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Abstract—During software maintenance, developers usually
deal with a significant number of software change requests. As a
part of this, they often formulate an initial query from the request
texts, and then attempt to map the concepts discussed in the
request to relevant source code locations in the software system
(a.k.a., concept location). Unfortunately, studies suggest that they
often perform poorly in choosing the right search terms for a
change task. In this paper, we propose a novel technique –ACER–
that takes an initial query, identifies appropriate search terms
from the source code using a novel term weight –CodeRank,
and then suggests effective reformulation to the initial query
by exploiting the source document structures, query quality
analysis and machine learning. Experiments with 1,675 baseline
queries from eight subject systems report that our technique can
improve 71% of the baseline queries which is highly promising.
Comparison with five closely related existing techniques in query
reformulation not only validates our empirical findings but also
demonstrates the superiority of our technique.

Index Terms—Query reformulation, CodeRank, term weight-
ing, query quality analysis, concept location, data resampling

I. INTRODUCTION

Studies show that about 80% of the total efforts is spent
in software maintenance [36] where developers deal with a
significant number of software issues [35, 45, 52]. Software
issue reports (a.k.a., change requests) discuss both unexpected
(or erroneous features such as bugs) and expected but non-
existent features (e.g., new functionality). For both bug reso-
lution and new feature implementation, a developer is required
to map the concepts discussed in the issue report to appropriate
source code within the project which is widely known as
concept location [29, 31, 40]. Developers generally choose
one or more important keywords from the report texts, and
then use a search method (e.g., regular expression) to locate
the source code entities (e.g., classes, methods) that need to be
changed. Unfortunately, as the existing studies [28, 30] report,
developers regardless of their experience perform poorly in
choosing appropriate search terms for software change tasks.
According to Kevic and Fritz [28], only 12.20% of the search
terms chosen by the developers were able to locate relevant
source code entities for the change tasks. Furnas et al. [15]
also suggest that there is a little chance (i.e., 10%–15%) that
developers guess the exact words used in the source code.
One way to assist the developers in this regard is to auto-
matically suggest helpful reformulations (e.g., complementary
keywords) to their initially chosen queries.

Existing studies apply relevance feedback from developers
[16], pseudo-relevance feedback from information retrieval
methods [21], and machine learning [21, 34] for such query

reformulation tasks. They also make use of context of query
terms from source code [23, 25, 40, 49, 53], text retrieval
configuration [21, 34], and quality of queries [19, 20] in
suggesting the reformulated queries. Gay et al. [16] capture
explicit feedback on document relevance from the developers,
and then suggest reformulated queries using Rocchio’s expan-
sion [43]. Haiduc et al. and colleagues [18, 19, 20, 21, 22]
take quality of a given query (i.e., query difficulty) into
consideration, and suggest the best reformulation strategy for
the query using machine learning. While all these above tech-
niques are reported to be novel or effective, most of them also
share several limitations. First, source documents contain both
structured items (e.g., method signatures, formal parameters)
and unstructured items (e.g., code comments). Unfortunately,
many of the above reformulation approaches [16, 21, 49]
treat the source documents as simple plain text documents,
and ignore most of their structural aspects except structured
tokens. Such inappropriate treatment might lead to suboptimal
or poor queries. In fact, Hill et al. [23] first consider document
structures, and suggest natural language phrases from method
signatures and field signatures for local code search. However,
since they apply only simple textual matching between initial
queries and the signatures, the suggested phrases are subject
to the quality of not only the given queries and but also of the
identifier names from those signatures. Second, many of these
approaches often directly apply traditional metrics of term
importance (e.g., avgIDF [20], TF-IDF [43]) to source code
which were originally targeted for unstructured regular texts
(e.g., news article) [26]. Thus, they might also fail to identify
the appropriate terms from the structured source documents
for query reformulation.

In this paper, we propose a novel technique–ACER–for
automatic query reformulation for concept location in the
context of software change tasks. We (1) first introduce a
novel graph-based term weight –CodeRank– for identifying
important terms from the source code, and then (2) apply
that term weight and source document structures (e.g., method
signatures) to our technique for automatic query reformulation.
CodeRank identifies important terms not only by analyzing
salient structured entities (e.g., camel case tokens), but also
by exploiting the co-occurrences among the terms across vari-
ous entities. Our technique–ACER–accepts a natural language
query as input, develops multiple candidate queries from two
different important contexts, (1) method signatures and (2)
field signatures of the source documents independently using
CodeRank, and then suggests the best reformulation ( based
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Fig. 1. An example term graph generated by CodeRank for source code of Listing 1

on query quality analysis and machine learning [19, 21]) to
the poorly performing initial query.

Table I shows an example change request [2] submitted for
eclipse.jdt.debug system, and it refers to “debugger
source lookup” issue of Eclipse IDE. Let us assume that
the developer chooses important keywords from the request
title, and formulates a generic initial query–“debugger source
lookup.” Unfortunately, the query does not perform well, and
returns the first correct result at the 79th position of the
result list. Further extension–“debugger source lookup work
variables”–also does not help, and returns the result at the
77th position. The existing technique – RSV [13]– extends
the query as follows–“debugger source lookup work variables
launch configuration jdt java debug”–where the new terms are
collected from the project source using TF-IDF based term
weight. This query returns the correct result at the 30th posi-
tion which is also far from ideal unfortunately. The query of
Sisman and Kak [49]–“debugger source lookup work variables
test exception suite core code”–also returns the correct result
at the 51st position. On the other hand, our suggested query–
“debugger source lookup work variables launch debug problem
resolve required classpath”–returns the correct result at the
2nd position which is highly promising. We first collect struc-
tured tokens (e.g., resolveRuntimeClasspathEntry)
from method signatures and field signatures of the source
code (e.g., Listing 1), and split them into simpler terms
(e.g., resolve, Runtime, Classpath and Entry).
The underlying idea is that such signatures often encode
high level intents and important domain terms while the rest
of the code focuses on more granular level implementation
details, and thus possibly contains more noise [23, 48]. We
develop individual term graph (e.g., Fig. 1) based on term
co-occurrences from each signature type, apply CodeRank
term weighting, and extract multiple candidate reformulations
with the highly weighted terms (e.g., orange coloured, Fig.
1). Then we analyze the quality of the candidates using their
quality measures [19], apply machine learning, and suggest
the best reformulation to the initial query. Thus, our technique
(1) first captures salient terms from the source documents by
analyzing their structural aspects (i.e., unlike bag of words
approaches [46]) and an appropriate term weight–CodeRank,
and (2) then suggests the best query reformulation using docu-
ment structures (i.e., multiple candidates derived from various
signatures), query quality analysis and machine learning [19].

Experiments using 1,675 baseline queries from eight open

TABLE I
AN EXAMPLE CHANGE REQUEST (ISSUE #:31110, ECLIPSE.JDT.DEBUG)

Field Content
Title Debbugger Source Lookup does not work with variables
Description In the Debugger Source Lookup dialog I can also select

variables for source lookup. (Advanced... > Add Variables).
I selected the variable which points to the archive containing
the source file for the type, but the debugger still claims that
he cannot find the source.

Initial debugger source lookup work variablesSearch Query

public static IRuntimeClasspathEntry[] resolveRuntime
ClasspathEntry(IRuntimeClasspathEntry entry,
IJavaProject project) throws CoreException {
switch (entry.getType()) {

case IRuntimeClasspathEntry.PROJECT:
// if the project has multiple output locations,

they must be returned
IResource resource = entry.getResource();
if (resource instanceof IProject) {
IJavaProject jp = JavaCore.create((IProject)

resource);
if (jp.exists() && jp.getProject().isOpen()) {
IRuntimeClasspathEntry[] entries =

resolveOutputLocations(jp);
}

}
break;

---------------------------------------------------
}}

Listing 1. Source code used for automatic query reformulation (abridged from [3])

source subject systems show that our technique can improve
71% (and preserve 26%) of the baseline queries which are
highly promising according to relevant literature [13, 21, 34].
Our suggested queries return correct results for 64% of
the queries in the Top-100 results. Our findings report that
CodeRank is a more effective term weighting method than
the traditional methods (e.g., TF, TF-IDF) for search query
reformulation in the context of source code. Our findings
also suggest that structure of a source code document is
an important paradigm for both term weighting and query
reformulation. Comparison with five closely related existing
approaches [13, 21, 23, 43, 49] not only validates our empirical
findings but also demonstrates the superiority of our technique.
Thus, the paper makes the following contributions:
• A novel term weighting method –CodeRank– for source

code that identifies the most important terms from a given
code entity (e.g., class, method).

• A novel query reformulation technique that reformulates
a given initial query using CodeRank, source document
structures, query quality analysis and machine learning.

• Comprehensive evaluation using 1,675 baseline queries
from eight open source subject systems.

• Comparison with five closely related existing approaches
from the literature.

II. ACER: AUTOMATIC QUERY REFORMULATION USING
CODERANK AND DOCUMENT STRUCTURES

Fig. 2 shows the schematic diagram of our proposed
technique–ACER–for automatic query reformulation. We use
a novel graph-based metric of term importance–CodeRank–
for source code, and apply source document structures, query
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Fig. 2. Schematic diagram of the proposed query reformulation technique–ACER

quality analysis and machine learning for query reformulation
for concept location. We define CodeRank and discuss differ-
ent steps of ACER in the following sections.

A. Pseudo-relevance Feedback

In order to suggest meaningful reformulations to an initial
query, feedback on the query is required. Gay et al. [16] first
reformulate queries based on explicit feedback from the devel-
opers. Although such feedback could be useful, gathering them
is often time-consuming and sometimes infeasible. Hence,
a number of recent studies [13, 21, 40, 41] apply pseudo-
relevance feedback as a feasible alternative. The top ranked
results returned by the code search tool for an initial query
are considered as the pseudo-relevance feedback for the query.
We first refine an initial query by removing the punctuation
marks, numbers, special symbols and stop words (Step 1, Fig.
2). Then we collect the Top-K (i.e., K = 10, best performing
heuristic according to our experiments) search results returned
by the query, and use them as the source for our candidate
terms for query reformulation (Steps 2, 3, Fig. 2).

B. Source Token Selection for Query Reformulation

Global Query Contexts: Pseudo-relevance feedback on an
initial query provides a list of relevant source documents where
one or more terms from the query generally occur. Sisman
and Kak [49] choose such terms for query reformulation
that frequently co-occur with the initial query terms within a
fixed window size in the feedback documents. Hill et al. [23]
consider presence of the query terms in method signatures
or field signatures as an indicator of their relevance, and
suggest natural language phrases from them as reformulated
queries. Both reformulation approaches are highly subject
to the quality of the initial query due to their imposed
constraints– co-occurrences with query terms [49] and textual
similarity with query terms [23]. Rocchio [43] determines
importance (i.e., TF-IDF) of a candidate term across all the
feedback documents, and suggests the top-ranked terms for
query reformulation. Carmel et al. [12] suggest that a single
natural language query might focus on multiple topics, and
different parts of the returned results might cover different
topics. That is, the same candidate term is not supposed to
be important across all the feedback documents. In other
words, accumulating term weight across all the documents
might not always return the most appropriate terms for query
reformulation. Such sort of calculation might add unnecessary
noise to the term weight from the unrelated topics. Hence,

we consider all the feedback documents as a single body of
structured texts which acts as a “global context” for the query
terms. Thus, with the help of an appropriate term weighting
method, the terms representing the most dominant topic across
the feedback documents (i.e., also in the initial query) could
simply stand out, and could be chosen for reformulation.

Candidate Token Mining: Developers often express their
intent behind the code and encode domain related concepts
in the identifier names and comments [17]. However, code
comments are often inadequate or outdated [51]. All identifier
types also do not have the same level of importance. For
example, while the signature of a method encodes the high
level intent for the method, its body focuses on granular
level implementation details and thus possibly contains more
noisy terms [23]. In fact, Hill et al. [23] first analyze method
signatures and field signatures to suggest natural language
phrases as queries for code search. In the same vein, we thus
also consider method signatures (msig) and field signatures
(fsig) as the source for our candidate reformulation terms.
We extract structured identifier names from these signatures
using appropriate regular expressions [42] (Step 4, Fig. 2).
Since different contexts of a source document might convey
different types or levels of semantics (i.e., developers’ intent),
we develop a separate candidate token set (CTsig) for each
of the two signature types (sig ∈ {msig, fsig}) from the
feedback documents (∀d ∈ DRF ) as follows:
CTsig =

⋃
∀d∈DRF

{∃t ∈ Tsig} | structured(t)∧ Tsig = sig(d)

Here sig(d) extracts all tokens from method signatures or field
signatures, and structured(t) determines whether the token
t ∈ Tsig is structured or not. Although we deal with Java
source code in this research where the developers generally
use camel case tokens (e.g., MessageType) or occasionally
might use same case tokens (e.g., DECIMALTYPE), our ap-
proach can be easily replicated for snake case tokens (e.g.,
reverse traversal) as well.

C. Source Code Preprocessing

Token Splitting: Structured tokens often consist of multiple
terms where the terms co-occur (i.e., are concatenated) due to
their semantic or temporal relationships [48]. We first split
each of the complex tokens based on punctuation marks (e.g.,
dot, braces) which returns the individual tokens (Step 4, Fig.
2). Then each of these tokens is splitted using a state-of-
the-art token splitting tool–Samurai [14]–given that regular



expression based splitting might not be always sufficient
enough. Samurai mines software repositories to identify the
most frequent terms, and then suggests the splits for a given
token. We implement Samurai in our working environment
where our subject systems (Section III-A) are used for mining
the frequent terms, and the author’s provided prefix and suffix
lists [4] are applied to the splitting task.

Stop word and Keyword Removal: Since our structured
tokens comprise of natural language terms, we discard stop
words from them as a common practice (Step 4, Fig. 2).
We use a standard list [6] hosted by Google for stop word
removal. Programming keywords can often be considered as
the equivalence of stop words in the source code which are also
discarded from our analysis. Since we deal with Java source
code, the keywords of Java are considered for this step. As
suggested by earlier study [21], we also discard insignificant
source terms (i.e., having word length< 3) from our analysis.

Stemming: It extracts the root (e.g., “send”) out of a word
(e.g., “sending”). Although existing studies suggest contradic-
tory [28, 45] or conflicting [24] evidences for stemming with
the source code, we investigate the impact of stemming with
RQ4 where Snowball stemmer [24, 37] is used for stemming.

D. Source Term Graph Development

Once candidate tokens are extracted from method signatures
and field signatures, and are splitted into candidate terms, we
develop source term graphs (e.g., Fig. 1) from them (Step 5,
Fig. 2). Developers often encode their intent behind the code
and domain vocabulary into the carefully crafted identifier
names where multiple terms are concatenated. For example,
the method name–getChatRoomBots–looks like a natural
language phrase–“get chat room bots”–when splitted properly.
Please note that each of these three terms–“chat”, “room”
and “bots”– co-occur with each other to convey an important
concept– a robotic technology, and thus, they are semantically
connected. On the other hand, the remaining term–“get”– co-
occurs with them due to a temporal relationship (i.e., develops
a verbal phrase). Similar phrasal representations (refined with
lexical matching) were directly returned by Hill et al. for query
reformulation. However, their approach could be limited due to
the added constraint (e.g., warrants query terms in signatures).
We thus perform further analysis on such phrases, and exploit
the co-occurrences among the terms for our graph based term
weighting. In particular, we encode the term co-occurrences
into connecting edges (E) in the term graph (G(V,E)) where
the individual terms (Vi) are denoted as vertices (V ).

V =
⋃

∀t∈CTsig

{Vi ∈ splitted(t) | validterm(Vi)}

E =
⋃

∃Vi,Vj∈V

{(Vi, Vj) | Vi, Vj ∈ t ∧ | i− j |= 1}

Here splitted(t) returns individual terms from the token
t ∈ CTsig , and validterm(Vi) determines whether the term
is valid (i.e., not an insignificant or a stop word) or not.
We consider a window size of two within each phrase for
capturing co-occurrences among the terms. Such window size

for co-occurrence was reported to perform well by the earlier
studies [9, 32, 41]. Thus, the above method name can be rep-
resented as the following edges– get←→chat, chat←→room,
and room←→bots – in the term graph. That is, if a set of
terms are frequently shared across multiple tokens from two
signature types, such occurrences are represented as the high
connectivity in the term graph (e.g., “Classpath” in Fig. 1).

E. CodeRank Calculation

CodeRank: PageRank [10] is one of the most popular
algorithms for web link analysis which was later adapted by
Mihalcea and Tarau [32] for text documents as TextRank.
In this research, we adapt our term weighting method from
TextRank [9, 32, 41] for source code, and we call it CodeR-
ank. To date, only traditional term weights (e.g., TF, TF-
IDF [21, 43, 49]) are applied to source code which were
originally proposed for regular texts [26] and are mostly based
on isolated frequencies. On the contrary, CodeRank not only
analyzes the connectivity (i.e., incoming links and outgoing
links) of each source term, but also the relative weight of the
connected terms from the graph recursively, and calculates the
term weight, S(Vi), as follows (Step 6, Fig. 2):

S(Vi) = (1− ψ) + ψ
∑

jεIn(Vi)

S(Vj)

|Out(Vj)|
(0 ≤ ψ ≤ 1)

Here, In(Vi), Out(Vj), and ψ denote the vertices to which Vi
is connected through incoming links, the vertices to which
Vj is connected through outgoing links, and the damping
factor respectively. As shown earlier using the example–
getChatRoomBots, co-occurred terms complement each
other with their semantics which are represented as bi-
directional edges in the term graph. Thus, each (Vi) of the
vertices from the graph has equal number of incoming links
and outgoing links, i.e., in-degree(Vi)=out-degree(Vi).

Parameters and Configurations: Brin and Page [10]
consider damping factor, ψ, as the probability of randomly
choosing a web page in the context of web surfing by a random
surfer. That is, 1 − ψ is the probability of jumping off that
page by the surfer. They use a well-tested value of 0.85 for ψ
which was later adopted by Mihalcea and Tarau [32] for text
documents. Similarly, we also use the same value of ψ for
CodeRank calculation. Each of the vertices is assigned to a
default value (i.e., base term weight) of 0.25 (as suggested by
earlier studies [10, 32]) with which CodeRank is calculated.
It should be noted that the base weight of a vertex does not
determine its final weight when PageRank based algorithms
are applied [32]. CodeRank adopts the underlying mechanism
of recommendation or votes [32, 41] for term weighting.
That is, each vertex feeds off from the scores of surrounding
connected vertices from the graph in terms of recommendation
(i.e., incoming edges). PageRank generally has two modes of
computation–iterative version and random walk version. We
use the iterative version for CodeRank, and the computation
iterates until the weights of the terms converge below a certain
threshold or they reach the maximum iteration limit (i.e.,
100 as suggested by Blanco and Lioma [9]). As applied



earlier [32], we apply a heuristic threshold of 0.0001 for the
convergence checking. The algorithm captures importance of a
source term not only by estimating its local impact but also by
considering its global influence over other terms. For example,
the term, “Classpath”, Fig. 1, occurs in multiple structured
tokens (Listing 1), complements the semantics of five other
terms, and thus is highly important within the term graph
(i.e., Fig. 1). Once the iterative computation is over, each of
the terms from the graph is found with a numeric score. We
consider these scores as the relative weight or importance of
the corresponding terms from the source code.

F. Suggestion of the Best Query Reformulation
Candidate Reformulation Selection: Algorithms 1 and 2

show the pseudo-code of our query reformulation technique–
ACER–for concept location. We first collect pseudo-relevance
feedback for the initially provided query (Q) where Top-K
source documents are returned (Lines 3–5, Algorithm 1). Then
we collect method signatures and field signatures from each
of the documents (∀d ∈ DRF ), and extract structured tokens
from them. We prepare three token sets–CTmsig, CTfsig and
CTcomb from these signatures (Lines 6–12, Algorithm 1, Step
4, Fig. 2) where CTcomb combines tokens from both signa-
tures. Then we perform limited natural language preprocessing
on each token set where Samurai algorithm [14] is used for to-
ken splitting. We develop separate term graph for each of these
token sets where individual terms are represented as vertices,
and term co-occurrences are encoded as connecting edges
(Lines 3–7, Algorithm 2, Step 5, Fig. 2). We apply CodeRank
term weighting to each of the graphs which provides a ranked
list of terms based on their relative importance. Then we select
Top-K (e.g., K = 10) important terms from each of the three
graphs, and prepare three reformulation candidates (Lines 8–
12, Algorithm 2, Steps 6, 7, 8, Fig. 2).
Algorithm 1 ACER: Proposed Query Reformulation

1: procedure ACER(Q) . Q: initial search query
2: L← {} . list of best reformulation query terms
3: . collecting pseudo-relevance feedback for Q
4: Qpp ← preprocess(Q)
5: DRF ← getRelevanceFeedback(Qpp)
6: . collecting candidate source tokens from signatures
7: for SourceDocument d ∈ DRF do
8: CTmsig ← CTmsig ∪ getMethodSigTokens(d)
9: CTfsig ← CTfsig ∪ getFieldSigTokens(d)

10: end for
11: CTcomb ← CTmsig ∪ CTfsig

12: CTall ← {CTmsig, CTfsig, CTcomb}
13: for TokenList CTsig ∈ CTall do
14: QR[sig]← getQRCandidate(CTsig)
15: end for
16: . suggesting the best reformulated query for Q
17: QD ← resample(getQueryQualityMetrics(QR))
18: QRbest ← getBestCandidateUsingML(QR,Qpp, QD)
19: L← combine(Qpp, QRbest)
20: return L
21: end procedure

Selection of the Best Reformulation: Haiduc et al. [21]
argue that the same type of reformulation (i.e., addition, dele-
tion or replacement of query terms) might not be appropriate

for all given queries. In the same vein, we argue that query
reformulations from different contexts of the source document
(e.g., method signature, field signature) might have different
level of effectiveness given that they embody different level of
semantics and noise. That means, one or more of the reformu-
lation candidates could improve the initial query, but the best
one should be chosen carefully for useful recommendation.

Haiduc et al. [19] suggest that quality of a query with
respect to the corpus could be determined using four of
its statistical properties– specificity, coherency, similarity and
term relatedness–that comprise of 21 metrics [11]. They apply
machine learning on these properties, and separate high quality
queries from low quality ones. We thus also similarly apply
machine learning on our reformulation candidates (and their
metrics), and develop classifier model(s) where Classification
And Regression Tree (CART) is used as the learning algorithm
[19]. Since only the best of the four reformulation candidates
(i.e., including baseline) is of our interest, the training data
was inherently skewed. We thus perform bootstrapping (i.e.,
random resampling) [27, 50] on the data multiple times (e.g.,
50) with 100% sample size and replacement (Step 9, Fig. 2),
train multiple models using the sampled data, and then record
their output predictions. Then, we average all the predictions
for each test instance from all models, and determine their
average probability of being the best candidate reformulation.
Thus, we identify the best of the four candidates using our
models, and suggest the best reformulation to the initial query
(Lines 16–20, Algorithm 1, Steps 10, 11, Fig. 2). Bassett and
Kraft [8] suggest that repetition of certain query terms might
improve retrieval performance of the query. If none of the
candidates is likely to improve the initial query according to
the quality model (i.e., baseline itself is the best), we repeat
all the terms from the initial query as the reformulation.
Algorithm 2 getQRCandidate: Get a candidate reformulation

1: procedure GETQRCANDIDATE(CTsig) . CTsig: extracted
candidate tokens from the signatures sig

2: QRsig ← {} . candidate query reformulation
3: . extracting terms and their co-occurrences
4: STsig ← preprocess(Samurai(CTsig))
5: COsig ← getTermCo-occurrences(STsig , CTsig)
6: . developing term graph from token set
7: Gsig ← developTermGraph(STsig, COsig)
8: . calculating CodeRank using the graph
9: CRsig ← normalize(calculateCodeRank(Gsig))

10: . getting candidate reformulated query
11: QRsig ← getTopKTerms(sortByValue(CRsig))
12: return QRsig

13: end procedure

Working Example: Let us consider the query–{debugger
source lookup work variables}–from our running example in
Table II. Our term weighting method–CodeRank–extracts three
candidate reformulations from method signatures and field
signatures. We see that different candidates have different
level of effectiveness (i.e., rank 02 to rank 16), and in this
case, the candidate from the method signatures (QRmsig) is
the most effective. Our technique–ACER– not only prepares
such candidate queries from various contexts (using a novel



TABLE II
A WORKING EXAMPLE (BUG #31110, ECLIPSE.JDT.DEBUG)

Source Query Terms QE
Bug Title Debbugger Source Lookup does not work with variables 72
Initial {debugger source lookup work variables} 77
Query (Q)
Q′

msig Qpp ∪ (QRmsig={launch debug resolve required classpath}) 02
Q′

fsig Qpp ∪ (QRfsig={label classpath system resolution launch}) 06
Q′

comb Qpp ∪ (QRcomb={java type launch classpath label}) 16

QRbest = getBestCandidateUsingML(QRmsig , QRfsig , QRcomb, Qpp, QD)

Q′
ACER Qpp ∪ QRbest 02

QE = Query Effectiveness, rank of the first correct result returned by the query

TABLE III
EXPERIMENTAL DATASET

System #Classes #CR System #Classes #CR
eclipse.jdt.core–4.7.0 5,908 198 ecf–279.279 2,827 154
eclipse.jdt.debug–4.6.0 1,519 154 log4j–1.2.18 309 28
eclipse.jdt.ui–4.7.0 10,927 309 sling–9.0 4,328 76
eclipse.pde.ui–4.6.0 5,303 302 tomcat70–7.0.73 1,841 454

CR= Change requests

term weighting method) but also suggests the best candidate
(QRbest) for query reformulation. The reformulated query–
{debugger source lookup work variables launch debug resolve
required classpath} – returns the first correct result at the
top position (i.e., rank 02) of the result list which is highly
promising. Such effective reformulations are likely to reduce
a developer’s effort during software change implementation.

III. EXPERIMENT

Although pre-retrieval methods (e.g., coherency, specificity
[19]) are lightweight and reported to be effective for query
quality analysis, post-retrieval methods are more accurate and
more reliable [21]. Existing studies [21, 34, 41, 45] also
adopt these methods widely for evaluation and validation. We
evaluate our term weighting method and query reformulation
technique using 1,675 baseline queries and three performance
metrics. We also compare our technique with five closely
related existing techniques [13, 21, 23, 43, 49]. We thus answer
five research questions using our experiments as follows:
• RQ1: Does query reformulation of ACER improve the

baseline queries significantly in terms of query effective-
ness and retrieval performance?

• RQ2: Does CodeRank perform better than traditional
term weighting methods (e.g., TF, TF-IDF) in identifying
effective search terms from the source code?

• RQ3: Does employment of document structure improve
ACER’s suggestion on good quality search terms from
the source code?

• RQ4: How stemming, query length, and relevance feed-
back size affect the performance of our technique?

• RQ5: Can ACER outperform the existing query re-
formulation techniques from the literature in terms of
effectiveness and retrieval performance of the queries?

A. Experimental Dataset

Data Collection: We collect a total of 1,675 bug reports
from eight open source subject systems (i.e., five Eclipse
systems and three Apache systems) for our experiments. Table
III shows the experimental dataset. We first extract resolved
bug reports (i.e., marked as RESOLVED) from BugZilla and

JIRA repositories, and then collect corresponding bug-fixing
commits from GitHub version control histories of these eight
systems. Such approach was regularly adopted by the relevant
literature [8, 21, 41, 49], and we also follow the same. In
order to ensure a fair evaluation or validation, we discard
the bug reports from our dataset for which no source code
files (e.g., Java classes) were changed or no relevant source
files exist in the system snapshot collected for our study. We
also discard such bug reports that contain stack traces using
appropriate regular expressions [33]. They do not represent a
typical change request (i.e., mostly containing natural language
texts) from the regular software users.

Baseline Query Selection: We select the title of a bug
report as the baseline query for our experiments, as was also
selected by earlier studies [21, 28, 49]. However, we discard
such queries that (i.e., in verbatim titles) already return their
first correct results within the Top-10 positions, i.e., they
possibly do not need query reformulation [21]. Finally, we
ended up with a collection of 1,675 baseline queries. We
perform the same preprocessing steps as were done on the
source documents (Section II-C), on the queries before using
them for code search in our experiments.

Goldset Development: Developers often mention a Bug
ID in the title of a commit when they fix the corresponding
reported bug [7]. We collect the changeset (i.e., list of changed
files) from each of our selected bug-fixing commits, and
develop individual solution set (i.e., goldset) for each of the
corresponding bug reports. Such solution sets are then used
for the evaluation and validation of our suggested queries.

Replication: All experimental data and relevant materials
are hosted online [1] for replication or third party reuse.

B. Corpus Indexing & Source Code Search

Since we locate concept within project source, each of the
source files is considered as an individual document of the
corpus [45]. We apply the same preprocessing steps on the
corpus documents as were done for query reformulation (i.e.,
details in Section II-C). We remove punctuation marks and
stop words from each document. Then, we split the structured
tokens, and keep both the original and the splitted tokens in
the preprocessed documents. We then apply Apache Lucene,
a Vector Space Model (VSM) based popular search engine, to
index all the documents and to search for relevant documents
from the corpus for any given query. Such approaches and
tools were widely adopted by earlier studies [21, 28, 41, 47].

C. Performance Metrics

Query Effectiveness (QE): It approximates the effort re-
quired to find out the first correct result for a query. In
other words, query effectiveness is defined as the rank of the
first correct result returned by the query [33]. The lower the
effectiveness score, the better the query is.

Mean Reciprocal Rank (MRR): Reciprocal rank is defined
as the multiplicative inverse of query effectiveness measure.
Mean Reciprocal Rank averages such measures for all the
queries. The higher the MRR value, the better the query is.



TABLE IV
EFFECTIVENESS OF ACER QUERY AGAINST BASELINE QUERY

System #Queries Improvement Worsening Preserving
#Improved Mean Q1 Q2 Q3 Min. Max. #Worsened Mean Q1 Q2 Q3 Min. Max. #Preserved

ecf 154 100 (64.94%) 71 8 20 58 1 654 5 (3.25%) 125 48 88 220 43 329 49 (31.82%)
jdt.core 198 125 (63.13%) 89 8 20 51 1 1,485 7 (3.54%) 72 16 38 132 13 195 66 (33.33%)
jdt.debug 154 110 (71.43%) 72 10 23 73 1 1,234 3 (1.95%) 138 48 102 265 48 265 41 (26.62%)
jdt.ui 309 216 (69.90%) 169 10 27 92 1 3,162 13 (4.21%) 254 39 91 368 19 1,369 80 (25.89%)
pde.ui 302 191 (63.25%) 143 8 33 102 1 2,304 7 (2.32%) 507 70 477 1,060 40 1,172 104 (34.44%)
log4j 28 23 (82.14%) 35 12 17 58 3 136 0 (0.00%) - - - - - - 5 (17.86%)
sling 76 59 (77.63%) 165 9 18 120 2 1,940 0 (0.00%) - - - - - - 17 (22.37%)
tomcat70 454 345 (75.99%) 236 21 92 291 1 1,675 22 (4.84%) 292 97 261 429 34 938 87 (19.16%)

Total = 1,675 Avg = 71.05% Avg = 2.51% Avg = 26.44%
jdt.core = eclipse.jdt.core, jdt.debug = eclipse.jdt.debug, jdt.ui = eclipse.jdt.ui, pde.ui = eclipse.pde.ui, Mean = Mean rank of first correct results returned by the

queries, Qi= ith quartile of all ranks considered

Top-K Accuracy: It refers to the percentage of queries by
which at least one correct result is returned within the Top-K
results. The higher the metric value, the better the queries are.

D. Evaluation of ACER and CodeRank

We evaluate our technique using 1,675 baseline queries from
eight subject systems and three performance metrics discussed
above. We determine effectiveness and retrieval performance
of our suggested reformulated queries, and then compare
them with their baseline counterparts. We also contrast our
term weight with traditional term weights, and calibrate our
technique using various configurations.

Answering RQ1–Effectiveness of ACER Queries: Table
IV and V show the effectiveness of ACER queries. If our query
returns the first correct result closer to the top position than the
baseline query, then we consider that as query improvement,
and the vice versa as query worsening. If both queries return
their first correct results at the same position, we cosider that
as query preserving. From Table IV, we see that ACER can
improve or preserve 97% of the baseline queries (i.e., about
71% improvement and about 26% preserving) while worsening
the quality of only about 3% of the queries. All these statis-
tics are highly promising according to the relevant literature
[21, 34, 41], i.e., maximum 52% improvement reported [21],
and they demonstrate the potential of our technique. When
individual systems are considered, our technique provides
63%–82% improvement across eight systems. According to
the quantile analysis in Table IV, 25% of our queries return
their first correct results within the Top-10 positions for all
the systems except two (i.e., Top-12 position for log4j and
Top-21 position for tomcat70). Please note that only 6% of
the baseline queries return their correct results within the Top-
10 positions (Table VI). On the contrary, 25% of our queries
do so for six out of eight systems, which demonstrates the
potential of our technique. While query improvement ratios
are significantly higher than the worsening ratios (i.e., 28 times
higher), it should be noted that our technique does not worsen
any of the queries for two of the systems–log4j and sling.

Table V reports further effectiveness and the extent of
actual rank improvements by our suggested queries. We see
that reformulations from the method signatures improve the
baseline queries significantly. For example, they improve 59%
of the baseline queries while worsening 38% of them. Refor-
mulations from the field signatures are found relatively less
effective. However, ACER reduces the worsening ratio to as

TABLE V
EFFECTIVENESS OF ACER VARIANTS AGAINST BASELINE QUERIES

Query Pairs Improved (MRD) Worsened (MRD) p-value Preserved
ACERmsig vs. Baseline 58.93% (-61) 37.99% (+131) *0.007 3.08%
ACERfsig vs. Baseline 52.51% (-51) 44.57% (+151) 0.063 2.91%
ACERcomb vs. Baseline 58.62% (-51) 38.19% (+136) *0.018 3.20%
ACER vs. Baseline 71.05% (-81) 2.51% (+104) *<0.001 26.44%

* = Statistically significant difference between improvement and worsening, MRD = Mean Rank
Difference between ACER and baseline queries

low as 2.51%, and increases the improvement ratio up to 71%,
which are highly promising. More importantly, the mean rank
differences (MRD) suggest that ACER elevates first correct
results in the ranked list by 81 positions on average for at least
71% of the queries while dropping them for only 3% of the
queries by 104 positions. Such rank improvements are likely
to reduce human efforts significantly during concept location.

Retrieval Performance of ACER Queries: Table VI re-
ports the comparison of retrieval performance between our
queries and baseline queries. Given that most of our selected
queries are difficult (i.e., no correct results within the Top-10
positions [21]), the baseline queries retrieve at least one correct
result within the Top-100 positions for 56% of the cases. How-
ever, our reformulations improve this ratio to about 64%, and
the improvement is statistically significant (i.e., paired t-test,
p-value=0.010<0.05, Cohen’s D=0.68 (moderate)). Similar
scenarios are observed with mean reciprocal rank as well.

Thus, to answer RQ1, the reformulation of ACER improves
the baseline queries significantly both in terms of query
effectiveness and retrieval performance. ACER improves 71%
of the baseline queries with 64% Top-100 retrieval accuracy.

Answering RQ2–CodeRank vs. Traditional Term
Weighting Methods: Table VII shows the comparative anal-
ysis between CodeRank and two traditional term weights–
TF and TF-IDF– which are widely used in the text retrieval
contexts [13, 28, 43]. While TF estimates the importance of
a term based on its occurrences within a document, TF-IDF
additionally captures the global occurrences of the term across
all the documents of the corpus [26]. On the contrary, CodeR-
ank employs a graph-based scoring mechanism that determines
the importance of a term based on its co-occurrences with
other important terms within a certain context. From Table VII,
we see that CodeRank performs significantly better than both
TF (i.e., paired t-test, p-value=0.005<0.05) and TF-IDF (i.e.,
p-value<0.001) in identifying important search terms from
source code, especially from the method signatures. Consider-
ing the whole source code rather than signatures improves the
performance of both TF (i.e., 56% query improvement) and



TABLE VI
COMPARISON OF ACER’S RETRIEVAL PERFORMANCE WITH BASELINE QUERIES

Query Metric Top-10 Top-20 Top-50 Top-100

Baseline Top-K Accuracy 5.78% 18.91% 41.09% 56.30%
MRR@K 0.01 0.02 0.03 0.03

ACERmsig
Top-K Accuracy 10.45% 21.48% 38.12% 51.31%
MRR@K 0.02 0.03 0.04 0.04

ACERfsig
Top-K Accuracy 7.77% 17.40% 36.25% 47.23%
MRR@K 0.02 0.03 0.03 0.03

ACERcomb
Top-K Accuracy 8.68% 20.78% 36.87% 51.75%
MRR@K 0.02 0.03 0.03 0.04

ACER Top-K Accuracy *14.72% *31.22% *49.89% *63.89%
MRR@K 0.04 0.05 0.06 0.06

* = Statistically significant difference between ACER and baseline

TABLE VII
COMPARISON BETWEEN CODERANK AND TRADITIONAL TERM WEIGHTS

Query Pairs Improved Worsened Preserved
ACERmsig vs. TFmsig *58.93% / 53.40% *37.99% / 44.60% 3.08% / 2.00%
ACERfsig vs. TFfsig 52.51% / 51.57% 44.57% / 46.85% 2.91% / 1.57%
ACERcomb vs. TFcomb *58.62% / 54.34% *38.19% / 44.11% 3.20% / 1.54%
ACER vs. TFall *71.05% / 56.01% *2.51% / 41.44% *26.44% / 2.55%

ACERmsig vs. *58.93% / 45.55% *37.99% / 49.88% 3.08% / 4.57%TF-IDFmsig

ACERfsig vs. 52.51% / 51.06% 44.57% / 46.77% 2.91% / 2.17%TF-IDFfsig

ACERcomb vs. *58.62% / 50.35% *38.19% / 47.25% 3.20% / 2.40%TF-IDFcomb

ACER vs. *71.05% / 52.17% *2.51% / 45.13% *26.44% / 2.70%TF-IDFall

* = Statistically significant difference between ACER measures and their counterparts

TF-IDF (i.e., 52% query improvement). However, our term
weight–CodeRank–is still better alone (i.e., 59%), and im-
proves significantly higher (i.e., p-value=1.717e-06) fraction
(i.e., 71%) of the baseline queries when employed with our
proposed reformulation algorithm–ACER.

Fig. 3 shows how CodeRank and traditional term weights
perform in reformulating the baseline queries with their (a)
Top-10 and (b) Top-30 terms. We see that TF reaches its peak
performance pretty quickly (i.e., K = 3), and then shows a
stationary or irregular behaviour. That means, TF identifies
frequent terms for query reformulation, and few of them (e.g.,
Top-3) could be highly effective. On the contrary, our method–
CodeRank– demonstrates a gradual improvement in the perfor-
mance up to Top-12 terms (i.e., K=12, Fig. 3-(b)), and crosses
the performance peak of TF with a large margin (i.e., paired
t-test, p-value=0.004<0.05, Cohen’s D=3.77>1.00 (large)),
for K=10 to K=15). CodeRank emphasizes on the votes from
other important terms (i.e., by leveraging co-occurrences) for
determining weight of a term, and as demonstrated in Fig. 3,
this weight is found to be more reliable than TF. TF-IDF is
found relatively less effective according to our investigation.

Thus, to answer RQ2, CodeRank performs significantly
better than traditional methods in identifying effective terms
for query reformulation from the source code.

Answering RQ3–Do Document Structures Matter?
While most of the earlier reformulation techniques miss or
ignore the structural aspect of a source document, we consider
such aspect as an important paradigm of our technique. We
consider a source document as a collection of structured enti-
ties (e.g., signatures, methods, fields) [38] rather than a regular
text document. Thus, we make use of method signatures and
field signatures rather than the whole source code for query
reformulation given that they are likely to contain more salient
terms and less noise [23]. Fig. 4 demonstrates how incorpora-

Fig. 3. Comparison of query improvement between CodeRank and traditional term
weights for (a) Top-10 and (b) Top-30 reformulated query terms

Fig. 4. Improved queries by reformulation from method signatures and field signatures
using (a) CodeRank (CR) and (b) Term Frequency (TF). (c) ACER vs. TF (all content)

TABLE VIII
IMPACT OF STEMMING ON QUERY EFFECTIVENESS

Source Query Improved (MRD) Worsened (MRD) Preserved
Method ACERmsig,stem 52.66% (-58) 44.73% (+127) 2.61%
signature ACERmsig *58.93% (-61) *37.99% (+131) 3.08%
Field ACERfsig,stem 48.14% (-53) 47.47% (+151) 4.39%
signature ACERfsig 52.51% (-51) 44.57% (+151) 2.91%
Both ACERcomb,stem 52.68% (-57) 44.38% (+128) 2.94%
signatures ACERcomb *58.62% (-51) *38.19% (+136) 3.20%
Both ACERstem 68.11% (-78) 5.37% (+67) 26.51%
signatures ACER 71.05% (-81) *2.51% (+104) 26.44%

* = Statistically significant difference between two measures from the same signature, MRD =
Mean Rank Difference between ACER and baseline queries

tion of document structures into a technique could be useful for
query reformulations. We see that reformulations using method
signatures and field signatures improve two different sets of
baseline queries, and this happens with both term weighting
methods–(a) CodeRank and (b) TF. While these sets share
about half of the queries (49%–57%), reformulations based
on each signature type also improve a significant amount (i.e.,
19% (73+136+24) – 25% (105+152+46)) of unique baseline
queries. In Fig. 4-(c), when these signatures (i.e., along with
ACER) are contrasted with the whole source code (i.e., along
with TF), we even found that the signature-based reformu-
lations outperform the whole code-based reformulations by
a large margin (i.e., (25.2%–8.39%) ≈ 17% more query
improvement). That is, the use of the whole source code
introduces additional noise, and diminishes the strength or
salience of the individual structures (i.e., signatures). Most of
the existing methods [16, 21, 40] suffer from this limitation.
On the contrary, our technique ACER exploits document
structures (i.e., signatures), and carefully chooses the best
among all the candidate reformulations derived from such
structures using query quality analysis and machine learning.

Thus, to answer RQ3, document structures improve the
suggestion of query reformulation terms from the source code.

Answering RQ4– Impact of Stemming, Query Length,
and Relevance Feedback: From Table VIII, we see that
stemming generally degrades the effectiveness of our refor-
mulated queries. Similar findings were also reported by earlier
studies [28, 45]. Fig. 5 shows how (a) Top-10 and (b) Top-30
reformulation terms improve the baseline queries. We see that



TABLE IX
COMPARISON OF QUERY EFFECTIVENESS WITH EXISTING TECHNIQUES

Technique #Queries Improvement Worsening Preserving
#Improved Mean Q1 Q2 Q3 Min. Max. #Worsened Mean Q1 Q2 Q3 Min. Max. #Preserved

Hill et al. [23] 1,675 631 (37.67%) 157 18 48 161 1 2,264 760 (45.37%) 261 54 119 300 4 4,819 284 (16.96%)
Rocchio [43] 1,675 895 (53.43%) 219 15 49 188 1 4,609 739 (44.11%) 333 65 170 429 3 3,489 41 (2.45%)
RSV [13] 1,675 914 (54.57%) 216 15 52 195 1 4,611 723 (43.16%) 307 63 160 415 7 3,387 38 (2.27%)
Sisman and Kak [49] 1,675 759 (45.31%) 207 17 61 213 1 3,707 642 (38.33%) 273 59 147 345 8 2,545 274 (16.36%)
Refoqus [21] 1,675 895 (53.43%) 217 15 51 188 1 4,609 737 (44.00%) 332 65 170 429 3 3,489 43 (2.57%)
Refoqussampled [21] 1,675 1,154 (68.90%) 156 11 33 141 1 4,609 487 (29.07%) 325 63 166 406 6 3,489 34 (2.03%)
ACERmsig 1,675 969 (57.85%) 208 14 49 192 1 3,649 662 (39.52%) 272 52 139 341 2 4,825 44 (2.63%)
ACERcomb 1,675 958 (57.19%) 216 15 49 194 1 4,117 674 (40.24%) 275 52 139 336 4 3,360 43 (2.57%)
ACER 1,675 *1,169 (69.79%) 156 11 35 130 1 3,162 *57 (3.40%) 260 53 140 375 13 1,369 *449 (26.81%)
Baseline 1,675 - 227 32 88 258 3 4,787 - 113 24 49 162 1 718 -
ACERext 1,755 *1,192 (67.92%) 149 10 34 124 1 3,162 *48 (2.74%) 301 50 145 327 13 1,782 *515 (29.34%)

Mean = Mean rank of first correct results returned by the queries, Qi= ith quartile of all ranks considered, * = Statistically significant difference between ACER measures and their counterparts

Fig. 5. Effectiveness of ACER queries for (a) Top-10 and (b) Top-30 reformulated terms

our reformulations perform the best (i.e., about 60% query
improvement) with Top-10 to 15 search terms collected from
each signature type. However, when query quality analysis
[19] is employed, our technique–ACER–can improve 71% of
the baseline queries with only Top-10 reformulation terms.
We also repeat the same investigation with Top-30 terms, and
achieved the same top performance (i.e., Fig. 5-(b)). Thus, our
choice of returning Top-10 reformulation terms is justified. We
also investigate how the size of pseudo-relevance feedback
influences our performance, and experimented with Top-30
documents. We found that reformulations for ACER reach
the performance peak when Top-10 to 15 feedback source
documents (i.e., returned by the baseline queries) are analyzed
for candidate terms. This possibly justifies our choice of Top-
10 documents as the pseudo-relevance feedback.

Thus, to answer RQ4, stemming degrades the query effec-
tiveness of ACER. Reformulation size and relevance feedback
size gradually improve the performance of ACER as long as
they are below a certain threshold (i.e., K = 15).

E. Comparison with Existing Approaches

Answering RQ5: While the empirical evaluation in terms of
performance metrics above clearly demonstrates the promising
aspects of our query reformulation technique, we still compare
with five closely-related existing approaches [13, 21, 23, 43,
49]. Hill et al. [23] suggest relevant phrases from method
signatures and field signatures as query reformulations. While
Sisman and Kak [49] focus on term co-occurrences with
query keywords, Rocchio [43] and RSV [13] apply TF-IDF
based term weights for choosing query reformulation terms.
Refoqus [21] is closely related to ours and is reported to
perform better than RSV and other earlier approaches, which
probably makes it the state-of-the-art for our research problem.
We replicate each of Hill et al., Rocchio, RSV, Sisman and
Kak, and Refoqus in our working environment by carefully
following their algorithms, equations and methodologies given

Fig. 6. Comparison of (a) query effectiveness, and (b) retrieval performance

that their implementations are not publicly available. In the
case of Refoqus, we implement 27 metrics (20 pre-retrieval
[19] and 7 post-retrieval [21]) that estimate query difficulty.
We develop a machine learning model using CART algorithm
(i.e., as used by them) and 10-fold cross validation. Then,
we use the model to return the best reformulation out of four
candidates of Refoqus– query reduction, Dice expansion, Roc-
chio’s expansion and RSV expansion–for each baseline query.
Table IX and Fig. 6 summarize our comparative analyses.

From Table IX, we see that RSV and Refoqus perform better
than the other existing approaches. They improve about 55%
and about 53% of the baseline queries respectively. Such ratios
are also pretty close to the originally reported performances by
Haiduc et al. on a different dataset, which possibly validates
the correctness of our implementation. While 55% query
improvement is the maximum performance provided by any of
the existing approaches, our technique–ACER–improves about
70% of the baseline queries (i.e., 1% difference between Table
V and Table IX due to rounding error) which is significantly
higher, i.e., paired t-test, p-value=6.663e-06<0.05, Cohen’s
D=2.43>1.00 (large). Refoqus adopts a similar methodol-
ogy like ours. Unfortunately, the approach is limited due to
possibly the low performance of its candidate reformulations.
One might argue about the data resampling step (i.e., Step 9,
Fig. 2) of ACER for the high performance. However, we also
apply data resampling to Refoqus using the same settings as
ours for further investigation. We see that Refoqussampled has
a similar improvement ratio like ours, but it still worsens a
significant amount of queries, 29%, compared to our 3.40%.
Thus, our technique still performs better than Refoqus in the
equal settings. Our quantile measures and mean ranks are more
promising than those from the baseline or competing methods
as reported in Table IX. Table V and RQ1 also suggest that
our queries have high potential for reducing human efforts. We
also experiment with an extended dataset (i.e., 1,755=1,675 +
8x10) containing 80 very good queries. As reported in Table



IX, ACERext mostly preserves the good quality queries rather
than worsening, which also demonstrates its high potential.

Fig. 6-(a) shows the box plots of query improvement and
query worsening ratios by all the techniques under study. We
see that ACER outperforms the existing techniques includ-
ing the state-of-the-art [21] by a large margin. Our median
improvement ratio is about 75%, which is higher than even
the maximum improvement ratios of the counterparts, which
demonstrates the promising aspect of ACER. Fig. 6-(b) shows
the Top-K accuracy of the query reformulation techniques.
We see that our accuracy is relatively higher than that of each
of the existing approaches across various Top-K (i.e., 10–100)
values. The best performing existing method is RSV. However,
our performance is significantly higher than that of RSV for
various K values according to statistical significance tests (i.e.,
paired t-test, p-value=0.0001<0.05, Cohen’s D=0.34).

Thus, to answer RQ5, our technique outperforms the state-
of-the-art techniques in terms of reformulation query effec-
tiveness, and performs significantly better than each of the
existing techniques in terms of document retrieval accuracy.

IV. THREATS TO VALIDITY

Threats to internal validity relate to experimental errors and
biases [55]. Although CodeRank and document structures play
a major role, the data resampling step (Section II-F, Step 9,
Fig. 2) has a significant role behind the high performance of
our technique. Unfortunately, to the best of our knowledge,
Refoqus [21] does not have such a step. Thus, the performance
comparison might look like a bit unfair. Besides, models based
on data resampling are sometimes criticized for intrinsic biases
[5]. However, we apply data resampling to Refoqus as well
(i.e., Refoqussampled), and demonstrate that our technique still
performs better in terms of worsening ratio.

Threats to external validity relate to the generalization of
the obtained results [21]. All of our subject systems are Java-
based. So, there might be different results with systems from
other programming languages. However, we experimented
with eight different systems with promising performance, and
the comparison with the state-of-the-art techniques demon-
strates the superiority of our approach.

V. RELATED WORK

There exist a number of studies in the literature that refor-
mulate a given query for concept location in the context of
software change tasks. Existing studies apply relevance feed-
back from developers [16], pseudo-relevance feedback from
IR tools [21], partial phrasal matching [23, 44], and machine
learning [21, 34] to query reformulation. They also make use
of context of query terms from source code [25, 40, 49, 53],
text retrieval configuration [21, 34], and quality of queries
[19, 20] in suggesting the reformulated queries. Hill et al.
[23] consider the presence of query terms in the method
or field signatures as an indicator of their relevance, and
suggest natural language phrases from them as reformulated
queries. Sisman and Kak [49] choose such terms for query
reformulation that frequently co-occur with query terms within

a fixed size of window in the code. Rocchio [43] and RSV [13]
determine importance of a term using TF-IDF based metrics.
Haiduc et al. [21] identify the best of four reformulation
candidates for any given query using a machine learning model
with 28 metrics. All these five studies are highly relevant to
ours, and we directly compare with them using experiments.
Readers are referred to Section III-E for comparison details.

Other related studies [39, 41, 54] explore graph-based meth-
ods for term weighting. Rahman and Roy [39, 41] simply use
TextRank on change request texts for suggesting initial queries
for concept location. Yao et al. [54] build a term augmented
tuple graph and use a random walk approach to reformulate
queries for structured bibliographic DBLP Data (i.e., non-
source code). Ours is significantly different from these studies
in the sense that we reformulate the initial queries not only by
employing our term weighting method–CodeRank for source
code, but also by applying source code document structures,
query quality analysis and machine learning. Besides, their
reported best performance (i.e., 58%–62% query improvement
over baseline [41]) is quite lower than our performance (i.e.,
71%, even with difficult queries). Given that reformulation
is often performed on the initial queries, our technique can
potentially complement theirs. Howard et al. [25] map method
signatures to associated comments for query reformulation,
and thus, might not work well with source code without
comments. Rahman and Roy [40] exploit crowd sourced
knowledge for query reformulation, and their method is also
subject to the availability of a third party information source.
Thus, while earlier studies adopt various methodologies or
information sources, our technique not only employs a novel
and promising term weight –CodeRank, but also exploits
structures of the source documents for identifying the best
reformulation to a given query for improved concept location.

VI. CONCLUSION & FUTURE WORK

To summarize, we propose a novel technique–ACER–for
improved query reformulation for concept location. It takes an
initial query as input, identifies appropriate search terms from
the source code using a novel term weight, and then suggests
the best reformulation to the initial query using document
structures, query quality analysis and machine learning. Exper-
iments with 1,675 baseline queries from eight systems report
that our technique can improve 71% of the baseline queries
and preserve 26% of them, which are highly promising.
Comparison with five closely related approaches including
the state-of-the-art not only validates our empirical findings
but also demonstrates the high potential of our technique.
In future, we plan to apply our term weighting method,
CodeRank, to other SE text retrieval tasks involving source
code such as bug localization and traceability recovery.
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