s > 3
E-Interp(L6) = s > 3

E-Interp(L4) = s > 1
E-Interp(L3) = s > 1
E-Interp(L2) = s > 1

When exploring L15 of P7, we can conclude that there exists
at least one feasible unsafe path since

Pf (L1 · · ·L15)→ E-Interp(L15)

holds. Here Pf (L1 · · ·L15) = “(s1 = 1)∧(a1 == 1)∧(!(i1 >
1)) ∧ (s2 = s1 + 3)” and E-Interp(L15) = “s2 > 3”. The
eventually explored state space is depicted in Fig. 4. The states
in grey are not explored while the ones reachable from the
yellow state are pruned because of error interpolation.

C. Interpolations Together

Now we show how the three kinds of interpolations, R-
Interp, S-Interp, and E-Interp, work together to reduce state
space to be explored for checking safety properties of pro-
grams.

Given a CFG whose locations are enriched with default
values of R-Interp, S-Interp, and E-Interp, we produce the
ART for exploring a real counterexample by starting from the
root, i.e. s0 : (l0,−, true). The flowchart in Fig. 5 gives a
bird’s eye view of our approach to safety verification with
reachability, safety and error interpolations. When a state
s : (l, c, p) is being explored and l is not an error location:

(1) Reversely traverse the current path for other possibilities
if one of the following three conditions holds:
– p = false;
– p 6= false , F (l) = f , and Pf (s0, · · · , s)→ Is(l); or
– p 6= false and s is covered by a visited state s′.

(2) Report the program is unsafe, if p 6= false and
Pf (s0, · · · , s)→ E-Interp(l).

(3) Explore the succeeding state s′′ : (suc(l), c, p′), other-
wise.

When l of the current state s : (l, c, p) is an error location,
we first check whether the current path Π = 〈s0, · · · , s〉 is
spurious. If Π is not spurious, we conclude that the program is
unsafe. Otherwise, by update S-Interp, update E-Interp, and
update R-Interp (Definition 1), the S-Interp, E-Interp, and
R-Interp of locations involved in Π are updated, respectively.
Subsequently, we reversely track the current path for other
possibilities and treat a new current state s : (l, c, p) in the
same way until the program is reported as unsafe or there are
no states can be explored (the program is safe).

With the three interpolations working together, we apply
the verification procedure to the example program Exa.c.
In the worst case, when the program is proved unsafe, we
present the state space explored in Fig. 6. In this Figure, the
unexplored states reachable from a state in green are pruned
because of safety interpolants, and those reachable from a state
in yellow are pruned because of error interpolants. As we can
see, more states are saved from being explored than R-Interp,
R-Interp+E-Interp, or R-Interp+S-Interp.

IV. OPTIMIZATION

This section presents optimizing strategies in two directions:
pruning, and accelerating formation of full safety-interpolants
by weight-guided search strategy.

Fig. 4. Explored paths under R-Interp and E-Interp

No

Y es

explore state s : (l, c, p)

A:{SA, EA}

No

Y es

SAFE

Y es

No

NoNo

produce state s′′ :(l′′, c, p′′),

Y es

add s′′ in SA

Y es

exist
new states

l is an error
location

p == falses is covered
by s′

Y es

No

Y es

UNSAFE

No

Spurious

update
E-Interp

forward search reverse search

use S-Interp use E-Interp

update
S-Interp

update
R-Interp

Pf (
∏

) → Is(l)

F (l) = f and

Pf (
∏

) → E-Interp(l)

Fig. 5. Interpolations work together

A. Pruning CFG

When verifying real-world programs, there may exist some
locations in a CFG which can never reach any error location.
For instance, for the example program Exa.c in Fig. 1, L8

and L9 in the CFG can never reach the error location L11. To
avoid exploring these locations when verifying the program,
we prune the CFG by removing these locations and the relative
control flow edges before generating the ART. To do that, we
start from the error location and traverse the CFG against
the flow of control in depth-first order; then we remove all of
edges and locations which are not visited. With the aid of such
a pruning strategy, the state space explored when utilizing all
the three kinds of interpolations shown in Fig. 6 can be further
reduced by eliminating the suffix of P1 starting from L7, as
depicted in Fig. 7.

B. Weight-Guided Search Strategy

As discussed in the previous section, a safety interpolant
works only when it is full. Hence, the earlier full safety-
interpolants are formed, the better the effect will be. The

intuition is that if one side of a branch is explored, we expect
to explore the other side as early as possible so as to form full
interpolants. To achieve the goal, we introduce an attribute
weight to transitions of a CFG. When generating an ART, the
branch with the largest weight will be explored first. Note
that the default weight value of each transition of a CFG is
undefined (denoted as ⊥).

Throughout the verification process, for a transition t :
(l, op, l′), we reset
• weight(t) = 0 if F (l′) is changed from h to f ;
• weight(t) = |{(l′,−,−) | (l′,−,−) is a succeeding tra-

nsition of t}| − 1 if l′ is the last reachable state in the
current path of the ART and F (l′) = h.

• weight(t) = Σweight((l′,−,−)) 6=⊥weight((l
′,−,−))+|{(l′

,−,−) | weight((l′,−,−)) = ⊥}| for any t : (l, op, l′),
if the weight value of some transition departing from l′

is changed.
Note that a weight value can be an integer larger than 0

(denoted (>0)), ⊥, and 0. Here we decree: (>0) > ⊥ > 0. If
the weight values of all the possible transitions are the same,
we just randomly explore one the them.

As an example, for the CFG in Fig. 8, the weight of all edges
are undefined, initially. When P1 is explored as shown in Fig. 8
(1), the weight of all the reachable edges are updated. Then, P2

is explored as shown in Fig. 8 (2). Since L11 is unreachable,
no weights are updated. Subsequently, in the third run, P3,
the real counterexample, is explored under the rule since the
weight values of both (L2, s > 1, L4) and (L6, !(a < 3), L11)
are ⊥ while those of their opposites are both 0. Note that
without the guidance of weight values, in the worst case, 4
paths are required to be explored in order to find the real
counterexample.

V. IMPLEMENTATION AND EXPERIMENTS

We have implemented the proposed interpolations and
optimization strategies in a tool called INTERPCHECKER,

Fig. 6. Explored paths with all interpolations

Fig. 7. Explored paths by pruning strategy

by building on the open source software model checker
CPAChecker [13] (ABE configuration [16]) which supports
reachability interpolation aided CEGAR verification. Our tool
augments CPAChecker with safety interpolations and error
interpolations, as well as the optimizing strategies proposed
in Section IV. Note that ABE configuration of CPAChecker
combines predicate abstraction with CEGAR to verify the
programs. Almost all of the new features (some of them are
not publicly available) [38], [39] of CPAChecker are also
implemented based on this configuration.

To evaluate the proposed interpolations in the safety ver-
ification of programs, we selected 11 packages, as shown
in Table I, from the benchmark suite of SV-COMP1 where
a large number of programs cannot be successfully verified
within a specified time bound. These 11 packages constitute
the category “Device Drivers Linux 64” in SV-COMP.

1https://github.com/sosy-lab/sv-benchmarks/tree/master/c

All experiments in this paper were done on a Linux virtual
machine, which is configured on a PC running octa-core
Windows 7 with 4 GHz and 64GB RAM. The virtual machine
applies Ubuntu 12.04 LTS operation system with 4GHz and
4GB RAM.

Table I describes the results of the original CPACheck-
er (ABE) and another three tools, Smack+Corral [36],
UAutomizer[5], and SATABS [37], which perform well in
the competitions. The third column of Table I gives the
number of programs contained in each package, and the fourth
column gives the total number of lines of programs in each
package. The remaining four columns, give the respective
numbers of programs which are successfully verified in 15
mins, using CPAChecker (ABE), Smack+Corral, SATABS,
and UAutomizer. As shown in Table I, CPAChecker (ABE)
performs best with still 33.1% of the programs fail to be
verified within the time bound.

Fig. 8. Exploration with weight

TABLE I
BENCHMARK PROGRAMS

No. Package-names #Programs #KLOC CPAChecker(ABE) Smack+Corral SATABS UAutomizer
#Suc. #Suc. #Suc. #Suc.

1 ldv-linux-3.7.3 11 246.7 7 6 0 0
2 ldv-challenges 15 448.8 3 3 0 0
3 ldv-validator-v0.6 21 212.8 10 13 2 0
4 ldv-validator-v0.8 27 265.5 7 20 0 0
5 ldv-linux-3.12-rc1 40 478.2 11 28 5 0
6 ldv-linux-3.0 41 755.2 25 35 15 13
7 ldv-consumption 163 2720.8 74 24 85 3
8 ldv-commit-tester 56 477.0 34 34 29 20
9 ldv-linux-3.16-rc1 159 2134.7 45 60 97 0

10 ldv-linux-4.2-rc1 432 10040.8 53 107 13 26
11 ldv-linux-3.4-simple 1163 40763.4 1155 1087 1099 689

Total 2128 58543.7 1424 66.9% 1417 66.6% 1345 63.2% 751 35.3%

The most recent SV-COMP competitions [26], [27] also
show that CPAChecker [5] was the strongest performer on this
category2. Hence we benchmark the performance of our im-
plementations of safety interpolations and error interpolations
against CPAChecker (ABE). By comparison with CPAChecker
(ABE), it can embody directly the advantage of our approach.
Note that the result of CPAChecker presented in Table I might
be inconsistent with the one reported in the competitions
because of different experimental environment.

To examine the effectiveness of the various interpolations,
we verify the programs in Table I using our tool in 5
different modes, namely, R+E, R+S, R+S+E, R+S+W, and
R+S+E+W, where R, E and S denote R-Interp, E-Interp, and S-
Interp respectively; and W indicates the weight-guided search
strategy. (Recall that weight-based searching strategy is only
for the formation of safety interpolants.) Table II presents
the verification results where the sub-column #Suc. gives the
number of programs that are verified successfully, and the
sub-column #T.o. gives the sum of programs that failed to be
verified within the time bound of 15 mins. It is emphasized

2This category is not included in SV-COMP 2017.

that a program is successfully verified with a tool indicates
that the verification results (SAFE or UNSAFE) is correctly
reported within the given time bound. That is false positives
or false negatives are not counted in the sub-column #Suc.

From the experimental results, we observe that:

(1) Verification using each of R+E (R-Interp and E-Interp)
and R+S (R-Interp and S-Interp) is more accurate than
verification using only R (R-Interp).

(2) More programs are verified using R+S+E than either R+E
or R+S.

(3) Verification using R+S+W is more accurate than R+S.
(4) Verification using R+S+E+W is the most accurate.

Thus we can say that each of the proposed interpolations and
the optimization strategies improves the accuracy, and hence
effectiveness, of program verification. Further, false positive
may occur in principle since the interpolations are over-
approximations of a program. However, our experience shows
that SMTInterpol (tool for computing Craig interpolation in
CPAChecker) always produces good predicates in practice.
In the experimental results, no false positives are introduced
because of the new interpolations.

TABLE II
COMPARING WITH R

No. R(CPAChecker ABE) R+E R+S R+S+E R+S+W R+S+E+W
#Suc. #T.o. #Suc. #T.o. #Suc. #T.o. #Suc. #T.o. #Suc. #T.o. #Suc. #T.o.

1 7 4 7 4 7 4 7 4 7 4 7 4
2 3 12 3 12 3 12 3 12 4 11 4 11
3 10 11 10 11 10 11 10 11 10 11 11 10
4 7 20 7 20 7 20 8 19 9 18 10 17
5 11 29 12 28 13 27 12 28 15 25 16 24
6 25 16 25 16 25 16 30 10 25 16 29 11
7 74 89 74 89 76 87 76 87 78 85 77 86
8 34 22 39 17 39 17 41 15 39 17 40 16
9 45 114 48 111 67 92 68 91 76 83 79 80

10 53 379 58 374 61 371 64 368 78 354 80 350
11 1155 8 1156 7 1155 8 1156 7 1157 6 1157 6

Total 1424 704 1439 689 1463 665 1475 653 1498 630 1510 618
66.9% 33.1% 67.6% 32.4% 68.8% 31.2% 69.3% 30.7% 70.4% 29.6% 71% 29%

TABLE III
TIME CONSUMPTION

No. Time consumption (s)
R R+E R+S R+S+E R+S+W R+S+E+W

1 3950.1 3872.7 4582.1 4675.7 4511.7 4568.5
2 10951.6 10935.6 10944.5 10960.6 10025.3 10029.3
3 10559.1 10355.3 10533.5 9863.3 10735.2 9877.5
4 18421.5 18423.6 18418.6 17629.2 17069.7 16216.5
5 26510.1 25927.6 25210 25514.3 23058.4 22221.5
6 14586.6 14617.1 14606.2 10198.9 15122.9 11260.5
7 82261.3 82035.2 80796.7 80852.4 79918.4 80698.6
8 20105.1 15799.5 15752.7 14077 15633.4 14828.7
9 105364.2 102110.2 84636.7 84086 77140 74989.9
10 344786.1 340653.6 339106 338033.6 325391.5 325703
11 8816.5 7822.3 8772.5 7894.1 6287.9 6273.6

Total 646312.2 632552.7 613359.5 603785.1 584894.4 576667.3

In addition to the number of programs which are success-
fully verified with different kinds of interpolations, we are also
interested in the ratio of programs successfully verified using
S-Interp and E-Interp, to those successfully verified using
the original CEGAR+R-Interp (CPAChecker ABE). Similarly
we are interested in the ratio of programs that fail to be
verified using S-Interp and E-Interp, to those that fail to be
verified using the original CEGAR+R-Interp. Fig. 9 (a) shows
the percentage (Nsuc/1424) of the programs verified under
each mode; and Fig. 9 (b) shows the percentage (Nfail/704)
of the programs that fail to be verified under each mode.
Note that Nsuc is the number of verified programs (in the
respective modes) from the original set of R-Interp-verified
1424 programs, and Nfail is the number of the unverified
programs (in the respective modes) from the original set of
R-Interp-unverified 704 programs.

As shown in Fig. 9 (a), 100% of the programs verified under
R-Interp remain successfully verified under each of R+E, R+S,
and R+E+S modes, and 98.8% of them remain successfully
verified under R+S+W, and R+E+S+W. The rate is lower than
the modes without weight-guided searching strategy, since the
order in which the branches are explored are changed. As
shown in Fig. 9 (b), the ratios of the unverified programs under
R+E, R+S, and R+E+S to the unverified programs under R

are in descending order, and the rate is lower when the weight
strategy is utilized.

We also compare the time consumption of each mode. As
shown in Table III, R+E and R+S take less time than R;
R+E+S takes less time than both R+E and R+S; R+S+W
takes less time than R+S; and R+S+E+W takes less time than
all others. Thus, both the interpolations and the optimization
strategy are useful in improving the runtime efficiency of
software model checking.

VI. RELATED WORK

In recent years, Craig interpolation has been extensively
applied to software model checking, symbolic execution, and
testing. An important advantage of these applications is a much
reduced program state space.

A. Program Verification

In pioneering work [14], McMillan computes interpolants to
build unbounded symbolic model checking of finite state sys-
tems according to the refutations (counterexamples) produced
in bounded model checking. The approach was extended to
the verification of infinite state systems in [11] by employing
lazy abstraction to refine the abstract model on demand, thus
producing a sequence of interpolants according to spurious

Fig. 9. Experimental results

counterexamples. Vizel and Grumberg [15] then applied the
idea of interpolant sequence to SAT-based unbounded model
checking. A three-step interpolant computation process was
proposed by Cabodi, Loiacono and Vendraminetto [18] to
reduce the size of the generated Craig interpolants in SAT-
based unbounded model checking. It improves over standard
interpolation by reducing memory and time. Chu and Jaffar
[23] proposed a framework to synergize partial order reduction
with state interpolation, so as to reduce the state explosion
problem in the safety verification of concurrent programs.
Wachter, Kröning and Ouaknine [24] combined lazy abstrac-
tion with interpolants and partial-order reduction: when a
spurious counterexample is found, Craig interpolation is used
to refine and adjust the precision. The approach by Brillout et
al. [19] uses an expressive interpolating calculus that extends
to the full theory of quantifier-free Presburger arithmetic with
uninterpreted predicates. This setting enables the synthesis
of quantified invariants about arrays. The algorithm WHALE
introduced by Albarghouthi et al. [20] uses interpolation
to compute a function summary by generalizing from an
under-approximation of a function. It can verify recursive
programs and produce modular safety proofs. Cardinality-
constrained extension of Craig interpolation is proposed by
von Gleissenthall et al. [17] to synthesize formulas that satisfy
a given cardinality constraints based on CEGAR. In [33], it
casts the new concept of error invariants for fault localization.
An error trace provides sufficient information to repeat the
program’s behavior that violates the correctness assertion. In
order to localize the cause of an error efficiently, it uses error

invariants to rule out irrelevant transitions from an error trace
and compact the actual cause of an error. Error invariants are
also computed by Craig interpolants. The work in [34] extracts
interpolants in both forward and backward manner and exploits
them for an interwined approximated forward and backward
reachability analysis. It applies Craig Interpolants to obtain
useful information, that is, computes forward and backward
interpolants. In this paper, Error interpolants represent an over-
approximation of the pre-image of the bad states. We extract
the useful information from spurious counterexample paths by
Craig Interpolants.

B. Abstraction-Refinement-Based Verification

Henzinger et al. [25] have successfully applied Craig inter-
polation to efficiently construct, given an infeasible abstract
error trace, a refined abstraction that removes the trace. The
approach has been integrated into an explicit-value analysis,
which tracks explicit values for a specified set of variables, by
Beyer and Löwe [16]. They use Craig interpolation to refine
spurious counterexamples in order to construct more precise
abstractions of the explicit-value domain. In this paper, we
refer to interpolants thus employed in [25], [16] as reachability
interpolants. The difference is that we additionally compute
safety interpolants and error interpolants from spurious coun-
terexamples, so as to further reduce the state space to be
explored when verifying safety properties of programs.

C. Symbolic Execution and Testing

In [21], Jaffar, Murali and Navas applied interpolations to
program testing to subsume paths with similar actions. In
symbolic execution, when the search fails to reach a goal, an
annotation on the CFG of the program, called lazy annotation,
is constructed by Craig interpolation. These notations are used
to check whether the current state can reach the goal [22].

VII. CONCLUSION

In this paper, we have introduced new applications of Craig
interpolation designed to systematically reduce the program
state space to be explored in safety verification. Experiments
on a large number of benchmark programs show that the
new interpolants and the auxillary optimization strategies are
effective in improving scalability of software model checking.

In future work, we plan to develop further optimization tech-
niques, and extend our approach to verify liveness properties of
programs. An important problem is the reduction of overheads
in the construction of interpolants throughout the verification
process.

ACKNOWLEDGEMENT

This research is supported by the National Natural Sci-
ence Foundation of China under grant No. 61420106004 and
61732013. The work was done partially while Duan and Ong
were visiting the Institute for Mathematical Sciences, National
University of Singapore in 2016. The visit was partially
supported by the Institute.

REFERENCES

[1] Ranjit Jhala and Rupak Majumdar. Software model checking. ACM
Computing Surveys, 41(4): 21, 2009.

[2] Edmund M Clarke, Orna Grumberg, and David E Long. Model checking
and abstraction. ACM transactions on Programming Languages and
Systems (TOPLAS), 16(5): 1512-1542, 1994.

[3] Edmund M Clarke, William Klieber, Miloš Nováček, and Paolo Zuliani.
Model checking and the state explosion problem. In LASER Summer
School on Software Engineering, pages 1-30. Springer, 2011.

[4] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, H. Veith, Counterexample-
guided abstraction refinement for symbolic model checking, J. ACM, vol.
50, no. 5, pp. 752-794, 2003.

[5] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Gregoire
Sutre. Software Verification with Blast. Proceedings of the 10th SPIN
Workshop on Model Checking Software (SPIN), LNCS 2648, Springer-
Verlag, pages 235-239, 2003.

[6] T. Ball and S.K. Rajamani. The SLAM project: debugging system
software via static analysis. In POPL 02: Principles of Programming
Languages, pages 1-3. ACM, 2002.

[7] Cong Tian, Zhenhua Duan, and Zhao Duan. Making CEGAR
More Efficient in Software Model Checking. In IEEE Transactions
on Software Engineering (TSE), Vol 40(12), 1206-1223, Dec 2014.
DOI:10.1109/TSE.2014.2357442, 2014.

[8] Cong Tian and Zhenhua Duan. Detecting Spurious Counterexamples
Efficiently in Abstract Model Checking. In the 35th International
Conference on Software Engineering (ICSE 2013), 202-211, 2013.

[9] Dirk Beyer and Philipp Wendler. Algorithms for software model check-
ing: Predicate abstraction vs. impact. In Formal Methods in Computer-
Aided Design (FMCAD), 2012, pages 106-113, IEEE, 2012.

[10] William Craig. Linear reasoning. a new form of the Herbrand-Gentzen
theorem. The Journal of Symbolic Logic, 22(03): 250-268, 1957.

[11] Kenneth L McMillan. Lazy abstraction with interpolants. In Internation-
al Conference on Computer Aided Verification, pages 123-136, Springer,
2006.

[12] Dirk Beyer, Alessandro Cimatti, Alberto Griggio, M Erkan Keremoglu,
and Roberto Sebastiani. Software model checking via large-block
encoding. In Formal Methods in Computer-Aided Design, 2009. FMCAD
2009, pages 25-32, IEEE, 2009.

[13] Dirk Beyer, M Erkan Keremoglu, and Philipp Wendler. Predicate
abstraction with adjustable-block encoding. In Proceedings of the 2010
Conference on Formal Methods in Computer-Aided Design, pages 189-
198, FMCAD Inc, 2010.

[14] Kenneth L McMillan. Interpolation and SAT-based model checking. In
International Conference on Computer Aided Verification, pages 1-13,
Springer, 2003.

[15] Yakir Vizel and Orna Grumberg. Interpolation-sequence based model
checking. In Formal Methods in Computer-Aided Design, 2009. FMCAD
2009, pages 1-8, IEEE, 2009.

[16] Dirk Beyer and Stefan Löwe. Explicit-state software model checking
based on CEGAR and interpolation. In International Conference on Fun-
damental Approaches to Software Engineering, pages 146-162, Springer,
2013.

[17] Klaus von Gleissenthall, Boris Köpf, and Andrey Rybalchenko. Symbol-
ic polytopes for quantitative interpolation and verification. In Internation-
al Conference on Computer Aided Verification, pages 178-194, Springer,
2015.

[18] Gianpiero Cabodi, Carmelo Loiacono, and Danilo Vendraminetto. Op-
timization techniques for Craig interpolant compaction in unbounded
model checking. Formal Methods in System Design, 46(2):135–162, 2015.

[19] Angelo Brillout, Daniel Kroening, Philipp Rümmer, Thomas Wahl.
Program verification via Craig interpolation for Presburger arithmetic with
arrays. In VERIFY@ IJCAR, pages 31-46, 2010.

[20] Aws Albarghouthi, Arie Gurfinkel, and Marsha Chechik. Whale:
An interpolation-based algorithm for inter-procedural verification. In
International Workshop on Verification, Model Checking, and Abstract
Interpretation, pages 39-55, Springer, 2012.

[21] Joxan Jaffar, Vijayaraghavan Murali, and Jorge A Navas. Boosting
concolic testing via interpolation. In Proceedings of the 2013 9th Joint
Meeting on Foundations of Software Engineering, pages 48-58, ACM,
2013.

[22] Kenneth L McMillan. Lazy annotation for program testing and verifica-
tion. In International Conference on Computer Aided Verification, pages
104-118, Springer, 2010.

[23] Duc-Hiep Chu and Joxan Jaffar. A framework to synergize partial order
reduction with state interpolation. In Haifa Verification Conference, pages
171-187, Springer, 2014.

[24] Björn Wachter, Daniel Kroening, and Joel Ouaknine. Verifying multi-
threaded software with impact. In FMCAD, pages 210–217, 2013.

[25] T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan. Abstrac-
tions from proofs. In Proc. POPL, 2004, pp. 232-244.

[26] Dirk Beyer. Software verification and verifiable witnesses (Report on
SV-COMP 2015). In International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, pages 401-416, Springer,
2015.

[27] Dirk Beyer. Reliable and reproducible competition results with benchex-
ec and witnesses (report on sv-comp 2016). In International Conference
on Tools and Algorithms for the Construction and Analysis of Systems,
pages 887-904, Springer, 2016.

[28] Thomas A Henzinger, Ranjit Jhala, Rupak Majumdar, and Grégoire
Sutre. Lazy abstraction. In In POPL, pages 58-70, ACM, 2002.

[29] Dirk Beyer, Georg Dresler, and Philipp Wendler. Software verification
in the google app-engine cloud. In International Conference on Computer
Aided Verification, pages 327-333, Springer, 2014.

[30] Bugs found in linux kernel with CPAChekcer: https://cpachecker.sosy-
lab.org/achieve.php

[31] Emanuel Kolb, Ondřej Šerỳ, and Roland Weiss. Applicability of the blast
model checker: An industrial case study. In International Andrei Ershov
Memorial Conference on Perspectives of System Informatics, pages 218–
229, Springer, 2009.

[32] Dirk Beyer. Competition on software verification. In International
Conference on Tools and Algorithms for the Construction and Analysis
of Systems, pages 504–524. Springer, 2012.

[33] Evren Ermis, Martin Schäf, and Thomas Wies. Error invariants. In
International Symposium on Formal Methods, pages 187–201. Springer,
2012.

[34] Yakir Vizel, Orna Grumberg, and Sharon Shoham. Intertwined forward-
backward reachability analysis using interpolants. In International Con-
ference on Tools and Algorithms for the Construction and Analysis of
Systems, pages 308–323. Springer, 2013.

[35] David Gries. The science of programming. Springer Science & Business
Media, 2012.

[36] Arvind Haran, Montgomery Carter, Michael Emmi, Akash Lal, Shaz
Qadeer, and Zvonimir Rakamarić. Smack+ corral: A modular verifier. In
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, pages 451–454. Springer, 2015.

[37] Gérard Basler, Alastair Donaldson, Alexander Kaiser, Daniel Kroening,
Michael Tautschnig, and Thomas Wahl. Satabs: a bit-precise verifier for
c programs. In International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, pages 552–555. Springer, 2012.

[38] Dirk Beyer, Stefan Löwe, and Philipp Wendler. Refinement selection.
In Model Checking Software, pages 20–38. Springer, 2015.

[39] Daniel Wonisch. Block abstraction memoization for cpachecker. In
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, pages 531–533. Springer, 2012.

