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Abstract—Reverse engineering binary code is notoriously dif-
ficult and, especially, understanding a binary’s dynamic data
structures. Existing data structure analyzers are limited wrt.
program comprehension: they do not detect complex structures
such as skip lists, or lists running through nodes of different
types such as in the Linux kernel’s cyclic doubly-linked list. They
also do not reveal complex parent-child relationships between
structures. The tool DSI remedies these shortcomings but requires
source code, where type information on heap nodes is available.

We present DSIbin, a combination of DSI and the type
excavator Howard for the inspection of C/C++ binaries. While
a naive combination already improves upon related work, its
precision is limited because Howard’s inferred types are often too
coarse. To address this we auto-generate candidates of refined
types based on speculative nested-struct detection and type
merging; the plausibility of these hypotheses is then validated
by DSI. We demonstrate via benchmarking, that DSIbin detects
data structures with high precision.

Index Terms—Data structure identification, reverse engineer-
ing, dynamic data structures, pointer programs

I. INTRODUCTION

Understanding the internals of software binaries is an im-
portant challenge, especially for tackling challenges in com-
prehending legacy code [18] and security threats posed by
malware [14]. A particular challenge in reverse engineering is
the identification of dynamic data structures (DS) in pointer
programs and, in this context, also of nested structs that
occur frequently in C/C++ code, e.g., the Linux kernel’s
cyclic doubly-linked list (CDLL). The demand for automated
analysis of pointer programs can, e.g., be seen by the re-
cent acquisition of Infer by Facebook [1]. While there is a
wealth of related work on type recovery [12], [20], [24], [26],
[31], [34], [35], with Divine [12] and Howard [34] being
examples of such static and respectively dynamic analysis
tools, DS identification tools are scarce [16], among which
MemPick [21], DDT [22] and ARTISTE [15] are examples,
of state-of-the-art tools for dynamic DS identification. They
are based on a dynamic analysis but have limitations (Sec. II).
Firstly, some make strong assumptions on the binary under
analysis; for example, DDT requires that interface functions

can be revealed easily, which is, e.g., the case when the C++
Standard Template Library (STL) has been used. However
this assumption is not necessarily true for low-level, inlined
or optimized code. Secondly, tools such as ARTISTE are
not robust against DS operations that temporarily break the
structure’s shape invariant. Thirdly, the mentioned tools cannot
identify lists if these run through differently typed nodes, for
which the Linux CDLL is an example. They also do not
recognize complex relationships between structures such as
arbitrary parent-child nesting.

The program comprehension tool DSI [38] implements a dy-
namic analysis that overcomes these limitations but works on
C sources only. Its heap abstraction breaks with the common
assumption that each node of a dynamic structure resides in a
memory chunk of its own; instead, it employs a notion of cell
that can, e.g., be either a struct or a nested struct. Moreover,
DSI does not analyze at the node level, but uses strands –
which can be thought of singly-linked lists – as the building
blocks of a DS. Strands can be interconnected loosely, i.e., via
pointer-based nesting, or tightly, i.e., via overlay. For example,
DSI represents a doubly-linked list (DLL) as a strand graph
that consists of two strands that run in opposite directions and
are connected by ‘nodewise’ overlay. Its subgraphs are then
annotated by DSI with quantitative evidence for a structure
having a certain interpretation. This evidence is accumulated
by structural and temporal repetition not unlike as in ARTISTE
(Sec. II), which typically leads to overwhelming evidence for
a DS’s true shape.

This paper develops the novel tool chain DSIbin that
enables DSI’s core algorithm to work on binaries. Our first
‘naive’ approach simply replaces the source code instrumen-
tation framework CIL [29] that is employed by DSI with
Intel’s Pin binary instrumentation framework [27], and utilizes
Howard [34] for extracting type information that is then used
by DSI (Sec. III). We evaluate this naive tool chain on an
benchmark, comprising of real-world examples [7], [4], [10],
standard textbook examples [39], [36], examples taken from
the shape analysis literature [8], and handwritten examples
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Fig. 1. DSI’s aggregate strand graph (left) and a snippet of the points-to
graph (right) for example syn-08: “Parent DLL with nested child DLLs”.

that challenge our tool chain in various aspects. Our results
demonstrate that the naive tool combination leads to the
correct identification of 10 of the benchmark’s 30 examples,
which already improves upon the capabilities of related tools,
especially regarding the recognition of skip lists and various
forms of nesting. A detailed analysis of the 20 negative
examples reveals that recognition fails due to insufficient and
imprecise type information excavated by Howard, particularly
regarding nested structs and type mergings.

Therefore, we propose a new approach for refining the low-
level type information excavated by Howard which utilizes
DSI’s core algorithm (Sec. IV-B). We infer some of the
missing type information by propagating existing information
within a type graph [11], [15], [31]. This leads to specula-
tive type mergings and struct nestings, which we term type
hypotheses. Their plausibility is then quantitatively evaluated
via DSI’s core algorithm, which identifies the most probable
correct typing on the basis of the complexity of the DS that
is implied by a typing hypothesis. We complete DSIbin by
adding this refinement component DSIref to our naive tool
chain, and can now correctly identify the DSs in 26 of the
30 benchmark examples.

We briefly illustrate our improvement in the state-of-the-
art of dynamic DS identification and related type recovery
mechanisms. Consider example syn-08 of our benchmark,
which contains a “Parent DLL with nested DLL children”
(Fig. 1) and is not recognized by other tools. DSIbin reports
the DS in an aggregated form of a strand graph (figure’s
left-hand side). It reveals the strand aggregates Parentfwd,
Parentrev, Childfwd, Childrev, the first and second pair
of which each forms a DLL (DLL label between the fwd and
rev strands). It also highlights the nesting-on-overlay (No)
between the parent and child DLLs, where the head node of
the child DLL is embedded inside the parent node. This correct
interpretation is only possible due to DSIref’s type refinement.
To see this, consider the snippet of a points-to graph that
DSIbin constructs when analyzing syn-08 (figure’s right-

hand side), where a parent vertex is displayed at the top and
a child vertex at the bottom. We have annotated the type
information extracted by Howard and DSIref, resp., which
shows how much more information DSIref reveals. Firstly,
it reveals a nested struct encompassing addresses 19c5050 to
19c5060 (the nested head of the child DLL). Secondly, this
enables DSIref to identify the equality between the type of
vertex 2 and the type of the nested struct of vertex 1 and,
thus, to detect the child DLL.

II. BACKGROUND & RELATED WORK

Several dynamic analyses of binary programs have been
introduced for identifying contained dynamic DSs, in partic-
ular MemPick [21], DDT [22] and ARTISTE [15]. We first
discuss their underlying analysis approaches and point out
their limitations, then introduce the DSI approach [38] that
overcomes these limitations but requires source code and some
type information included therein. This leads us to surveying
tools such as Howard [34] that excavate type information from
binaries and that will ultimately enable our desired application
of DSI to binaries.

MemPick, ARTISTE & DDT. MemPick aims at determin-
ing the periods in the program trace under consideration when
pointer operations are absent. For these quiescent periods, it
considers the heap’s structure as points-to graphs, tries to type
the graphs’ nodes on the basis of information revealed by
CPU instructions, and clusters the nodes according to types.
Each cluster is then processed via a set of rules to identify
the corresponding DS. For example, if an analyzed cluster
contains only nodes with two outgoing arcs and one incoming
arc, plus one node with two outgoing arcs but no incoming arc,
then MemPick reports the cluster as a binary tree. However,
MemPick does not analyze the relationships between DSs,
such as parent-child nesting, and thus cannot identify more
complex DSs such as the Linux kernel CDLL that involves
nodes of different types.

ARTISTE samples every nth step of the executed trace,
which does away with quiescence analysis but may result
in considering execution points at which the dynamic DSs
are in some degenerate shape, i.e., a shape that arises in
the middle of a DS manipulation and temporally breaks the
DS’s invariant. The points-to graphs at the sampled execution
points are checked for structural repetition within a graph and
temporal repetitions across graphs, where subgraphs of the
same structure are folded. The naming of the overall DSs
is then left to a rule-based selection algorithm. While this
approach can discover even complex structures involving some
nesting, ARTISTE looses precision if sample points containing
degenerate shapes are picked.

DDT aims at finding interface functions to DSs, i.e., func-
tions that, e.g., insert and remove nodes from a dynamic
data structure. As a prerequisite, the types of the nodes
in the points-to graphs of a trace are inferred by tracking
allocation sites during program execution, and merging types
from different allocation sites, e.g., if nodes are accessed
through a common interface function. Thereby, DDT can build
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Fig. 2. DSI’s view of the Linux kernel CDLL.

up signatures of interface functions, which are then matched
against a library of known DSs for identification. This works
well if interface functions are easily revealed, e.g., if programs
use well-structured libraries such as the C++ STL. However
the approach is hampered in the presence of obfuscation,
inlining, or optimization, which are often employed in legacy
and kernel-space software.

DSI: Data Structure Investigator. DSI aims at overcom-
ing the abovementioned limitations of DS identification, but
operates on C code rather than binary code. The workings
of DSI are not unsimilar to ARTISTE, but the detection of
structural and temporal repetition is not directly conducted
on points-to graphs but instead on strands. Strands are an
abstraction from the core ingredient of dynamic DSs: singly-
linked lists. During program execution, DSI tracks strands and
their interconnections, such as overlay or nesting, in a strand
graph. It is then the evolving sequence of strand graphs on
which repetition detection is performed and on which folding
takes place.

On the one hand, the difference of DSI to competing tools
lies in the finer, more expressive concept of strands. A strand
links cells rather than nodes, which can be thought of as
memory subregions: while a node is normally a struct, a cell
could be, e.g., the whole struct or just a nested struct within
the whole struct. Thus, strands can traverse through nodes
of different types, while the traversed cells themselves are
obviously required to be of the same type. Fig. 2 shows DSI’s
view of the recognized Linux kernel CDLL, where strands
are drawn using wide, colored arrows and involve linkages
between nodes of different types (head node vs. tail nodes).

On the other hand, DSI does not rely on quiescent periods
but instead employs an evidence-based approach that considers
all points of an execution trace. At each point, a subgraph of
the strand graph is given a count on the basis of its strands’
sizes and their kinds of interconnections, which reflects the
likelihood of the subgraph representing a certain DS; for
example, the count for the subgraph capturing a DLL might
be higher than the count for two singly-linked lists (SLLs)
intersecting. These counts, or evidences, are accumulated
when folding strand graphs structurally within a strand graph
and temporally across all strand graphs of the considered
execution trace. This typically leads to overwhelming evidence
for the true DS shape, and makes DSI’s approach robust
against degenerate DS shapes. These degenerate shapes are

just injecting interpretation noise that is becoming irrelevant
when accumulating evidence.

In summary, DSI overcomes the limitations of related
work in that it (i) does not make strong assumptions on the
program under analysis, (ii) is not mislead by temporarily
degenerate shapes, and (iii) is more general as it supports
the identification of lists through different node types and
arbitrarily nested combinations of lists. Because of this,
DSI can reliably handle custom implementations including
those involving (cyclic) singly-/doubly-linked lists, various
skip lists and binary trees, and interconnections between
those, including indirect and overlay parent-child nesting.
Consequently, DSI can deal with real-world software, e.g.,
the Linux kernel CDLL [6], the region clipping library of
VNC (hvnc2/libs/libvncsrv/rfbregion.c found
in Carberp [10]) and libusb [5].

DSI would be a useful tool for understanding complex code
such as malware [33], but currently – and in contrast to the
related work discussed above – it cannot handle binary code.
While its instrumentation that captures pointer-based events
such as memory (de)allocations and pointer writes can be
switched from the C Intermediate Language (CIL) [29] to, e.g.,
Intel’s Pin framework [27], the core DSI algorithm requires
type information on cells, which is accessible in source code
but not in (stripped) binaries. Thus, the essential step for our
desired opening of DSI to binaries is the type recovery for
structs and nested structs.

Type recovery tools. A multitude of tools exist for
recovering type information from binaries [12], [20], [24],
[26], [31], [34], [35]. They differ in (i) whether a static, a dy-
namic, or a combined analysis is performed, (ii) whether they
operate on a binary file or a memory snapshot, and (iii) the
spectrum of discovered type information, ranging from simply
identifying pointers and sizing memory chunks to detecting
structs and their primitive types. A closer investigation reveals
that especially the tools Divine [12] and Howard [34] can deal
with nested structs.

Divine conducts a static analysis of Windows binaries and
discovers types of memory regions, including regions on the
heap, which may be primitive data types or complex types,
e.g., consisting of arbitrarily nested structs. Its machinery
combines a classic value-set analysis with an algorithm for ag-
gregate structure identification in an iterative manner. Memory
access patterns in a binary are exploited for making educated
guesses as to how data is laid out in memory. For example,
if a code instruction accesses a sequence of eight bytes at
a particular offset this corresponds to a variable or field of
this size at that location within the region. However, memory
access patterns can be blurred by memcpy-like functions,
which restricts Divine’s utility [34].

In contrast, Howard conducts a dynamic analysis but han-
dles memcpy and similar functions in C/C++ binaries, in
accordance with its practical aims of supporting forensics,
reverse engineering and protecting existing binaries against
memory corruption attacks. Howard also tracks memory ac-
cess patterns and, additionally, monitors mallocs for heap
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memory, stack frames for local variables, and pointers to reveal
primitive types and nested structs. For typing heap memory,
Howard identifies allocation sites by their call stack and stack
frames by their associated function address. Howard reports
the typed memory for each allocation site and stack frame.

Howard is arguably the best candidate for extracting type
information for use by DSI: it (i) supports nested structs,
(ii) deals with C and C++ binaries that include memcpy-like
functions, and (iii) operates under Linux as does DSI. Below
we see that Howard still has some limitations and, show that
DSI’s core algorithm can be employed to improve the type
information reported by Howard.

III. NAIVE APPROACH: Howard+DSIbin

This section describes a naive approach for combining DSI
and Howard, evaluates it on an benchmark, and discusses the
results. Our observations pave the way for a much improved
approach (Secs. IV & V).

A. Howard+DSIbin Tool Chain

The naive tool chain is depicted in Fig. 3 when ignoring
component DSIref, and consists of three components: the core
DSI algorithm that was already used in the source code DSI
version, a newly created DSI binary frontend, and Howard.
We refer to the core DSI algorithm simply as DSI and to the
binary frontend, as well as the overall tool chain, as DSIbin.
Recall that DSI performs an offline-analysis for detecting
dynamic data structures. For this purpose, the original source-
code version of DSI is provided with an execution trace
captured by executing instrumented C source code, where the
instrumentation of memory (de)allocation and memory-write
events is done via the CIL framework [29]. We treat DSI as
a black box and replace the instrumentation part with DSIbin,
which utilizes Intel’s Pin framework [27]. Because DSI relies
on primitive data type information including structs and nested
structs on the heap and stack, DSIbin needs to provide this
information as well. Therefore, DSIbin not only instruments

the binary under investigation but also incorporates type in-
formation excavated by Howard.

Technically, DSIbin models heap and stack separately to
keep track of memory (de)allocations and stack status. All
live heap objects are recorded, allowing for sanity checks such
as checking for dangling references. The stack is modeled in
a way that enables one to keep track of live stack variables
and to handle situations like the red zone optimization [28].
Additionally, DSIbin monitors registers because registers can
temporarily be the only reference to allocated memory; oth-
erwise, DSI would see false positives in its memory leak
detection algorithm. The main synchronization point between
Howard and DSIbin are the call stacks for heap types and the
function addresses for stack types.

When devising our tool chain we slightly extended the
implementation of Howard to perform type merging on heap
objects. To see why, recall that Howard identifies types based
on the call stack. This implies a many-to-one relationship
between allocation sites and a type, if objects from that type
are allocated at different sites. This is problematic for DSI’s
strand discovery, because each allocation site is then treated
as a separate type by DSI, which in turn leads DSI to miss
strands. Thus we modified Howard by adding type merging;
it now tracks whether pointers and instructions operate on
objects from different allocation sites. If this is the case and
the objects are binary compatible, i.e., have the same size and
the same layout of primitive data types, then they are merged.

B. Evaluation
We implemented a prototype of our tool chain: DSIbin

consists of 3K LOC of C++ and interfaces with DSI and
Howard. For our benchmarking, we ran it on a PC with an
Intel CORE i7-4800MQ with 2.70GHz and 32GB RAM.

Benchmark. Our prototype has been applied to a bench-
mark of 30 C/C++ code samples that include a large va-
riety of combinations of dynamic DSs: 4 examples from
textbooks (tb-1,tb-2 [36] and tb-3,tb-4 [39]), 5 ex-
amples from Forester/Predator [8] (lit); 5 (extracted) real-
world examples ((e)r), namely, the region clipping library of
VNC (hvnc2/libs/libvncsrv/rfbregion.c found
in Carberp [10], r-3), the benchmarks treeadd [7] (r-2),
and binary-trees-debian [4] (r-1) and 16 self-written synthetic
programs (syn). The source code of DSI/DSIbin and the
synthetic examples are available from [9].

The benchmark covers many popular DS ingredients (e.g.,
lists, trees) plus arbitrary interconnections between them (e.g.,
nesting, overlay). Its examples each contain a single DS,
which is convenient for evaluation purposes so as to isolate
interesting aspects of our approach for discussion (Sec. V);
however, our approach is designed to handle multiple DSs,
too.

Our synthetic examples are designed to “stress test” our
approach wrt. two axes: firstly they exercise interesting com-
binations of DSs such as skip lists with nested DLLs (syn-9),
where we were interested to discover whether the nesting
relationship interferes with DSI’s skip list detection. Related



TABLE I
DETAILED BENCHMARKING RESULTS OF OUR NOVEL TOOL CHAIN

Code (ground truth) Naive Combination (Sec. III) Sophisticated Combination (Sec. IV)

expl lang DS [LOC / trace length] flat n@h n m h/s DSIbin rec n-d m DSIbin rec n@h-d n-d m nm h/s pr ch hyp

er-1 C++ n y n y n DLL n n y CDLL y y n - y n n DSIref

er-2 C++ n y y (p) y n DLL n y (p) y CDLL y y n (p) - y n n DSIref

lit-1 C n y y y y DLL→2xNi→DLL,DLL n y y CDLL→2xNo→CDLL,CDLL y y y - y y n DSIref

lit-2 C n n n n n SLL(→Ni→SLL)x4 y n n SLLs with Ni/No n n n y - n n (DSIRef)

lit-3 C n n n y n SLo y n y SLo y n n - - n n Howard

lit-4 C n y y y n SLL→2xNi→DLL,DLL n y y SLL→2xNo→CDLL,CDLL y y y - y n n DSIref

lit-5 C n n n y n 4xDLL parallel y n y 2xDLL parallel n y y - y n n Howard

r-1 C n n n y n BT y n y BT y y n - - n n Howard

r-2 C n n n y n BT y n y BT y n n - - n n Howard

r-3 C n y y y n DLL (3, no nesting) n y y DLL (5, with hint on No) n y y - y n y (DSIRef)

syn-01 C n n n y n BT y n y BT y n n - - n n Howard

syn-02 C++ n n y y n SLL→Ni→SLL n y y SLL→No→SLL y y y - y n n DSIref

syn-03 C++ n n n y n SLL (3) y n y SLL (3) y n n - - n n Howard

syn-04 C y n y y n DLL (3) + noise n n y DLL (10) + I2o+ y n y - y n n DSIref

syn-05 C y n y y n SLL (2) n n y SLL (5) y n y - - n n DSIref

syn-06 C y (pt) y y n n nothing n y (pt) n SLL (11) y y y - y n n DSIref

syn-07 C n n y o y DLL n y - CDLL y n y - y y n DSIref

syn-08 C y n y y (pt) n DLL (only parent) n n y (pt) DLL→No→DLL y y y y y n y DSIref

syn-09 C n n n y n SLo→Ni→DLL y n y SLo→Ni→DLL y n n - - n n Howard

syn-10 C n n n y (pt) n SLL→I1i→SLL n n y (pt) SLL→No→SLL n n n y - n n (DSIRef)

syn-11 C n n y n n SLL (9) n y n SLL (10) y n y - y n n DSIref

syn-12 C n n n y (pt) n SLL (11) n n y (pt) SLL (12) y n n y - n n DSIref

syn-13 C n n n n n nothing n n n SLL (6) y n n y - n n DSIref

syn-14 C y n y o n SLL→Ni→SLL n n - SLL→No→SLL y n y - y n n DSIref

syn-15 C n n n y n SLL→No→SLL y n y SLL→No→SLL y n n - - n n Howard

syn-16 C n n n o y SLL (4) n n - SLL (5) y n n - - y n DSIref

tb-1 C n n n n n SLL (20) n n n SLL (21) y n n y - n y DSIref

tb-2 C n n n n n SLL (10) n n n SLL (11) y n n y - n y DSIref

tb-3 C n n y (p) y n DLL y n (p) y DLL y n n (p) - - n n Howard

tb-4 C n n n y n SLL (10) n n n SLL (10) n n n n - n n (Howard)

CDLL [70 / 2009]

CDLL [66 / 1474]

CDLL→2xNo→CDLL,CDLL
[101 / 1326]

SLL(→Ni→SLL)x4 
[143 / 5667]

SLo [179 / 1329]

SLL→2xNo→CDLL,CDLL
[90 / 275]

2 DLLs parallel [36 / 557]

BT [98 / 5435]

BT [356 / 1635]

DLL(5)→Ni→DLL
[712 / 2174]

BT [50 / 1635]

SLL→No→SLL [83 / 2298]

SLL (3) [48 / 161]

DLL (10) + I2o+ [111 / 3807]

SLL (5) [64 / 728]

SLL (11) [72 / 873]

CDLL [214 / 1329]

DLL→No→DLL [34 / 204]

SLo→Ni→DLL [97 / 761]

SLL→I1o→SLL [51 / 354]

SLL (10) [32 / 585]

SLL (12) [49 / 191]

SLL (6) [53 / 72]

SLL→No→SLL [47 / 352]

SLL→No→SLL [45 / 796]

SLL (5) [29 / 329]

SLL (21) [130 / 925]

SLL (11) [132 / 367]

DLL [217 / 1174]

SLL (11) [105 / 869]

Symbol explanation: flat flattened member access, n@h nesting at head, n nesting, m type merge, h/s DS distributed between heap and stack, rec DS
recognized, n-d nesting detected, n-m nested types merged, pr primitive types refined, ch hyp chosen hypothesis.

work in the shape analysis literature contains “plain” skip
lists as benchmarking only (lit-3), and [15], [21], [22] do
not handle skip lists at all. Secondly, our synthetic examples
address measures of DS obfuscation, which a malware author
could take to circumvent detection by our tool. Note that our
interest here is not in code obfuscation [19], because our
approach is resilient against this by design. Instead we aim
at direct DS obfuscation [25], by exploring situations that
prevent Howard’s type merging and nested struct detection,
e.g., by avoiding list traversals or performing flattened accesses
of nested elements.

Because Howard uses instructions and pointers touching
binary compatible objects to merge different allocation sites,
we specifically introduce artificial pointers and functions in
examples syn-10, syn-12 and syn-13 to circumvent the
merge strategy. The Linux CDLL tests a DS distributed across
the heap and stack and the linkage of nodes of different
types in the context of a cyclic DLL, e.g., example syn-07.
With examples syn-05, syn-06 and syn-16 we test these
scenarios with a non cyclic SLL. Additionally, syn-04,
syn-05, syn-06, and syn-14 access their nested elements
flattened, i.e., from the base address of the enclosing struct,
to prevent their detection.

For compiling the examples we used the default optimiza-
tion settings for gcc and -O0 for g++. Howard is resilient
against various compiler optimizations, such as data layout,

function frame, and loop optimizations [34], and those are
transparent to DSIbin as long as memory is properly allocated
and the pointers forming the DS are preserved.

We report the trace length in Table I; it is important for our
dynamic analysis as the evidence builds up during the lifetime
of a DS. Currently, we do not have a convergence criteria for
stopping the analysis as soon as DSI collected overwhelming
evidence for a particular data structure interpretation; instead,
we let the programs run until termination. Note that, lines of
code (LOC) are not an expressive measure for the complexity
of a DS, as challenging examples can be constructed with
very few lines of code, e.g., lit-5 of Table I only requires
36 LOC to form two DLLs running in parallel.

General discussion & first successes. In section “Code”
of Table I we first give the ground truth of the benchmark
as revealed by a detailed inspection of the available source
code. Because DSIbin can, in contrast to DSI, also handle
C++ examples, we distinguish between C and C++ code. The
next column reports the shape of the inspected DS; the chosen
examples range from skip lists, binary trees and (cyclic) DLLs,
to interconnections of these via indirect nesting (Ni) and
overlay nesting (No) from parent to child. Additionally, we
list various characteristics such as flattened access of struct
members (flat), nested struct at the head of the surrounding
struct (n@h), nested struct not at the head (n), the possibility
to merge allocation sites (m), and whether the DS spawns



across heap and stack (h/s); the latter can be seen, e.g., when
storing the head of the Linux CDLL on the stack. Some
examples only show payload (p) nested structs which does not
affect the correct identification of DS shape or only provides
partial (pt) merge opportunities. The next columns headed
“Naive Combination” firstly describe the discovered DS when
Howard’s type information is used ‘as is’ (DSIbin), whether
the example’s DSs are recognized correctly (rec), whether a
nested struct not at the head is detected (n-d), and whether
allocation site merging (m) could be performed. Nesting at
head, stack/heap merging and nested elements merging is
never performed by Howard here and is thus not reported;
this is discussed below. Whenever the difference between the
naive and sophisticated approach lies in the length of recovered
lists, the length is stated in brackets.

Our initial results are quite encouraging as already 10 out
of the 30 examples are detectable by DSI when Howard’s
type information is used. Notably, these examples include
situations that are not handled by related work, e.g., skip
lists (lit-3, syn-9) and indirect/overlay nesting (lit-2,
syn-9, syn-15). Specifically, one can consult the “Code”
section of Table I to see that in any example where (i)
Howard is able to fully merge the allocation sites and (ii) the
cells forming the DS cover the complete memory chunk, the
Howard+DSIbin combination produces the correct result. This
emphasizes that Howard, when combined with DSI, performs
well even outside its initial use case.

Listing 1. (Flattened) struct member access

s t r u c t o u t e r {
i n t p a y l o a d ;
s t r u c t i n n e r i s t r u c t ;

} ;
s t r u c t o u t e r ⇤o p = m a l lo c ( s i z e o f (⇤ o p ) ) ;

/ / F l a t t e n e d a c c e s s r e l a t i v e from o u t e r
o p�> i s t r u c t . a = 2 ;

/ / A c c e s s r e l a t i v e from i n n e r
s t r u c t i n n e r ⇤ i p = &(o p�> i s t r u c t ) ;
i p�>a = 3 ;

Limitations. One obvious limitation that hampers DSIbin is
the inability to detect a nested struct at the head of an enclosing
struct, which frequently occurs in the real world such as in
the VNC example (Fig. 4, left column, sraSpan front).
This is because Howard tries to find access patterns that apply
an offset from a base pointer; when the base pointer of the
enclosing struct and the nested struct are the same, the nested
access is effectively overridden by that of the enclosing one.
The problem is worsened even for nested structs not appearing
at the head, if the programmer accesses nested struct elements
from the base address of the surrounding struct instead of
relatively from the nested struct as seen in Listing 1.

Howard’s type merging strategy works well on a struct
as a whole, but is not performed between nested elements
(Fig. 4, left column) and between nested and non-nested
instances, e.g., structs front and back. This limitation is
also coupled with missed nested structs, because Howard

would not be able to merge what is not detectable. The
consequences for DSI are missed strands as was discussed
when we introduced Howard’s merging strategy, but now at
the level of nested elements. Additionally, the merge operates
on the heap exclusively, thereby ignoring type instances found
on the stack and the heap. Example lit-1, a parent CDLL
with nesting-on-overlay of two CDLLs, demonstrates these
problems. Because the head element of the parent CDLL is
placed on the stack, the first consequence is that DSI does
not detect the cyclicity property. While Howard indeed detects
the two nested head elements of the child CDLLs inside a
parent node, it is not able to merge those with the remainder
of the list; this again leads to a missed cyclicity property for
the child elements. Additionally, the nesting property changes
from nesting-on-overlay to nesting-on-indirection.

We illustrate Howard’s limitations for our means with two
further examples. As can be seen in the middle column of
Fig. 4, Howard neither recognizes the nested head element
front in the VNC example r-3, nor does it merge the
detected nested struct (corresponding to back) and non-nested
struct (corresponding to sraSpan); all untyped regions are
not detected due to the VNC code not accessing them. Further,
example syn-13 shows that type merging is a crucial feature
of Howard. If this would be absent, as we simulated in this
SLL example by leaving out any list traversal, then the SLL is
not even detected partially. This is because each node of the
SLL is allocated at a different allocation site, and thus DSI’s
strand creation fails since type equivalence between cells is
never established. Such a situation can in principle occur in
practice, e.g., in a skip list where certain regions are never
traversed, thereby blurring the shape even in the presence of
DS accesses.

Overall, however, the types inferred by Howard make for a
good baseline on which DSI is already able to detect certain
DSs. Nevertheless, the encountered limitations need to be
tackled, as we will do in the following, in order to fully enable
DSI’s capabilities.

IV. SOPHISTICATED COMBINATION:
Howard+DSIbin+DSIref

This section aims to solve the abovementioned problems
of nested struct detection and type merging via a more so-
phisticated combination of Howard and DSIbin. This involves
an additional component DSIref (Fig. 3), which implements
a novel approach to refining types generated by Howard.
Interestingly, this component uses DSI for assessing the quality
of inferred type information.

A. Refinement Approach: DSIref
The idea of DSIref is to take Howard’s (incompletely) in-

ferred types and use them as a seed for improvement, for which
we exploit pointer connections between types to systematically
create further (and more complete) type hypotheses. Note that
pointer connections reveal much about the layout of a DS;
for example, an incoming pointer not at the head of a struct
could indicate a nested struct, or pointer linked type objects



struct {

  0x0: VOID*;

  0x8: VOID*;

  0x10: INT32;

  0x14: INT32;

  0x18: VOID*;

}

struct {

  0x0: VOID*;

  0x8: INT64;

  0x20: struct{

    0x0: INT64;

    0x8: VOID*;

  };

}

struct 1176{

  0x0: VOID*;

  0x8: VOID*;

  0x10: INT32;

  0x14: INT32;

  0x18: VOID*;

}

struct{

  0x0: struct 1176{

    0x0: VOID*;

    0x8: VOID*;

    0x10: INT32;

    0x14: INT32;

    0x18: VOID*;

  }

  0x20: struct 1176{

    0x0: VOID*;

    0x8: VOID*;

    0x10: INT32;

    0x14: INT32;

    0x18: VOID*;

  }

}

struct sraSpan {

  struct sraSpan *_next;

  struct sraSpan *_prev;

  int start;

  int end;

  struct sraRegion *subspan;

}

struct sraRegion {

  sraSpan front;

  sraSpan back;

}

Source Howard DSIref

front

back

sraSpansraRegion

sraRegion sraSpan

front

back

Fig. 4. Refinement result shown for VNC example (r-3) (left), VNC DS (right).

of different types could indicate a merge possibility if they
are binary compatible, i.e., compatible in size and primitive
data types. Our approach thus generates a set of hypotheses,
where the best hypothesis needs to be determined. We do
this by evaluating each hypothesis with DSI and selecting the
hypothesis that results in the most complex DS as identified
by DSI. The intuition is that correctly identified nested structs
and correctly identified type merges will naturally increase the
complexity of the detected DS shape, e.g., revealing the missed
cyclic DLL property in example lit-1.

We refer to this refinement process as DSIref, which in-
volves eight phases (Phases (a)–(h)) that are illustrated in
Fig. 5. DSIref takes the execution trace generated by DSIbin
(Phase (a)), which now contains all the ‘as is’ type information
from Howard, and constructs a merged type graph where types
are vertices and pointers are edges, similar to [11], [15], [31]
(Phase (b)). The merged type graph handles heap and stack
types transparently, allowing us to merge both, something
which is not done in the literature [16].

Phases (c)–(f) utilize the merged type graph to generate new
type hypotheses. The first of these phases maps subregions
between different types by following pointer connections: two
regions are mappable if they are binary compatible. Such
mappings may or may not be unique as can be seen in Fig. 6.
On the right-hand side, we have a nested linkage struct that
is clearly delimited by its surrounding primitive data types,
thereby yielding a unique mapping. On the left-hand side,
we have pointer-only fields in the source and target of the
pointer connection, where it is not clear how to cut the overall
struct into nested structs. To solve this problem, we create a
multitude of type hypotheses in Phase (d). These hypotheses
cover all possible struct sizes and offsets mappable between

target and source, as seen by the colored shadings on the left-
hand side in Fig. 6. As an important implementation detail, we
chose the mappable region to be at least two elements in size;
this leaves out single-element pointer chains but decreases the
chances of false mappings.

For each detected mappable region, Phase (e) then prop-
agates that region maximally along the pointer connections
between different types. This will discover more mappable
memory regions and, accordingly, allow us to merge outer
and nested structs even when distributed between the heap
and stack (in principle, also in stack/stack combinations).
More precisely, the propagation proceeds along the pointer
offset relative to the starts of the mappable regions under
consideration. The propagation stops as soon as there is no
pointer found at this specific offset. In case there are memory
regions along the path that are left untyped by Howard, these
are considered as don’t cares; they can be typed arbitrarily
as long as size boundaries are not violated. This can be seen
in Fig. 4, left-hand side, where the right column shows the
missing type information revealed after Phase (e). Thus our
approach is able to perform fine grained type refinements even
across different types, as opposed to ARTISTE [15] which
only refines types as a whole and only for allocation sites that
it considers type equivalent.

While creating the various mappings, it is possible that
inconsistant hypotheses are introduced, which are made con-
sistent in Phase (f), e.g., by discarding overlapping memory
regions; note that nested structs cannot overlap. Although this
consistency property is local to a type vertex, our approach
also considers the consistency of the inferred type hypotheses
across the whole merged type graph. This can be seen on the
left-hand side in Fig. 7, where two different interpretations are
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Fig. 5. Overview of the DSIref approach: (a) create sequence of points-to-graphs from program execution (only one shown); (b) construct merged type graph
capturing pointer connections between types; (c) exploit pointer connections by mapping type subregions (two possibilities shown); (d) observe that multiple
interpretations may be possible; (e) propagate each interpretation along pointer connections; (f) rule out inconsistencies; (g) evaluate remaining interpretations
via DSI; (h) choose the ‘best‘ interpretation in terms of DS complexity (indicated by merged type graph with resulting label 1x CSLL & 1x SLL).
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Fig. 7. Motivation for globally consistent types.

available for one enclosing type: in one vertex of Type A, an
additional nested vertex of Type B is present, but not in the
other. Such a situation can arise when certain parts of the DS
behave differently than others, such as the head or tail of a
list. This situation needs to be resolved by, again, producing
a hypothesis for each different interpretation, leading to the

result displayed on the right-hand side in Fig. 7. Howard’s
inferred type information is simply treated as an additional
hypothesis by us (Sec. V).

With a set of hypotheses to hand, we must now determine
which one(s) provide(s) the most suitable interpretation of
the merged type graph. We use DSI to evaluate the DS that
results from the types of a particular hypothesis in Phase (g),
ultimately selecting the hypothesis that produces the most
complex DS in Phase (h). This is done according to a hierarchy
inspired by the DS identification taxonomy [38] used by DSI
(most complex to least complex): skip list overlay (SLo),
binary tree (BT), cyclic doubly-linked list (CDLL), doubly-
linked list (DLL), cyclic singly-linked list (CSLL), nesting-on-
overlay (No), nesting-on-indirection (Ni). To account for noise
in our evidence labeling and counting, we consider hypotheses
with evidence counts within 85% of each other as equivalent.
To solve situations like example lit-5, where the best
interpretation reveals multiple instances of the detected DS,
our algorithm favors the hypothesis with the highest number
of occurrences of the most complex DS. To solve situations
in which the number of DS instances does not discriminate
between the hypotheses, we apply Occam’s razor to select the
solution using the least amount of refined structs. In cases,
where only a SLL is detected, the longest strand length is
chosen. This strategy works well, often resulting in a single
interpretation (Sec. V).



B. Implementation & Results
We have implemented and integrated the above type refine-

ment approach DSIref into our tool chain (Fig. 3). Because
our approach may generate many hypotheses, we have also
parallelized DSI [38], specifically the parts of the DS de-
tection: strand-graph creation, the naming, the folded-strand-
graph creation, and the aggregation. While the creation of the
points-to-graph and the subsequent strand calculation could be
parallelized with a producer-consumer pattern, too, this is left
to future work.

The tool chain involving DSIref has been applied by us
to the above benchmark. The addition of DSIref boosts our
correct identification of DSs from 10 of 30 examples with
the naive Howard and DSI combination to 26 examples.
We summarize our obtained results in Table I under the
heading “Sophisticated Combination”. Again, the detected DS
is reported when DSIref is applied (DSI), whether the true
DS is recognized (rec), whether nesting at head (n@h-d) or
general nesting (n-d) is detected, whether additional merges
when compared to Howard’s potentially already merged data
types are performed (m), whether merging of nested types
(nm) or between heap and stack (h/s) occur, and whether an
additional type refinement of the primitive data types (pr) is
conducted. The final column (ch hyp) in Table I summarizes
our results, by stating with what technique an example could
be ‘solved’; brackets indicate a wrong interpretation. If the
example contains only one allocation site, i.e., no type merge
is required, it is denoted with “o” in column (m). Interestingly,
one example, lit-5, could only be solved using the naive but
not our sophisticated approach.

Regarding our tool chain’s performance, the longest running
examples have about 5.5K events. Howard’s type inference
and the type hypotheses generation of DSIref took in the
order of seconds (min: 1s, max: 13s, avg: 3.13s) and consume
565MB RAM on average (min: 0.2GB, max: 2.8GB). Creating
an execution trace with Howard’s type information or with a
refinement hypothesis was also done in seconds (min: 0.7s,
max: 17s, avg: 1.8s) and consumes 27MB RAM on average
(min: 24MB, max: 33MB). The hypotheses’ validation and
interpretation with DSI took in the order of (tens of) minutes.
On average, a hypothesis was evaluated in 63s (min: 1s, max:
2622s). The two longest running examples required about 50
minutes each. One example is bound by the large number
(156) of hypotheses, despite each hypothesis being relatively
quick to evaluate. The other instead contains only a few
but complex hypotheses that are responsible for almost the
entire runtime. On average 13.8 hypotheses were produced per
example (min: 1, max: 156). The highest memory consumption
for a hypothesis was 3.2GB RAM (min: 0.2GB, avg: 2.4GB).
Note that our tool chain is currently a prototype only that runs
in large parts on the JVM; we expect that performance can be
improved significantly with a reasonable engineering effort.

V. DISCUSSION

This section discusses several observations that we made
when applying our DSIref tool chain to our benchmark.
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Fig. 8. Two DLLs in parallel.

Sophisticated combination generally outperforms the
naive combination. When applying DSIref to our benchmark,
we increase the detected DSs from 10 for the naive combi-
nation to 26 out of the 30 examples with the sophisticated
combination. However, recall that we add a hypothesis from
Howard’s unmodified type interpretation to those generated
by DSIref since, in rare circumstances the best interpretation
of a DS can be missed, as is the case with our lit-5
example. Using Howard’s information only, DSI detects two
DLLs running in parallel within one struct without nesting; or
more precisely, it detects the four possible strand combinations
forming the two DLLs (top of Fig. 8). In contrast, DSIref
reports nested structs and, thus, prevents the detection of all
four combinations (bottom of Fig. 8). This is due to the DLL
predicate used by DSI, which enforces the same type for all
cells. Hence, the sophisticated combination of Howard and
DSI is not always better than the naive combination.

There may also be situations in which both the naive and
the sophisticated combination miss the ground-truth interpre-
tation. In example tb-4, which consists of an SLL, both
combinations cannot merge the list head with the tail, which is
allocated at a different allocation site. In addition, the head’s
string payload is set with function strcpy from string.h,
whereas the string payload of the tail list nodes is a single,
immediately assigned character. These different assignments
of the payload lead Howard to infer different interpretations
and prevents both Howard and DSIref from merging the two
allocation sites; the latter is because the primitive data types
from Howard are incompatible.

Amount of type merging influences precision. The
syn-08 example shows a flattened access of the nested head
node of the child DLL inside the parent DLL, which prevents
Howard from detecting the head of the child list. This leads
to DSI recognizing an indirect nesting relation between parent
and child, instead of an overlay nesting relation. Further, if the
child DLL has two elements only, i.e., it consists of the missed
nested head node in the parent and one additional element,
then the DLL property would not be discovered by DSI. In
contrast, DSIref is able to reveal the nested child head by



mapping the child DLL element back to the parent; this also
refines the unaccessed previous pointer of the nested DLL head
in the parent. For the same example, Howard does not merge
the two allocation sites for the child DLL, due to the lack
of an iteration pointer. In contrast, DSIref exploits the pointer
connections in the merged type graph and fully propagates the
type across the child DLL, thus merging all of its nodes. This
results in the correct ground-truth interpretation.

However, precision is not always improved by merging
types, which can be observed by the lit-2 example that
consists of multiple levels of SLLs that are all of different
types and are each connected with nesting-on-indirection.
Unfortunately, all types are binary compatible as they all
consist of two pointers exclusively: one for connecting the
elements of the current level, and one for the downward
connection to the next lower level. This leads DSIref to merge
type structures in lit-2 that its programmer clearly wishes
to distinguish, thereby misleading DSI by this additional but
semantically incorrect information, instead of detecting linked
structures with indirect nesting only, DSI recognizes some
indirect nesting as overlay nesting. Although our approach also
adds the hypothesis created from Howard’s non-merged type
interpretation, which yields the correct DS interpretation, our
selection algorithm does not report this as it favors overlay
nesting over indirect nesting.

Limitations inherited by DSI. Other limitations for
DSIbin stem from DSI itself. Certain nesting scenarios can
currently not be resolved by DSI, such as for tsort from
coreutils [2] which performs a topological sort. It utilizes a
binary tree with SLLs running through it, i.e., pointers are
pointing from the tree to the SLLs and vice versa. Conse-
quently, DSI detects parent-child nesting in both directions,
i.e., from the tree into the list and reversely. This results in
an ambiguous nesting situation because the parent cannot be
uniquely determined. We envisage to tackle such situations
in the future with certain heuristics, e.g., assuming that child
elements are mainly accessed via their parent. Another limi-
tation of DSI/DSIbin is pointer arithmetic that (temporarily)
disconnects pointers from memory chunks, e.g., a XOR-
list [13], [23] that saves memory by storing the previous and
next pointers of a DLL node into one pointer field by XOR-ing
them bitwise.

Insights gained into DSI. Our experiments also revealed
shortcomings of the DSI core algorithm, which was presented
in [38] and is employed by DSIbin as a black box. For
example, the DS of the binary r-3 – a DLL parent with
DLL children and taken from Carberp’s [10] malware – can
in principle be detected by our approach, but DSI does not
handle the structures strands underlying the DS in a proper
way: nestings via indirection are misinterpreted as strands of
length 2, which leads DSI to incorrectly fold parent and child
DLL. To remedy this problem, DSI should be more patient
until strands have had the opportunity to evolve and only
then attempt an interpretation on whether a strand represents
indirect nesting.

VI. CONCLUSIONS & FUTURE WORK

This paper aimed at identifying complex dynamic DSs
from C/C++ binaries, so as to aid reverse engineering and
program comprehension. We presented a sophisticated com-
bination of the Data Structure Investigator tool DSI [38],
which operates on source code and exploits type information,
and the type excavating tool Howard [34]. We demonstrated
via benchmarking that even a naive combination of DSI and
Howard is better than related work [15], [21], [22]. We then
significantly improved on this naive combination via novel
ways for merging and refining types that are beyond the
capabilities of Howard and similar tools [16]. Interestingly,
this also involved the use of DSI’s core algorithm to rank
the plausibility of typing hypotheses, as the high-level seman-
tic information about dynamic DSs can enhance the lower-
level type information recovered by Howard. Our resulting
sophisticated combination DSIbin of DSI and Howard was
then able to detect the correct DS shapes of most of our
benchmark examples. Hence, while there is information lost in
binaries that may not be recoverable but may still be crucial for
identifying dynamic DSs correctly, much can still be achieved
in practice. Most importantly and as a rule of thumb, the more
complex a dynamic DS is, the more likely it is that it will be
correctly identified by DSIbin.

We have made the source code of DSI/DSIbin and our syn-
thetic examples available online for inspection and use at [9].
Regarding future work, we plan to provide reverse engineers
with easy access to DSIbin’s results, e.g., by visualizing the re-
sults along the lines of [37] or integrate them with the industry-
standard disassembler and debugger IDA Pro [3]. We also wish
to investigate the handling of custom memory allocators that
can be found in legacy code. Fortunately, DSI’s cell and strand
abstraction naturally supports custom memory allocators when
source code is available, and approaches like [17] can help
in detecting them in binaries. Additionally, our approach
currently observes pointer-based queues and stack DSs as lists.
To name them precisely would require a semantic analysis,
e.g., via recognizing DS operations as proposed by dsOli [37].
This is ongoing research, as is the handling of arrays and hash
tables. Finally, DSIbin provides a fine-grained, instruction-
precise memory leak detection. Detecting leaks together with
DSIbin’s ability to replay the execution trace to a leak might
be valuable to understand leaks in pre-compiled software, e.g.,
where hot-patching of the binary is required [30], [32].
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