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Abstract—Software model checking constitutes an undecidable
problem and, as such, even an ideal tool will in some cases fail
to give a conclusive answer. In practice, software model checkers
fail often and usually do not provide any information on what
was effectively checked. The purpose of this work is to provide
a conceptual framing to extend software model checkers in a
way that allows users to access information about incomplete
checks. We characterize the information that model checkers
themselves can provide, in terms of analyzed traces, i.e. sequences
of statements, and safe cones, and present the notion of execution
reports, which we also formalize. We instantiate these concepts
for a family of techniques based on Abstract Reachability Trees
and implement the approach using the software model checker
CPAchecker. We evaluate our approach empirically and provide
examples to illustrate the execution reports produced and the
information that can be extracted.

I. INTRODUCTION

Software model checking [23] constitutes an undecidable
problem and, as such, even an ideal tool will in some cases
fail to give a conclusive answer. In practice, undecidability
is not the only issue. The vast state spaces can lead to the
complete exhaustion of system resources or impractically long
execution times.

Software model checking has been making steady progress
during the past decade and today’s state-of-the-art software
model checkers can handle specific industrial problems par-
ticularly well. For instance SDV [1] is highly successful in
finding bugs in Windows device drivers.

Unfortunately, some instances take hours of computation,
only to inform the user that no counterexample was found
within the allotted time or memory limit. A user facing this
situation is confronted with several high-level questions about
what the verification attempt actually achieved. Should she
retry with a longer time limit? How much longer? Is the tool
making any progress on the instance? Maybe she should try
another technique?

Our goal is to extend and complement existing work on
partial verification by providing a different way for users to
observe the work performed by the software model checker.
An important step towards our goal is to be able to answer
much simpler inquiries about incomplete verification attempts.

We believe answering the following informal questions
would be valuable for a user after an inconclusive verification
attempt:
• Can partial safety assurances about the system be ex-

tracted from an incomplete verification attempt? For

instance, a user that receives a report showing that a
whole class of relevant behaviors has been exhaustively
checked may use this as part of a dependability case.

• Can behavior that was not analyzed be explored by a
user? For instance, a user that can observe that relevant
classes of behavior have not even been looked at by the
checker, let alone verified, may decide that what seemed
like a sufficiently thorough analysis is not such (e.g.,
an inexperienced user would benefit from knowing that
a tool based on BMC with a fixed bound can some-
times give up without ever exploring anything beyond
an initialization loop[24]). Moreover, a more experienced
user attempting full verification may decide that a drastic
change in the verification strategy is needed (e.g., another
tool, abstracting the system-under-verification, etc.).

By incomplete verification attempt we refer to a situation
when a software model checker fails to confirm any counterex-
ample as feasible and also fails to prove the instance safe.

In this paper we explore answering the first question using
the notion of safe cone. A safe cone is a finite trace for which
any extension has been analyzed in the incomplete verification
attempt. A minimal feasible safe cone represents compactly
a set of traces that have been successfully verified by the
checker. For the second question we build on the notion of
a frontier. A frontier trace is a feasible finite trace that was
analyzed by the checker but none of its feasible extensions
were. Frontier traces represent compactly classes of traces that
were not explored by the checker.

Our hypothesis is that execution reports that under-ap-
proximate the set of minimal feasible safe cones and the
set of maximal feasible frontier traces can be computed in
reasonable time (with respect to the cost of verification) and
can provide non-trivial feedback on incomplete verification
attempts.

We will start by illustrating with examples the information
we wish to extract and defining a possible formalization of the
idealized properties it should have. Subsequently, we define
and discuss Execution Reports, an under-approximation of the
ideal output. Afterwards, we instantiate these concepts for the
family of techniques based on Abstract Reachability Trees
(ART) [21], and discuss a proof-of-concept implementation
built as an extension of CPAchecker [7]. We also include an
empirical evaluation of our implementation.

We conclude this paper with a discussion of related work
and how our approach compares to existing techniques fol-
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1 int nondet();
2 int min(int a[], int n) {
3 int res = a[0];
4 for (int i=0;i<n;++i)
5 if (a[i] < res) res = a[i];
6 return res;
7 }
8 void init_vector(int a[], int n) {
9 int i = 0;

10 for (i=0;i<n;++i) {
11 a[i] = nondet();
12 }
13 }
14 void test_min(int large) {
15 int n;
16 if (large) {
17 n = 20;
18 } else {
19 n = 1;
20 }
21 int a[20];
22 init_vector(a, n);
23 int min_elem = min(a, n);
24 assert(min_elem <= a[0]);
25 }

Figure 1: Harness for method min

lowed by a few concluding remarks.

II. MOTIVATION: WHAT HAS AND HAS NOT BEEN
ANALYZED?

We frame our work in the context of a verification attempt
being interrupted before its completion.

Many verification techniques work by incrementally ex-
ploring the state space. This is the case for software model
checking techniques and implementations like BMC [11],
lazy predicate abstraction [21], inlining and unrolling based-
techniques like Corral [25], DSE [12] and, in general, ART-
based implementations of various techniques, including ex-
plicit value analysis [8] and CEGAR variants of some of the
previous among other.

In these techniques and implementations one can understand
that incremental exploration leads to an incremental but silent
increase of analyzed traces, i.e. sequences of statements,
as depicted in the examples that follow. Moreover, certain
statement traces will reach a portion of the behavior space
that has been fully verified, implicitly defining a safe cone
containing all possible ways of extending such traces.

Understanding that partial explorations provide safety as-
surances, we are particularly interested in the frontiers defined
by minimal safe cone traces and maximal analyzed statement
traces.

We illustrate these concepts with a verification attempt of
the instance in Figure 1 with bounded model checking.

Example 1 (Analyzed behaviors in BMC). The code snippet
in Figure 1 corresponds to a parametric test harness exercising
the method min. The harness input as well as the result of

method nondet are interpreted by the verification technique
as non-deterministic. Our verification attempt, in this example,
is not interrupted due to reaching a resource limit but instead
due to using a bounded model checker [11] with a bound on
the number of loop iterations set to 3.

Using this configuration, the tool would perform an exhaus-
tive exploration but would disregard any executions involving
the fourth loop iteration of the for-loop in init_vector.

Any sequence of statements reaching line 19 (n = 1;) will
necessarily satisfy the safety property, since the incomplete
verification attempt would not find any assertion failures and
the loop within init_vector can be exhaustively analyzed.
That means the sequence of statements consisting of lines 15
(int n;), 16 (if (large)) and 19 (n = 1;) defines a
safe cone, because every continuation of the statement trace is
also safe. The former trace is also minimal in the sense that
the trace resulting from removing the last statement, line 19,
is not a safe cone.

Moreover, any execution that carries out line 10 (for
(i=0; i<n; ++i)) at most 4 times (3 full iterations and
1 bound check) is also analyzed by the incomplete verification
attempt. In contrast, any sequence containing line 10 at
least 5 times is ignored by BMC and therefore will not
be examined. Therefore, analyzed does not contain traces
exercising line 10 5 times or more. That is, the trace composed
of lines 15, 16, 17, 21, 22, 9 and then 4 repetitions of lines 10
(for (i=0;i<n;++i)) and 11 (a[i] = nondet();)
is a maximal analyzed trace. 4

We will now revisit these concepts from an entirely different
technique: lazy predicate abstraction [21].

Lazy predicate abstraction, the algorithm used by BLAST
[21], consists of two alternated phases. The first phase gener-
ates, on-the-fly, a reachability tree whose nodes correspond
to vertices of the Control Flow Automaton1 (CFA) of the
program. This process goes on until exhaustively exploring the
tree or until reaching a node that corresponds to an assertion
failure. Each node is associated with a predicate, initially true,
that must hold for any path reaching that node and helps prune
the successors that are not reachable. If, and when, a node that
represents an error is reached, the second phase deals with
analyzing the potential counterexample to determine whether
the path reaching the error node is feasible. If the latter
phase determines the potential counterexample is infeasible,
the reachability tree is refined by strengthening the predicates
associated to the appropriate nodes so that the path reaching
the error node is pruned. Lastly, when a counterexample is
produced, it can be checked with a more precise analysis to
ensure its feasibility. However, if this additional check fails,
the search is abandoned.

Example 2 (Analyzed behaviors in lazy predicate abstraction).
The code presented in Figure 2, reproduced from the paper

1A Control Flow Automaton, similar to a Control Flow Graph, captures the
control flow of the program, where nodes correspond to locations and edges
are labeled with statements.



1 int nondet();
2 int main() {
3 int p = nondet();
4 if (p) {
5 int i;
6 for (i = 0; i < 1000000; i++);
7 assert(i >= 1000000);
8 } else {
9 int x = 5;

10 int y = 6;
11 int r = x * y;
12 assert(r >= x);
13 }
14 return 0;
15 }

Figure 2: Non-linear arithmetic. Reproduced from CMC pa-
pers [5], [6].

presenting Conditional Model Checking [5], [6], contains a
non-linear safety property. As explained, the construction of
the reachability tree will reach the error node and the second
phase would attempt to verify the feasibility of the path leading
to it. The feasibility check is usually implemented by creating
a verification condition to be checked by an underlying SMT
solver and, therefore, inherits the latter’s limitations. In partic-
ular, SMT solvers usually cannot handle non-linear arithmetic
and, instead, model multiplication as uninterpreted functions.
Concretely, the SMT solver would not be able to prove the path
infeasible. However, the subsequent counterexample feasibility
check would prove the path is actually infeasible, causing the
exploration to stop.

Given the failure to analyze the assertion, the following is a
maximal analyzed trace: lines 3 (int p = nondet();), 4
(if(p)), 9 (int x = 5;), 10 (int y = 6;) and 11
(int r = x * y;).

On the other hand, the then branch of the if-statement
can be successfully verified with this technique, since tracking
the predicate i < 1000000 suffices to prove the assertion
always holds when execution leaves the for-loop.

The successful verification of the then branch would make
the trace composed of lines 3 (int p = nondet();), 4
(if (p)) and 5 (int i;) a safe cone. 4

A. Execution Reports (ERs)

We now formally define execution reports as an under-
approximation of the set of safe cones and frontier traces.
These definitions rely on two predicates (analyzed? and
isSafeCone?) whose definition depends greatly on the under-
lying verification technique used in the incomplete verification
attempt. Consequently, in this section we simply provide
properties that predicates analyzed? and isSafeCone? ought
to satisfy. In the next section we ground the definition of these
predicates for Abstract Reachability Tree based verification
techniques [21].

Examples 1 and 2 illustrate how the notions of analyzed

and safe cone apply to diverse techniques. We will capture
these notions as predicates over traces in the following defi-
nitions.

Let the alphabet Σ contain all statements in a program,
making π ∈ Σ∗ a sequence of statements.

Property 1. The predicate analyzed? : Σ∗ → Bool satisfies
the following property, where · stands for concatenation:
∀π, π′ ∈ Σ∗. ¬analyzed?(π)→ ¬analyzed?(π · π′)

Property 1 aims to formalize the notion of incrementality
that we implicitly used throughout the examples. Note that
this property is logically equivalent to its contrapositive, that
is, analyzed?(π · π′) → analyzed?(π), as expected of an
incremental exploration.

Property 2. The predicate isSafeCone? : Σ∗ → Bool satis-
fies the following property, where · stands for concatenation:
∀π, π′ ∈ Σ∗. isSafeCone?(π)→ isSafeCone?(π · π′)

Property 2 reflects our notion of safe cone as a trace
reaching a fully analyzed portion of the behavior space. Any
trace extension will necessarily also be a safe cone.

Property 3. The predicate isSafeCone? : Σ∗ → Bool
satisfies the following property:
∀π ∈ Σ∗. isSafeCone?(π)→ analyzed?(π)

Property 3 formalizes the connection between the two
predicates, in particular how isSafeCone?(π) subsumes
analyzed?(π).

Definition 1. Given a trace π ∈ Σ∗ and a program P , we
introduce the following predicate:
feasibleP(π) holds iff there exists a concrete execution of

the program P that executes π.

Given that we will always refer to a single program at a
time, the system-under-analysis, we will omit the subscript.

Property 4. Given ϕ : Σ∗ → Bool, a boolean predicate
that captures the safety property of interest, the predicate
analyzed? : Σ∗ → Bool satisfies the following property:
∀π ∈ Σ∗. analyzed?(π) ∧ feasible(π)→ ϕ(π)

Property 4 is at the core of interpreting analyzed traces
as providing safety assurances. This property also holds for
isSafeCone? due to Property 3. The predicate feasible(π) in
the antecedent places the focus of safety assurances on feasible
traces, that is, traces that correspond to actual behaviors of the
system-under-analysis.

Recall that we provide properties that constrain the predi-
cates analyzed? and isSafeCone? but not concrete defini-
tions of these predicates as specific definitions depend on the
underlying verification technique. We now define the set of
safe cones and frontier traces of an incomplete verification
attempt.

Definition 2. The set SafeCone is defined as follows:
SafeCone = {π · s|π ∈ Σ∗, s ∈ Σ,¬isSafeCone?(π) ∧

feasible(π · s) ∧ isSafeCone?(π · s)}



Definition 3. The set Frontier is defined as follows:
Frontier = {π · s|π ∈ Σ∗, s ∈ Σ, analyzed?(π) ∧

feasible(π · s) ∧ ¬analyzed?(π · s)}

Definitions 2 and 3 are related to Properties 2 and 1
respectively, since the incrementality of the analysis is key
to the search for maximal analyzed traces, as in the set
Frontier, and minimal safe cone traces, as in SafeCone.

The set SafeCone can provide safety assurances about the
system, as in Example 2, where the then branch of the if-
statement has been fully verified.

Conversely, Frontier can suggest shortcomings in the
incomplete verification attempt. For instance, in Example 1,
the existence of a trace π ∈ Frontier that did not even go
past the initialization loop suggests an important part of the
test harness was not sufficiently analyzed.

The conclusions obtained from inspecting both sets can
be useful to assess the progress achieved throughout the
incomplete verification attempt.

We anticipated the intuitive notion captured by these def-
initions in Examples 1 and 2, but there is one important
consideration that we omitted so far and now included in the
definitions: feasibility.

Feasibility is relevant because, by definition, infeasible
traces do not correspond to system behaviors. Without feasi-
bility guarantees, interpreting each trace would require careful
analysis, because it could mislead a user into either increasing
or decreasing her confidence in the system-under-analysis.

Definition 4. An execution report is a tuple (S, F ) where S ⊆
SafeCone and F ⊆ Frontier.

Definition 4 defines execution reports as under-approxima-
tions of the sets SafeCone and Frontier, allowing empty
sets as valid execution reports.

The sets SafeCone and Frontier can grow quickly,
making it extremely inefficient to compute the full sets.
Furthermore, some of the traces can be redundant, in a sense,
if they only differ in a few statements, making it sensible to
under-approximate.

Ideally, it would be desirable to characterize these under-
approximation. However, we opted in this work for a notion
of completeness with respect to statements in the code that
does not fully characterize the sets S and F but does not
allow, in the general case, empty sets as valid execution
reports: For both sets, SafeCone and Frontier, we require
that if a trace π ∈ SafeCone (resp. Frontier) ending in a
specific location l exists, then there exists π′ ∈ S (resp. F )
and π′ also ends in l. This completeness guarantee does not
force extremely large sets of paths to be reported and loosely
resembles a notion of coverage. Our algorithm to generate
execution reports guarantees this completeness criterion.

III. REPORTS FOR ART-BASED IMPLEMENTATIONS

Throughout this section we will explain how we generate
Execution Reports for Abstract Reachability Tree (ART)-based
[21] techniques.

Figure 3: Architecture of ER generation.

ARTs constitute a relevant intermediate data structure used
in verification. The variety of techniques implemented using
ARTs makes them ideal for our proof-of-concept implemen-
tation. ART-based implementations comprise a wide range
of dissimilar techniques, encompassing lazy abstraction [21],
BMC [11], explicit value analysis [8] and CEGAR variants of
some of the previous [8], among other.

In order to explain how we generate Execution Reports
for ART-based techniques, we first define analyzed? and
isSafeCone? for these techniques in subsection III-A.

We will use Assumption Automata, an existing machine-
readable abstract representation of ARTs, for our implemen-
tation. In subsection III-B we briefly explain Assumption
Automata and their two states most relevant to us, TRUE and
FALSE, which we will use to obtain safe cones and frontier
traces, respectively.

Finally, in subsection III-C we will explain how we compute
Execution Reports using an Assumption Automaton, produced
by an earlier incomplete verification attempt, and the system-
under-verification as input, as depicted in Figure 3.

A. ARTs as intermediate data structures

We have discussed how the concepts of analyzed and safe
cone, captured by predicates analyzed? and isSafeCone?
respectively, apply to example techniques. In this sub-section
we will instantiate these concepts to Abstract Reachability
Trees (ARTs) [21].

An ART is a tree whose nodes correspond to vertices of the
CFA of a program and each node is associated to an element
of an abstract domain. In the case of BLAST, that abstract
domain is a lattice of predicates.

ART-based algorithms consist of two phases, the first one
comprises an incremental generation of the ART and the
second phase involves a more thorough counterexample check.

For the purpose of stating which traces can be considered
analyzed we can ignore the abstract domain elements as-
sociated to each node. We can then think of an ART as a
tuple (G,W, q0,covered) where G = (S,Σ, δ) is a graph,
W ⊆ S represents a wait list, q0 ∈ S is the initial state,
covered : S → S captures subsumption between nodes, and
δ : S ×Σ→ S is a transition function. The graph G captures
the structure of the partially built ART. W is the wait list



that contains elements to be analyzed in order to continue the
construction of the ART. The function covered is necessary
to represent subsumption between nodes but is not total. We
say that a node e is covered by e′ iff covered(e) = e′.
Analogously, we consider that a node e is not covered iff
covered(e) is undefined. Successors of a subsumed node e
are not explored because the state space captured by e is also
represented by covered(e). Hence, subsumption is relevant
to defining which parts of the state space can be considered
explored.

To make the definitions easier to read, we will assume the
following invariant holds for ARTs relative to covered:

Property 5. ∀e ∈ S. such that covered(e) is defined, then
covered(covered(e)) is not defined.

Informally, this means that no node is covered by another
covered node.

In ART-based algorithms, a node e covered by e′ need not
be further analyzed because any error state found from e will
also be found from e′. However, a sequence of statements that
reaches e might not be a safe trace if it is possible to reach an
assertion failure from e′. In other words, the sub-tree rooted in
e cannot be considered exhaustively built unless that is also the
case for the sub-tree rooted in e′. This observation is crucial
to define what can be regarded as analyzed or safe cone.

We will extend δ as δ′ : (S∪{None})×Σ→ S∪{None},
with None /∈ S to make it total and resolve the covered
function transparently as follows:

δ′(q, s) =



δ(q, s) if δ(q, s) is defined and
covered(δ(q, s)) is not

covered(δ(q, s)) if both δ(q, s) and
covered(δ(q, s)) are defined

None otherwise

Due to Property 5, δ′(q, π) is never a covered node.
Moreover, we will adapt δ′ to traces with δ̂′ : S∪{None}×

Σ∗ → S ∪ {None} as follows:

Given q ∈ S ∪ {None}, s ∈ Σ and π ∈ Σ∗:

δ̂′(q, s) = δ′(q, s)

δ̂′(q, s · π) = δ̂′(δ′(q, s), π)

We will consider that analyzed?(π) holds for a trace π iff
no prefix of π reaches a node in W from the initial node. That
is:

analyzed?(π) iff ¬∃π′ ∈ Σ∗.isPrefix(π′, π)∧δ̂′(q0, π′) ∈W

Informally, we consider π analyzed when no prefix of π
reaches one of the states pending exploration, i.e. those in
W . The predicate analyzed? is clearly monotonic, satisfying
Property 1: ¬analyzed?(π) means there exists a prefix that
reaches W , therefore any extension π · π′ will also share that
prefix.

Similarly, we will consider that isSafeCone?(π) holds for
a trace π iff any prefix of π leads, from the initial node, to
a sub-tree already exhaustively built. Intuitively, a sub-tree is
exhaustively built when none of its nodes are in W , the set
containing states pending exploration. More precisely:

isSafeCone?(π) iff

∃π′ ∈ Σ∗.isPrefix(π′, π) ∧ ∀π′′ ∈ Σ∗.δ̂′(q0, π
′ · π′′) /∈W

Analogously, the predicate isSafeCone? is monotonic, satis-
fying Property 2: isSafeCone?(π) means there exists a prefix
from which W is unreachable and consequently any extension
π · π′ will also share that prefix.

B. Assumption Automata

We now briefly explain Assumption Automata [5] because
our implementation takes an Assumption Automaton as part
of its input instead of ARTs.

An Assumption Automaton is essentially an abstraction of
an ART where the elements of the abstract domain associated
to each node are removed. Additionally, the structure is
compressed by collapsing sub-trees which have been entirely
verified into a single node TRUE and every node covered
by another node is merged with the latter. Finally, nodes in
the wait list are only connected to a single node FALSE.
An Assumption Automaton encodes the progress achieved
throughout an earlier incomplete verification attempt in a
machine-readable format [4], which is the fundamental reason
why we use it.

The definition of predicate analyzed?(π) can also be stated
in terms of Assumption Automata. The predicate holds iff no
prefix of π reaches FALSE. Once again, understanding an
Assumption Automaton as a graph, the predicate is defined
as follows:

analyzed?(π) iff

¬∃π′ ∈ Σ∗ such that isPrefix(π′, π) ∧ δ̂′(q0, π′) = FALSE

Similarly, isSafeCone?(π) holds iff a prefix of π reaches
the node TRUE. That is:

isSafeCone?(π) iff

∃π′ ∈ Σ∗ such that isPrefix(π′, π) ∧ δ̂′(q0, π′) = TRUE

It is worth noting that, even though one Assumption Au-
tomaton can correspond to several ARTs, applying the pred-
icates isSafeCone? and analyzed? to the former or to any
of the latter will yield the same result.

C. Generating reports for CPAchecker

We built a proof-of-concept implementation, consisting of
two verification tasks, capable of generating execution reports
for ART-based techniques on top of CPAchecker.

The input for our implementation is an Assumption Au-
tomaton and the original system-under-analysis. Our output are
the sets S and F , composed of the counterexamples, i.e. traces,
generated by two independent verification tasks, as shown in
Figure 3.



We resort to the conceptual framework of Configurable
Software Verification [7] to formalize how our algorithm is
parametric, allowing different reachability analyses to be used.
It is worth mentioning that the algorithm used to generate an
Execution Report is in no way related to or restricted by the
technique used for the original verification attempt, as long as
the latter generates an Assumption Automaton.

Informally, we augment an existing ART-based algorithm by
adding an Assumption Automaton state to the abstract domain
element associated with each node. That is, in Figure 3, the
process that produces F will attempt to find feasible traces
that reach the state FALSE in the Assumption Automaton,
whereas TRUE will be the target state in the case of the process
generating S.

We already explained the basics of ART-based algorithms,
but some more detail is necessary to define our extension.
The framework of Configurable Software Verification allows
us to define a Configurable Program Analysis (CPA) P =
(DP, P,mergeP,stopP) in terms of an abstract domain
DP, a transfer relation  P, a merge operator mergeP, and
a termination check stopP.

Moreover, we can define a CPA as a composition of
other CPA. CPA composition formalizes how we can plug
our set-specific analysis, e.g. SafeCone or Frontier, into
existing reachability analyses, such as explicit value analysis
or predicate abstraction.

A CPA, either simple or composite, can be analyzed with
one of the several variants [7], [10] of the basic algorithm used
in Configurable Software Verification, which we reproduced in
Algorithm 1.

input : A configurable program analysis
P = (D, ,merge,stop), a set waitlist of
elements of E, denoting the set of elements of
the semi-lattice of D, a set reached of
reachable abstract states.

output: An updated reached and waitlist.
1 while waitlist 6= ∅ do
2 pop e from waitlist
3 for each e′ with e e′ do
4 for each e′′ ∈ reached do
5 // Combine with existing abstract state
6 enew := merge(e′, e′′)
7 if enew 6= e′′ then
8 waitlist := (waitlist

∪{enew}) \ {e′′}
9 reached := (reached ∪{enew}) \ {e′′}

10 if ¬stop(e′,reached) then
11 waitlist := waitlist ∪ {e′}
12 reached := reached ∪ {e′}
13 if isTargetState(e′) then
14 return (reached, waitlist)
15 return (reached, ∅)

Algorithm 1: Basic algorithm (from Configurable Software
Verification [7], [10])

Algorithm 1 differs only slightly from the one in the original
presentation of Configurable Software Verification [7]. We
added lines 13 and 14, because we want to stop the exploration
and return as soon as a target state is found. We also consider
the sets waitlist and reached as inputs, making the
core analysis more amenable to extensions [8], [10], such
as CEGAR [17] or finding multiple counterexamples, which
requires a similar approach.

The check performed in line 13, isTargetState(e′), as
mentioned, will verify whether TRUE (respectively FALSE) is
part of the composite state e′. TRUE captures the portions
of the state space which have been exhaustively verified,
whereas FALSE corresponds to nodes in the ART pending
analysis at the time the verification attempt was interrupted.
In other words, the check evaluates whether any path π leading
to e′ satisfies isSafeCone?(π) (resp. ¬analyzed?(π)). Any
prefix of π will necessarily satisfy the negation of the check,
otherwise it would have triggered the generation of a coun-
terexample. Therefore, if the check isTargetState(e′) is
positive, as long as feasible(π) holds, π ∈ SafeCone (resp.
π ∈ Frontier) since Property 2 (resp. Property 3) is satisfied
by any such trace π.

If such a trace π is found, phase two collects π if its
feasibility is confirmed. Regardless, Algorithm 1 is executed
from where it left off, since the full internal representation,
the sets reached and waitlist, was returned at the end
of the previous call. This alternation between phase one and
two produces a number of traces which will constitute S (resp.
F ) in the execution report.

In order to preserve the properties of ER, we require the
underlying analysis to be precise, that is, it does not produce
spurious counterexamples. Precise variants of different analy-
ses, such as predicate abstraction and explicit value analysis,
have been expressed as CPA [10], [8]. The actual algorithms
for these techniques are based on Algorithm 1 and contain
additional modifications but in both cases the composition with
other CPA is still supported.

Let’s now define our CPA P(A) = (DP, P
,mergeP,stopP) with DP based on the flat lattice for
the set of all the states in the Assumption Automaton
A taken as input. For the transfer relation, e stm

P e′

if there exists a transition labeled stm from state e to
state e′ of the Assumption Automaton A taken as input
and e stm

P ⊥ otherwise. Finally, mergeP = mergesep

and stopP = stopsep, where mergesep(e, e′) = e′ and
stopsep(e,R) = (∃e′ ∈ R : e v e′). The operator mergeP
and stopP affect the precision and performance of the
analysis [7]. The proposed definitions for these operators
aim to increase the former possibly at the cost of the latter.
In any case, the analysis can be made entirely precise by
checking the feasibility before reporting any counterexample.
Therefore, we define these operators for completeness but
other options are entirely possible and might be desirable for
performance.

We are now ready to define a composite program analysis



C = (A,P, ×,merge×,stop×), where P is the one just
defined and A is an arbitrary analysis. We will use merge× =
mergesep, stop× = stopsep and define the transfer relation
 × such that (l, r)

g
× (l′, r′) iff l

g
A l
′ and r

g
P r
′.

In order to satisfy the completeness guarantees with re-
spect to locations in the program that we put forth in sub-
section II-A, we only require that the underlying analysis does
not merge different location states. Neither of the analyses we
tried, lazy predicate analysis nor explicit value analysis, do.

It is worth emphasizing that the predicates analyzed? and
isSafeCone? only play a conceptual role to make sure our
implementation preserves the informal semantics of frontier
traces and safe cones discussed in Section II. We merely
mapped the intuitions to the specific case of ART-based
algorithms and computed the sets S and F directly from the
Assumption Automaton.

IV. EVALUATION

This section aims to evaluate if our approach is capable
of generating informative ERs within a reasonable time (with
respect to the time budget invested in the original verification
attempt). We analyze the performance of our proof-of-concept
implementation with a set of standard benchmark instances.
We also discuss the insights that we extracted from the output
on this set of benchmarks.

All the files necessary to reproduce the experiments
are available online: https://github.com/rcastano/cpachecker-1/
tree/submission ase.

A. Performance

We evaluated our algorithms using the families SystemC and
DeviceDrivers of the SV-COMP [3] set of benchmarks, which
were used previously to evaluate CMC. Our experiments
consisted of two different phases: 1) a verification attempt with
a predefined time limit of 900 seconds; 2) production of ERs
for the instances which ended the first phase with inconclusive
results.

We used an Ubuntu 16.04 system equipped with an Intel R©

CoreTM i7-3770 CPU clocked at 3.40GHz with 16GB of
DDR3 memory for the experiments in a system without a
swap partition running. We used BenchExec [9] to run the
experiments and only allowed access to a single CPU core
and 12GB of RAM.

We ran the verification phase over all the SV-COMP in-
stances included in the reproduction package2 of the original
CMC presentation [6]. These benchmarks include instances
from the sets SystemC and DeviceDrivers, comprising a total
of 68 instances. We used explicit value analysis (EV) and pred-
icate abstraction (PA), leaving 9 and 16 instances, respectively,
with inconclusive results.

In the second phase, for each of these executions interrupted
due to reaching the time limit, we generate the corresponding
ER. To do so, we also experimented with both techniques,
leading to 4 combinations of techniques, namely, EV-EV, EV-

2Available online: https://www.sosy-lab.org/∼dbeyer/cpa-cmc/
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Figure 4: Time until first element of S or F is produced

PA, PA-EV and PA-PA, where EV-PA denotes using EV for the
first phase and PA for ER generation. For each combination,
we considered two configurations, one that finds a single trace
for each of S and F , to assess how early the second phase
can produce output, and another one where we configure CPA-
checker to continue listing counterexamples until exhausting
its abstract state space, to determine the performance when
generating the components to completion.3

Tables I to IV include the full results of the second phase
when running to completion. The number of traces is ommitted
for instances that did not yield conclusive results (for instance
due to reaching the time limit or limitations of the analysis), as
indicated with the dash. The column labeled “Full?” indicates
with a checkmark (X) when the component (either S or F)
was generated to completion within the time limit.

We will mostly focus on the number of full components
generated, that is, the number of instances for which the
component, either S or F, is generated to completion within
the allotted time, as indicated by the fraction below the second
column for each combination of techniques.

Tables II and IV show that both generating the component
S and the component F to completion seems possible for a
significant number of instances when the Assumption Automa-
ton was produced by lazy predicate abstraction. Furthermore,
using either lazy predicate abstraction again (right) or explicit
value (left) for the generation of S shows similar performance
results, with a slightly better performance of the latter.

In the case of F, there seems to be a greater difference
in performance when using explicit value analysis (left) with
respect to using lazy predicate abstraction (right) again for ER
generation.

Table IV suggests that using a different technique to gen-
erate the F component than the one used for verification
could yield greater performance. This pattern also shows up
in Table III, where using lazy predicate abstraction (right)

3It is worth noting that a full ER component will satisfy the completeness
guarantee with respect to locations in the program but will most likely not
contain all valid traces.

https://github.com/rcastano/cpachecker-1/tree/submission_ase
https://github.com/rcastano/cpachecker-1/tree/submission_ase
https://www.sosy-lab.org/~dbeyer/cpa-cmc/


Safe: explicit from explicit-AA Safe: predicate from explicit-AA
# traces Full? CPU time # traces Full? CPU time

gigaset.BUG.c - 927.44s 1 X 417.08s
farsync.BUG.c - 926.65s 1 X 280.36s
loop.BUG.c - 901.08s - 135.17s
synclink gt.BUG.c 1 X 883.54s 2 X 534.85s
ppp generic.BUG.c 1 X 894.03s 1 X 855.15s
lirc imon.BUG.c - 901.05s - 911.77s
token ring.14.BUG.c 19 X 25.93s - 902.45s
transmitter.16.BUG.c 7 X 16.43s - 901.97s
toy.c - 970.09s 0 X 893.52s

4/9 Full 5/9 Full

Table I: Complete results for S from an Assumption Automaton generated using Explicit Value analysis

Safe: explicit from predicate-AA Safe: predicate from predicate-AA
# traces Full? CPU time # traces Full? CPU time

toy1 BUG.c 0 X 14.15s 0 X 52.47s
token ring.06.c 0 X 48.40s 0 X 272.59s
pipeline.c 0 X 7.66s 0 X 10.93s
token ring.09.BUG.c - 901.05s - 901.07s
token ring.04.c 0 X 20.60s 0 X 78.64s
token ring.05.c 0 X 50.49s 0 X 299.75s
token ring.08.c 0 X 367.83s - 901.09s
token ring.14.BUG.c - 963.61s - 901.07s
mem slave tlm.3.c 0 X 8.72s 0 X 27.59s
token ring.07.c 0 X 108.09s - 901.08s
mem slave tlm.5.c 0 X 15.80s 0 X 145.01s
mem slave tlm.4.c 0 X 9.00s 0 X 27.56s
kundu.c 0 X 16.90s 0 X 135.16s
pktcdvd.BUG.c - 900.97s 5 X 166.12s
toy.c 0 X 13.91s 0 X 97.82s
token ring.03.c 1 X 16.43s 0 X 68.03s

13/16 Full 12/16 Full

Table II: Complete results for S from an Assumption Automaton generated using Predicate analysis

Frontier: explicit from explicit-AA Frontier: predicate from explicit-AA
# traces Full? CPU time # traces Full? CPU time

gigaset.BUG.c - 930.02s - 917.01s
farsync.BUG.c - 918.63s 13 X 98.98s
loop.BUG.c - 937.49s 4 X 153.23s
synclink gt.BUG.c - 917.86s - 1000.97s
ppp generic.BUG.c - 901.01s 30 X 94.69s
lirc imon.BUG.c - 901.05s - 912.70s
token ring.14.BUG.c 4 X 12.65s 4 X 16.58s
transmitter.16.BUG.c 10 X 19.59s 10 X 22.80s
toy.c - 901.02s - 931.81s

2/9 Full 5/9 Full

Table III: Complete results for F from an Assumption Automaton generated using Explicit Value analysis

Frontier: explicit from predicate-AA Frontier: predicate from predicate-AA
# traces Full? CPU time # traces Full? CPU time

toy1 BUG.c 10 X 20.44s 23 X 133.11s
token ring.06.c 153 X 83.51s - 910.96s
pipeline.c 1 X 8.93s 1 X 19.71s
token ring.09.BUG.c - 1000.85s - 901.10s
token ring.04.c 29 X 37.28s 136 X 527.54s
token ring.05.c 85 X 78.29s - 900.90s
token ring.08.c 871 X 628.35s - 905.49s
token ring.14.BUG.c - 1000.78s - 939.53s
mem slave tlm.3.c 5 X 14.97s 5 X 25.82s
token ring.07.c 337 X 188.40s - 910.68s
mem slave tlm.5.c 14 X 45.17s 18 X 302.88s
mem slave tlm.4.c 6 X 16.07s 6 X 27.05s
kundu.c 15 X 32.30s - 292.07s
pktcdvd.BUG.c - 901.07s 39 X 274.03s
toy.c 10 X 19.93s 23 X 137.26s
token ring.03.c 2 X 17.29s 3 X 61.84s

13/16 Full 9/16 Full

Table IV: Complete results for F from an Assumption Automaton generated using Predicate analysis



Verification explicit predicate explicit predicate
ER predicate predicate explicit explicit
F 55.56 % 50 % 22.22 % 75 %
S 22.22 % 75 % 22.22 % 81.25 %

Table V: Percentage of instances producing a full ER within 50% of the original verification time (900 s)

for the ER generation phase outperformed using explicit
value analysis for an Assumption Automaton generated using
explicit value analysis.

Tables I and III show a lower number of instances for
which the components were produced to completion within
the allotted time, compared to the case when the Assumption
Automaton was produced after an initial verification attempt
using lazy predicate abstraction. This could be explained
by the size of Assumption Automata produced when using
explicit value analysis, which is usually significantly larger
than those produced with predicate analysis.

We consider these results encouraging in general, taking
into account that the instances considered are those for which
the initial verification attempt already exceeded the time limit.

Table V aggregates these results and shows the percentage
of instances for which a full ER was generated within 50%
(450 s) of the original verification time (900 s). This table
essentially measures how often the ideal condition holds, that
is: both S and F are produced to completion within a fraction
of the original verification time. While the first, second and last
column, in our opinion, suggest that standard techniques can
achieve good performance and generate full ERs for widely
dissimilar verification techniques, the third column shows that
producing full ERs can, in some cases, demand significant
computation, relative to the original verification time. The
latter finding comes as no surprise, since our approach to
generating ERs constitutes a verification task in itself. Nev-
ertheless, it seems clear to us that consistently generating full
ERs requires further work.

However, we are also interested in understanding how fast,
relative to the original verification time, our implementation
starts generating output. Figure 4 shows the percentage of
instances for which an element of either F or S is produced.
Figure 4 suggests that a fraction of the original verification
time can be sufficient to start generating traces.

We consider these performance results encouraging for a
proof-of-concept implementation and discuss some promising
ideas for further improvement in Section VI.

B. Number of traces

We mentioned a completeness criterion with respect to
the statements of the system-under-verification, but this only
provides a lower bound in the number of traces. Tables I to IV
show the number of traces that each component (S and F)
contains.

The numbers in Table II prompted us to investigate the cause
for the lack of safe cones. The underlying reason seems to be
that reverse post-order is used as the traversal strategy for lazy
predicate abstraction. This strategy heavily deprioritizes nodes

with no successors in the CFA. In particular, a final return
statement is not analyzed unless no other option exists. This
exploration, unless additional specific configuration options
are used, causes the analysis to seldom produce safe cones.

This detailed inspection prompted by Table II allowed us to
gain insights on the inner workings of the technique. More-
over, wider availability of Execution Reports could provide
an incentive for tool implementers to make implementation
decisions that lead to richer intermediate results, which would
be reflected in the corresponding Execution Reports.

Tables II and III show that in many cases the number of
traces produced remains manageable: within the few dozen
and in many cases less than 5. We consider these number
encouraging, since little effort on behalf of the user would be
required to inspect the traces and assess their usefulness.

However, Table IV shows that for a few cases, the number
of traces produced can exceed the hundreds. In these cases,
depending on the particular instance, it could be possible to
group traces or inspect only a few, in both cases still gain-
ing non-trivial information about the incomplete verification
attempt with minimal effort.

C. Discussion

This section aims to shed light on the insights that can be
extracted from ERs in practice. With this goal, we manually
inspected the Execution Reports produced for the families
SystemC and DeviceDrivers of the SV-COMP benchmark and
also for combined instances used to validate CMC [6] and
gained some anecdotal insights worth discussing.

Extracting insights from the ERs required knowledge about
the instances. However, a brief inspection of the code, guided
by the output of our tool, yielded the necessary information.
The following features appeared repeatedly throughout the
benchmark instances.

In all instances where the Frontier component was finished
we identified seemingly relevant behaviors that had not been
analyzed. More precisely, both SystemC and DeviceDrivers
instances consist of a main while-loop with a non-deterministic
termination condition and a set of methods from which one is
chosen also non-deterministically and subsequently called. In
all of the instances the Frontier component contained traces
that did not even reach the end of the first loop iteration.
We exemplified this sort of output in Example 1, where the
initialization loop could not be entirely analyzed under certain
non-deterministic choices. These insights contrast starkly with
a coverage metric provided by CPAchecker. Contrary to the
indications of insufficient analysis reflected in the execution
report, the coverage metric provided by CPAchecker reported
over 85% line coverage for 11 out of the 16 instances when



1 void main () {
2 int x = nondet();
3 if (x) main0 ();
4 if (!x) main1 ();
5 }

Figure 5: Combined instance
applying lazy abstraction. This type of feedback could also be
used to better understand the effects of either resource bounds
or iteration bounds on the progress of the exploration.

Generating insight from an element e ∈ S requires not only
knowledge of the instance but also understanding how e con-
strains the execution from that point on. For some instances,
further research is needed to properly evaluate the relevance
of each element e ∈ S. However, for the combined instances,
it was fairly easy to interpret ERs and they showed a relevant
set of behaviors were safe. These instances have the structure
shown in Figure 5, where method main0 corresponds to the
main method of a SystemC instance and main1 corresponds
to the main method of a DeviceDrivers instance. Much like
the setting we showed in Example 2, where one branch of
an if-statement was easier to verify than the other, in this
case main0 is significantly less challenging, for a specific
technique, than main1. In these examples, S would contain
the trace int x = nondet();, if(x), main0(). The
trace only constrains the value of x, which has to be positive,
but x is a local variable, therefore main0 is absolutely
unconstrained and has been completely verified.

V. RELATED WORK

Conditional model checking [6] (CMC) is an approach
where model checkers are extended to produce results even
when the verification run could not be completed successfully.
The output, in its general form, is a condition under which
the program can be safely run. CPAchecker [7] instantiates
CMC by generating an Assumption Automaton. We use this
implementation to produce the ERs. ERs introduce the notions
of frontier and safe cone to characterize the state space
denoted by structures like Assumption Automata. The lack
of any feasibility guarantees in Assumption Automata has
significant consequences. A user might be misled by the
size of the Assumption Automaton since a vast Automaton
might correspond to a minuscule number of concrete feasible
executions and also the other way around. We overcome this
limitation by formally characterizing the properties of our
output and adding explicit feasibility guarantees.

A slightly different approach [15], [16] to providing feed-
back of partial verification results consists of a language
extension to be used to annotate assumptions made during
verification. This extension can be used to annotate the code
and explicitly state conditions under which the program is
guaranteed to run safely. These annotations are especially well-
suited for local assumptions, sometimes used during manual
verification, and for uniform assumptions, such as the absence
of integer overflows, which are not affected by the context in

which they occur. However, these annotations are not well-
suited to state assumptions made by some techniques, such
as those based in unrolling loops [15] or those tackled by
Assumption Automata, and as such, they are incomparable to
our approach, which can provide value in these cases. One
of the use cases of these annotations is to complement the
verification efforts and produce a small test suite. This idea
of testing to complement earlier verification efforts was later
replicated [18] using Assumption Automata as input.

A recent extension of the Dafny IDE [26], [14] provides, as
one of its many features, hints about parts of a specification
that might cause timeouts. However, given the modular nature
of the tool and the sort of specifications shown as examples,
the approach tackles a different problem than ours and the
feature might not be applicable in our setting.

There is also previous work on quantifying partial model
checker explorations based on usage profiles [27]. These esti-
mations are based on abstract models of behavior and heavily
depend on the provided usage profile. A similar approach [20]
works applying symbolic execution over the source code of
a system, without the need for an abstract model, but in
this case, the implementation requires finite domains for all
input variables, as well as a usage profile for each of them.
Reliability as they define it can be hard to interpret and,
once again, could be extremely sensitive to the usage profile
provided. Both techniques can be used in conjunction with
ours providing different value.

The modeling language Alloy [22] enables its users to
specify structural properties. An extension of the Alloy Ana-
lyzer [19] highlights parts of the specification that are “prob-
lematic” or “hard”, in the authors’ own words, by monitoring
the activity of variables and clauses in the underlying SAT
solver. The output is inherently heuristic, in contrast, our tech-
nique and proposed implementation provide strong guarantees
backed by a formal definition of the semantics of the output
generated. The ideas behind the Alloy Analyzer extension
could also be applied in conjunction with our techniques to
provide additional information.

Our work is heavily influenced by the ideas and tool support
of witness validation [4], [2], which we leverage as a machine-
readable representation of exploration progress. However, we
aim at enabling a richer manual interaction whereas that line
of work also attempts to increase tool automation and reduce
the need for manual inspection.

VI. CONCLUSIONS AND FUTURE WORK

Software model checking is already capable of handling
industrial instances and produce valuable results. However,
some instances still remain intractable for full verification.
Our work provides users with a different way to observe the
progress achieved during an incomplete verification attempt
by producing an execution report (ER).

We formulated the concepts of analyzed and safe cone
traces and formalized the notion of ERs. We also discussed a
proof-of-concept implementation to generate ERs and subse-
quently evaluated it both qualitatively and quantitatively with



benchmark instances.
One line of research we plan to follow involves exploring

ways to abstract the traces included in the execution reports for
easier visualization and understanding. In this setting, it could
be useful to define both existential and universal semantics
for abstract traces in the sense that some property applies to
the some or every concretization of these abstractions. For
instance, guaranteeing that every concretization has been ana-
lyzed, could be useful and would pose interesting challenges.
In a similar line, to better assess the relevance of an element
π ∈ S, we need to devise meaningful views and metrics of the
possible continuations of e, e.g. statement coverage metrics of
the cone defined by π.

We would also like to analyze how our technique performs
for a specific verification technique and varying time limits.

It would be desirable to conduct a user study to assess the
effectiveness of our approach once more competing output
representations become available.

We intend to look into alternative usages of our output. For
example, elements of an execution report can be leveraged as
additional input to choose the right algorithm [28] to proceed
after an incomplete verification attempt.

As mentioned in Section II, the partition of system behaviors
into the subsets proposed is also applicable to verification tech-
niques beyond those already implemented using ARTs: Corral,
DSE, techniques based on inlining or loop unrolling among
other. Several other verification systems already produce spec-
ification violation witnesses [2] in a machine-readable format
closely related to that of Assumption Automata. Producing
Assumption Automata for incomplete executions of many of
these software model checkers seems possible, making our
execution reports immediately available to them. Making the
necessary changes to these tools and evaluating our approach
could bring new insights and challenges worth looking into.

We also consider looking into performance improvements
in the ER generation phase, for example using techniques
that trade off soundness for efficiency. More precisely, instead
of using a verification tool for ER generation, we could
use simulation or graph exploration techniques that are not
necessarily exhaustive.
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execution toward unverified program executions. In L. K. Dillon,
W. Visser, and L. Williams, editors, Proceedings of the 38th Inter-
national Conference on Software Engineering, ICSE 2016, Austin, TX,
USA, May 14-22, 2016, pages 144–155. ACM, 2016.

[17] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-
guided abstraction refinement for symbolic model checking. Journal of
the ACM (JACM), 50(5):752–794, 2003.

[18] M. Czech, M.-C. Jakobs, and H. Wehrheim. Just test what you cannot
verify! In Fundamental Approaches to Software Engineering, pages
100–114. Springer, 2015.

[19] N. D’Ippolito, M. F. Frias, J. P. Galeotti, E. Lanzarotti, and S. Mera.
Alloy+ hotcore: A fast approximation to unsat core. In Abstract State
Machines, Alloy, B and Z, pages 160–173. Springer, 2010.
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