
O2O Service Composition with Social Collaboration

Abstract—In Online-to-Offline (O2O) commerce, customer
services may need to be composed from online and offline
services. Such composition is challenging, as it requires effective
selection of appropriate services that, in turn, support optimal
combination of both online and offline services. In this paper,
we address this challenge by proposing an approach to O2O
service composition which combines offline route planning and
social collaboration to optimize service selection. We frame
general O2O service composition problems using timed automata
and propose an optimization procedure that incorporates: (1) a
Markov Chain Monte Carlo (MCMC) algorithm to stochastically
select a concrete composite service, and (2) a model checking
approach to searching for an optimal collaboration plan with the
lowest cost given certain time constraint. Our procedure has been
evaluated using the simulation of a rich scenario on effectiveness
and scalability.

I. INTRODUCTION

With the growing number of alternative Web services that
provide equivalent functionality but differ in Quality of Service
(QoS), complex applications are increasingly constructed by
service composition, automating business processes by com-
posing exisiting component services [1], [5]. Existing research
on service composition focuses on selecting an optimal set of
component services from given user’s requirements and pref-
erences by local selection [7], [19], global optimization [4],
[5], [29], [30], or combining both [1]. This line of research
considers online services only, that is, computational services
invoked remotely via the Internet.

However, online services are increasingly related to offline
facilities or social services involving human agents. For ex-
ample, after reserving an archived document using an online
service provided by a library, a user needs to physically collect
the document. Bringing online consumers into real-world
stores, “Online-to-Offline” (O2O) commerce has become a
fast-growing area in eCommerce, with an estimated trillion
dollar market [22], [11]. With the support of QR (Quick
Response) codes, one can quickly access an online service,
such as ordering a product associated with a physical world
object by scanning its QR code using mobile phone, or
consume a service in the physical world, such as having a
dinner, with the QR code received on mobile phone as an
electronic voucher.

Offline services take place in the physical space. They are
bounded to certain physical locations and their executions
may require the availability of certain physical objects. For
example, a library provides a Fetching Reserved Document
service at its service stations; a shop that provides a Scan-
ning Document service requires that a document is taken to
the shop for scanning. Therefore, the composition of online
and offline services needs to consider not only the quality

attributes and parameter passing in the virtual space but also
the route planning and the passing of physical objects in the
physical space. For example, it may be beneficial to choose
a Document Reservation service that is more expensive but
has a closer service station of the same library for fetching
the reserved document.

On the other hand, the development of the emerging sharing
economy (also known as collaborative consumption) [14]
allows peer-to-peer sharing of accesses to goods and services
through community-based online coordinations. For example,
Amazon has developed an app called “On My Way” which
would allow people to deliver packages en route to their desti-
nations to cut cost while improving customer experience [17].
Through social collaboration, a user may recruit a group of
people to participate in the execution of offline services, e.g.,
to fetch a reserved document from a library service station
and take it to a shop for scanning, on the way to their own
destinations. Such opportunistic collaboration is often cheaper
than executing all the offline services by the user in person or
by employing a normal delivery service.

A challenge to achieve the benefit of the proposed O2O
service composition with social collaboration is to formally
model both online and offline services and their interplay
with the locations shared between mobile agents and their
individual interests and concerns. In this paper, we propose an
approach to O2O service composition which incorporates of-
fline route planning and social collaboration into the considera-
tions of service selection. We start with modeling O2O service
composition using timed automata [2], which incorporates the
concepts of abstract/concrete composite service, online/offline
services, as well as agents (the user and candidate collabo-
rators) and physical objects. These models define the O2O
service composition precisely as an optimization problem.
However, the complexity in the optimization is very high, that
is, given an abstract O2O composite service, not only may
there be many corresponding concrete composite services but
also, for each concrete composite service, there may be many
different ways in which agents can collaborate to reduce cost.
Therefore, we propose practical algorithms to approximate
the optimal solution. In particular, we propose a two-level
procedure: (1) given an abstract composite service, we use
a variant of the Markov Chain Monte Carlo (MCMC) [15]
algorithm to select an instance for each online or offline
abstract service so as to identify candidate concrete composite
services; (2) for each candidate concrete composite service, we
apply a model checker [6] to identify a collaboration plan with
the lowest cost (including both cost of service consumption
and human labor) that satisfies the given time constraint. We
evaluate the proposed approach with a simulated scenario and



our results support its effectiveness and scalability.
As far as we know, this is the first work on defining the

problem of O2O service composition with social collaboration.
The paper’s novel contribution is therefore a formal model of
the problem as well as an approach for solving it.

II. MOTIVATING EXAMPLE

Suppose that a user Bob would like to borrow an archived
document from a library, get a scanned copy and print a bound
copy of the document. The whole process can be represented
by the composite service Reproduce Borrowed Document
as shown in Figure 1, in which white and gray rectangles
represent online and offline services respectively. The process
includes two online services (i.e., Document Reservation and
Remote Printing) and four offline services (i.e., Fetching
Reserved Document, Scanning Document, Fetching Bound
Copy, Returning Document).

To reproduce a borrowed document, a user such as Bob
needs to first reserve the document using an online Document
Reservation service provided by a library and will receive a
QR code if the document is successfully reserved. Then the
user needs to go to a selected library service station (a library
can have multiple stations) and use the Fetching Reserved
Document service to get the reserved document by scanning
the QR code. Next he needs to take the document to a scanning
service provider and use the Scanning Document service
to get a scanned copy. After that he needs to upload the
scanned copy and order a bound copy of the document using
the online Remote Printing service provided by a printing
service provider and will receive a QR code if the bound
copy is successfully ordered and paid for. He can choose an
offline service station of the printing service provider to use
the Fetching Bound Copy service to get the bound copy
by scanning the QR code. On the other hand, he needs to
return the document to a service station of the library using
the Returning Document service.

Fig. 1. Process of Reproduce Borrowed Document

Suppose that two libraries provide the Document Reser-
vation service, each library has two offline service stations
located at different places, which provide the Fetching Re-
served Document and Returning Document services. Also
consider three shops provide Scanning Document service;
two companies provide Remote Printing service and each of
the companies has two offline service stations providing the
Fetching Bound Copy service. The QoS values (i.e., time and
cost in this case) of each online or offline service instance are
shown in Figure 2. Bob’s initial location and the locations of
offline service instances are also shown. The service instances
in a bracket mean the preconditions of the service instance
before the bracket. The lines between the locations represent
segments on possible routes and we assume that the distance
represented by each line is the same for simplicity.

To reproduce a borrowed document, Bob needs to instantiate
the Reproduce Borrowed Document service by selecting
an instance for each involved online or offline component
service. According to service composition approaches, this
problem can be considered as an optimization problem [1],
in which the overall utility value has to be maximized while
satisfying all global constraints. For the Reproduce Borrowed
Document service, Bob wants to minimize the overall cost
while satisfying the time constraint (i.e., within 100 time
units). Given the QoS values shown in Figure 2, the best
service composition is {DR1, FD1, SD1, RD1, RP2, FC4}
if we treat offline services the same as online services. Suppose
Bob starts from his initial location L0 and finally returns to
it. According to this composition the best route for Bob to
complete all the steps in person is: L0 → L1 → L3 → L5 →
L9 → L11 → L9 → L5 → L3 → L1 → L0.

Obviously, there could be much better solutions when the
distances between the locations of different offline services are
considered. For example, if Bob chooses the service compo-
sition {DR2, FD4, SD3, RD4, RP1, FC1}, he can take a
shorter route: L0 → L2 → L1 → L4 → L5 → L2 → L0. This
composition costs a little more on direct service consumption,
but requires much less time and cost on the way. Therefore,
O2O service composition needs to consider the locations of
offline services and incorporate route planning on top of
service selection.

The service composition for Bob can be further optimized
by considering social collaboration. Suppose another person,
Tom, is currently at the location L3 and plans to walk to L10

via L6 and L7. He can wait at L3 for the document to be
reserved by Bob using DR1 and then fetch the document using
FD1. Then he can take the document to L6 for scanning using
SD2. Bob can get the scanned copy by email and order a
remote printing using RP2. Next Tom can go to L7 to fetch
the bound copy using FC3.

Suppose another person, Jerry, will be at L7 after Tom gets
the bound copy and plan to walk to L2 via L8 and L5. Jerry
can get the document and bound copy from Tom at L7 and
return the document at L8 using RD2. When Jerry arrives
at L2, he can walk forward to L0 to send the bound copy
to Bob and then return to L2, or Bob can walk to L2 to
get the bound copy and return to L0. In either case, the cost
on the way can be reduced greatly, as the additional distance
that Bob, Tom and Jerry need to walk are only a round trip
between L0 and L2. Furthermore, Tom and Jerry could be
potentially walking concurrently (to save overall time cost).
We call such opportunistic delegation of services to potential
collaborators as social collaboration, which can be challenging
to incorporate into O2O service composition by considering
the initial routes of social collaborators and computing an
opportunistically beneficial plan for them to carry out the
delegated tasks.

III. SERVICE MODEL: FORMALIZATION

O2O service composition with social collaboration is
complicated as it goes beyond traditional service composition.



Fig. 2. QoS Values and Locations of Service Instances

Fig. 3. FSM for Abstract Composite Service

In particular, social collaboration requires the participation of
multiple agents, which can be viewed as concurrent processes
for carrying physical objects around. In the following, we
present a general definition of the problem, which serves
as the basis for developing approaches for solving the problem.

O2O Services An abstract service (e.g., Document Reserva-
tion in the motivating example) specifies the functionality of
the service without referring to any concrete service instance.
An abstract composite service (e.g., Reproduce Borrowed
Document) specifies the compositional workflows using a
set of abstract services for fulfilling the service requests.
Without loss of generality, hereafter we assume that an abstract
composite service AS is defined as a network of finite-state
machines (FSM), i.e., the parallel composition of multiple
finite-state machines where transitions are labeled with ab-
stract services. For instance, the abstract composite service
shown in Figure 1 can be easily translated to the network
of FSM shown in Figure 3, where sd done is an auxiliary
Boolean variable used to control the execution order, and
[ltheBoundCopy = luser] is the precondition of the end of the
service, which means the user gets the bound copy. Initially,
it is false and it is set to be true along the transition labeled
with SD. The first transition labeled with RP and RD is then
enabled afterwards.

An abstract service Si can be realized by a functionally
equivalent concrete service. Often, multiple concrete services
are available to realize Si. Given an abstract composite service
composed of multiple abstract services S1, . . . , Sn, we can
obtain a concrete composite service by instantiating each
abstract service Si with a concrete one. It is then implied
that a concrete composite service can also be expressed in the
form of a network of FSM where transition labels are concrete
services. For instance, Figure 4 shows the network of FSM
representing an instantiation of the abstract composite service
shown in Figure 3.

Unlike traditional Web service composition where all activ-
ities happen in the virtual space, the O2O paradigm connects
services taking place in not only the virtual but also the

Fig. 4. FSM for Concrete Composite Service

physical space. For instance, invoking an online Remote
Printing service would result in certain physical object (i.e.,
the printout) being located at certain physical location. Fur-
thermore, this online service may be connected to an instance
of Fetching Bound Copy service taking place offline at the
location where the printout is. Intuitively, online services do
not require the users to be at specific locations and their
executions do not depend on the availability of certain physical
objects. For example, the Document Reservation service
takes as input only the information of a document and it can be
invoked anywhere. In contrast, offline services may take place
only at certain physical locations and may rely on the existence
of certain physical objects at certain physical locations.

In the following, we formalize the interplay between online
and offline services. To capture the services’ effect on physical
objects, without loss of generality, we assume a set of physical
objects O and a set of physical locations L. Furthermore,
for each object o ∈ O, we define a variable lo to denote
its location. The initial value of lo is the initial location
of o. Formally, we define a concrete service as a 3-tuple
(guard, name, action) where guard is the pre-condition on
the invocation of the service; name is the name of the
service; and action is a program (e.g., assignments) capturing
the effect of the service. Here guard may be constituted
by the propositions on the value of lo for certain object o
and action may update the value of lo. For instance, the
offline Fetching Bound Copy service may have a precondition
which requires that the document is at certain station, i.e.,
ltheDoc = theStation, whereas the online Document Reser-
vation service may set the location of the reserved document
to be at certain station. Note that guard and action may have
additional propositions. For instance, the Fetching Bound
Copy service may require a proof of reservation (e.g., a QR
code) in its precondition.

Formally, a service (guard, name, action) is online if
guard is independent of physical locations (i.e., any variable
lo or location of any agent as introduced later), and is
offline otherwise. Both online and offline services however
may update some locations lo, i.e., resulting in certain
objects appearing at or moving to certain locations. Given a
concrete composite service in the form of a network of FSM,
replacing each concrete service (i.e., transition label) with
the corresponding triple (guard, name, action) turns the
network of FSM into a network of timed automata. In order
to model concrete services which take certain amount of time
to finish, we can introduce an auxiliary clock c to capture
the time constraint. For instance, if the concrete service of
name takes d time units to finish, we model it as follows.
First, we reset c along the transition labeled with the triple
(guard, name, action). Assume that the transition leads to
a state s. We then constrain all transitions leaving s such
that they must satisfy c ≥ d. Intuitively, this modeling can
be interpreted as “when the transition occurs, the concrete
service is invoked and it finishes only when the system leaves
the state s”. We remark that by “timed automata”, we do not
mean timed automata proposed in [2] but the ones extended



Fig. 5. Timed Automaton for Concrete Composite Service

with variables as supported in UPPAAL [8]. We denote this
network of timed automata representing a concrete composite
service as CS . For instance, Figure 5 shows the corresponding
CS for the concrete composite service shown in Figure 4.

Agents An abstract composite service focuses on high-level
service requests and is not concerned with how each abstract
service is realized. That is, an abstract composite service
specifies how services are connected through time. In contrast,
concrete composite services instantiating an abstract compos-
ite service are constrained by their preconditions. In particular,
a concrete composite service must deal with how the concrete
services are connected through the physical space, e.g., in
order to invoke the next concrete service, we may need the user
to physically relocate certain objects so that its precondition is
satisfied. This problem is solved by employing a set of agents
A (e.g., people participating in the social collaboration).

In the following, we use A to denote the set of agents. We
write la where a ∈ A denotes the location of agent a. Intu-
itively, each agent is a separate process, who can move from
location to location, with or without certain physical objects,
in certain amount of time. Formally, an agent is specified in the
form of a timed automaton Ai = (Si, initi, Ci,Σi, Ti) where:
Si is the smallest set containing all locations in L as well as
a state m2n for every two ordered locations 〈m,n〉 denoting
the state of transiting from location m to n; initi ∈ L is the
initial location of the agent; Ci = {ci} contains one and only
clock ci which is used to specify the time cost of the agent
moving from one location to another; Σi = {τ} is an alphabet
containing only an invisible τ event (as the name of the events
are irrelevant); and Ti is the smallest labeled transition relation
satisfying the following conditions.

• For each object o ∈ O and each state m in Si∩L, there is
a transition (m, g, {ci}, act,m2n) from m to state m2n
where g is lo = m and act is the program lo := inTrans.
Note that inTrans is a special constant denoting that the
object is not at any location in L but rather in a transition
between the locations.

• For each object o ∈ O and state n, there is a transition
(m2n, g, {ci}, act, n) from m2n to n where g is ci =
d ∧ lo = inTrans and act is the program lo = n. Note
that d is a constant denoting the time required for this
agent to travel from m to n.

By definition, when an agent moves from a location to another,
it may carry an object along if the object is at the starting
location. It is in this way the agents help realizing a concrete
composite service, i.e., by connecting concrete services in the
physical space. Note that we assume that an agent can each
time only bring one object. This assumption can certainly be
lifted. For instance, an agent in our motivating example is
specified by the timed automaton shown in Figure 6.

Fig. 6. Timed Automaton for Agent

A set of agents is defined as the parallel composition
of the agents (since they can simultaneously move between
locations to help accomplish a concrete service composition
more efficiently), written as A = A1 ‖ A2 ‖ · · · ‖ A|A| where
|A| is the number of agents in the system. For the interest of
space, we skip the definition of parallel composition of timed
automata and refer the readers to [2] for details.

A. Deadline and Cost

An O2O service composition with social collaboration is
then defined as the parallel composition of CS and A, written
as CS ‖ A. Adopting standard definitions in [16], a timed run
of CS ‖ A is a finite sequence of alternating states and events.

π = 〈s0, x0, s1, x1, · · · , xn−1, sn〉

where si is a system state which captures the state of the
composite service as well as where the agents and objects
are; xi is either a concrete service (i.e., the invocation of the
service) or a real number in R denoting the elapsing of certain
xi number of time units. The total execution time of the run
is the accumulated sum of all xi ∈ R. The run is rooted if it
starts with the initial state of CS ‖ A. Furthermore, the run
is accepting if it is accepting by the composite service FSM
network, i.e., it completes the composite service.

A composite service often has a deadline, i.e., the composite
service must be completed before certain time. Given a rooted
accepting run of CS ‖ A, we can check whether it satisfies
the deadline by checking whether its execution time is within
the deadline. We call a rooted accepting run of CS ‖ A
which satisfies the deadline as an execution of the composite
service. Furthermore, we define a cost function cost which,
given a concrete service cs, cost(cs) is the cost of invoking
that service; and given an agent o and two ordered locations
〈m,n〉, cost(o,m, n) is the cost of o traveling from m to n.
Furthermore, in the context of social collaboration, if each
agent is assumed to be traveling from its initial location to
a destination, we can measure the additional cost for each
agent, in terms of how much extra cost it must bare, i.e., its
cost of participating the service execution and then traveling
to the destination minus its cost of traveling from the initial
location to the destination directly. As a result, given an
execution of CS ‖ A, we can calculate its cost by aggregating
the cost of all the steps, as we extract information on what
concrete services have been invoked and the additional cost
of all the agents participating the execution. Hereafter, we



denote the cost of an execution π as cost(π).

Problem Definition The problem is then defined as follows.
Given an abstract O2O composite service AS composed of
abstract services AS1, AS2, · · · , and each abstract service can
be instantiated with a set of concrete services, identify the
most cost-effective execution π of the composite service.

In the following, we briefly analyze the complexity of the
problem. Let |ASi| denote the number of concrete services
available to instantiate abstract service ASi. In general, there
are a total of Πi|Si| possible concrete composite services
instantiating an AS. Furthermore, given a concrete composite
service, the number of executions are in general exponential
in the number of agents. In fact, identifying the most cost-
effective execution of a given concrete composite service
requires solving a complicated planning problem, which not
only has a constraint on the execution time (i.e., the deadline),
but also involves concurrency (since all agents are running in
parallel). Furthermore, we need to not only find a feasible
schedule but rather to find the most cost-effective one. The
complexity of our problem is thus very high. In practice, this
problem is often solved based on simple ad hoc ways, e.g., not
considering social collaboration or assuming that agents work
sequentially. In the following, we develop a method which
solves this problem in a way such that often a sub-optimal
solution can be identified in a reasonable amount of time.

IV. APPROACH

Given a finite set of concrete services, agents and physical
objects, according to our definition, there is always an optimal
solution. The complexity in identifying the optimal solution is
however extremely high. In this section, we set out to develop
a practical approach for solving the problem.

Our approach tackles the complexity at two levels. Given
a concrete composite service which is in the form of a
network of timed automata, we apply a model checker called
UPPAAL-CORA [6] to automatically identify an execution
of the composite service with the minimum cost. UPPAAL-
CORA is an extension of the well-known UPPAAL model
checker [8] for cost optimal reachability analysis, which serves
our purpose well. Furthermore, we apply a number of well-
founded heuristics to help reduce the state space explored
by UPPAAL-CORA significantly. At the level of service
selection, we have the combinatorial complexity as there are
often multiple concrete services available for each abstract
service. We thus apply a general optimization technique, i.e.,
a version of the MCMC (Markov Chain Monte Carlo [15])
algorithm, so that we can iteratively improve our service
selection. We remark that service selection optimization has
been well-researched [26], [25], [1], [5]. However, existing
approaches do not apply here since our problem additionally
requires us to solve the optimal reachability problem given a
concrete composite service. In the following, we introduce the
two levels of optimization in detail.

A. MCMC for Service Selection

The first problem we would like to solve is the problem of
combinatorial explosion in the number of concrete composite
services. Our remedy is to adopt a version of the MCMC [15],
as shown in Algorithm 1, in the hope to find a sub-optimal
service selection efficiently.

The inputs of the algorithm include: the abstract composite
service AS composed of abstract services AS1, AS2, · · · , a
set of concrete services CSi for each ASi, a finite set of
agents A (each of which is in the form of a timed automaton
as discussed in Section 3), as well as an optimal threshold
on the cost. Algorithm 1 starts with randomly selecting one
concrete service csi ∈ CSi for each abstract service in AS
so as to obtain a concrete composite service CS. Next, a
timed automata model is built based on the discussion in
Section 3, which is then optimized with a set of heuristics
for reducing the state space (explained later in this section)
and submitted to UPPAAL-CORA in order to identify an
“optimal” execution π. At line 4, we compare the cost of the
execution π with the given threshold to check whether it is
considered acceptable. If it is acceptable, we terminate and
report that an acceptable concrete composite service together
with an execution which has a cost lower than the threshold
has been identified. Otherwise, we proceed to line 5 to search
for better concrete composite services. We remark that in the
case that the threshold is not provided, we iterate through the
loop from line 4 to line 16 until it times out and we report
the best execution that has been identified so far.

During the loop, we first check whether we have exhausted
all combinations of concrete services. If the answer is yes,
we report that no acceptable execution has been identified
at line 14. Otherwise, we identify a new concrete composite
service, by changing a part of the selection in the best concrete
composite service CS identified so far, at line 6. We then
identify the “optimal” execution based on the new concrete
composite service at line 7. At line 8, we compare the new
execution π′ with the current best one π. If the new one has a
smaller cost, we take π′ as the new current best execution at
line 9 and similar we take CS′ as new best concrete composite
service. The condition at line 10 states that even if the new
execution is not better than π, there is still certain probability
that we might use the new concrete composite service to
identify better ones in the future. That is, we generate a random
number between 0 and 1, and depending whether the random
number is large than a predefined acceptance rate, we decide
whether to search better concrete composite service based on
CS or CS′. This strategy is related to avoid local minimum
and typically the acceptance rate is kept below 0.5.

We remark that the above algorithm is designed based
on [3], which has been shown to be effective if the search
space is extremely large. Furthermore, it often converges well
before the limit is reached [3]. In our setting, this is important
as it implies that we do not have to apply UPPAAL-CORA
many times in order to identify a good execution of composite
service. We acknowledge that the performance of Algorithm 1



Algorithm 1 Service Selection
1: function MCMC(AS,

⋃
{CSi}, A, threshold)

2: let CS be a concrete composite service obtained through randomly select a
concrete service csi ∈ CSi;

3: let π be an “optimal” execution obtained with UPPAAL-CORA based on CS;
4: while cost(π) ≥ threshold do
5: if there are still unexplored concrete composite service then
6: randomly change some selection in CS to get a new concrete composite

service CS′;
7: apply UPPAAL-CORA on CS′ to obtain an “optimal” execution π′;
8: if cost(π′) < cost(π) then
9: π := π′; CS := CS′;

10: else if random(0, 1) < acceptRate then
11: CS := CS′;
12: end if
13: else
14: return NULL
15: end if
16: end while
17: return π
18: end function

is in nature “random” and thus we show empirical study results
in Section 5 to show its effectiveness.

B. Optimal Execution Identification

In the following, we explain how an “optimal” execution
is identified given a concrete composite service. Given the
concrete composite service and the models of the agents, we
can systematically build a network of timed automata and
apply UPPAAL-CORA to identify the optimal execution.
The good news is that with such a model, we are able to
systematically explore all possible social collaboration. For
instance, it is possible that multiple agents collaboratively
deliver an object from one location to another through certain
path while each agent is only employed for a segment of the
path, i.e., the same object could switch multiple hands before
reaching its destination. The bad news is, as a result, the
search space is extremely large and thus scalability becomes
an issue. Therefore, we propose a number of heuristics for
reducing the search space. In the following, we first discuss
the heuristics and then present how UPPAAL-CORA is used.

Heuristic 1: Less Changing Hands In the model presented
in Section 3, several agents may join in the transportation
of one object. This results in a huge number of runs to be
explored by UPPAAL-CORA. In practice, if one object at
certain location is to be delivered to another location in order
to carry out an offline service, it is often the case that only
one agent is employed to transport the object so that the object
does not change hand half way to its next destination. This
is reasonable in practice because changing hands half way
would often cause unnecessary complication, e.g., the agent
receiving the object next would have to wait at the location for
the agent giving away the object. We adopt the same strategy
in this work so as to reduce the search space. In particular,
we analyze the given concrete composite service to identify
the delivering jobs. There is a delivering job if there exists
a concrete service (guard, name, action) such that action
sets an object o to be at certain location, and there is a later
concrete service (guard′, name′, action′) such that the guard
condition guard′ or a precondition of the end of the service

requires o to be at a different location and object o is irrelevant
to all the concrete services in between. The identification of the
delivering jobs is done automatically using a path traversing
algorithm based on the concrete service model.

For instance, given the composite service presented in
Section II, we identify the following delivering jobs. First, a
delivering job is needed to fetching the document in a specific
library station and transport it to a specific shop for document
scanning. Second, a delivering job is needed to fetch the
document at where it is scanned and return it to a specific
library station. Third, a delivering job is needed to fetch the
bound copy at a specific service station of service Remote
Printing, and transport it to where the user is.

Once the delivering jobs are identified, based on the as-
sumption that each delivering job is to be carried out only by
one agent, we know the maximum number of agents required
to complete the composite service. Given a set of N agents
and K delivering jobs, the question thus becomes how to
select K or less agents out of N agents so that one agent
is assigned one or more delivering jobs. The total number
of such choices is

(
K
N

)
. Next, for each such choice, we can

use UPPAAL-CORA to identify the optimal execution. We
simply take the best execution identified with these choices
as the result. We remark that while making

(
K
N

)
calls of

UPPAAL-CORA sounds expensive, in general K could be
small and furthermore, all these calls of UPPAAL-CORA
can be easily parallelized (i.e., using multiple computers to
run UPPAAL-CORA with different choices concurrently) and
therefore the overall execution time is only determined by the
“worse” choice, i.e., the choice which UPPAAL-CORA spends
the most time in order to identify the optimal execution. For
example, in the composite service presented in Section II, there
are 3 delivering jobs which means 3 agents are needed. If there
are 5 agents who are willing to collaborate, we choose 3 of
them and there are

(
3
5

)
different combinations.

This heuristic helps to reduce the search space significantly
since, firstly, we reduce the number of timed automata in the
network (i.e., exactly N − K automata less) and, secondly,
it allows to revise the agent models to reduce the number of
states in each agent model, as we discuss below.

Heuristic 2: Hardworking Agents The model of agents
introduced in Section III is intuitive and generic. It however
contains many states which translates to high complexity when
we use UPPAAL-CORA for identifying the optimal execution.
For example, considering the example service composition
represented in Section II, there are twelve locations (i.e.,
L0 to L11) in total and two objects need to be transported
(i.e., Document and Bound Copy). As a result, the timed
automaton model of each agent in the worst case (if the agent
can travel to any location) contains 288 states. To explore the
social collaboration among several agents, the overall network
of timed automata would contain several timed automata with
288 states in addition to the timed automata modeling the
service composition, which results in a huge search space.

A closer look reveals the agent model contains many “lazy”



behaviors which are unlikely to result in the optimal execution.
For instance, an agent could simply wait at certain location
for a long time or he/she could move in any direction even
if moving towards where the objects are would clearly yield
better results. Our second heuristic is thus to refine the agents
so as to remove these lazy behaviors, based on the assumption
that often having hard-working agents who actively seeks
out object delivering tasks would produce better execution.
Combined with the first heuristic, this allows us to re-model
the agents such that all intermediate states for transporting an
object from one location to its next destination can be removed
(since the object does not change hand half way).

An example agent model is shown in Figure 7, which
is to be understood only with a model of an object in the
system, shown in Figure 8. We start with explaining the model
modeling an object first. Recall that with the first heuristic,
the question is now on how to assign delivering tasks to
the agent. It is possible that the same object may be a part
of multiple delivering jobs. Theoretically, however, we can
simply treat the same object in different delivering jobs as
different objects. This is assumption we make in Figure 8,
for the sake of readability. In the object model, we have
the following parameters: variable cl which represents the
current location of the object; src which represents the source
location of the object; and des which represents the destination
location of the object. Because the same object could be
assigned to any of the agents, in the object model, we first
have K branches (where K is the number of delivering jobs)
which models the choice assigning the object to one of the
agents. This is done through a pairwise synchronous message,
which is a feature available in UPPAAL-CORA. Intuitively,
through a synchronous handshake between the object and one
of the agents, the agent is now assigned to deliver this object.
Afterwards, we have the state being generated and transition
such that the object is set to be at its source location. State
being handled models is the state where the object is in the
process of being transported from its source to its destination.
Next, we have a synchronous message between the agent and
the object again once the object reaches its destination.

Next, we explain the detail of the revised agent model. In
this model, we use the states to represent the status of the
agent, e.g., idling when there is no delivering task, heading to
the location of the delivering task, etc., and use a number of
variables to encode other relevant information. In particular,
variable cl represents the current location of the agent; variable
src represents the initial location of the agent; and variable des
represents the destination location of the agent. Furthermore,
function time(s, d) is a function which computes the time
required for the agent to travel from location s to location
d. Note that given an agent, we can pre-compute function
time(s, d) for all pairs of locations.

Initially, the agent’s location is set to his initial location
(i.e., action cl := src). Afterwards, the agent enters idle state,
where he/she awaits for a delivering job. After the synchronous
message with an object, the agent received the delivering job
and, without any delay, he/she proceeds to the location of

Fig. 7. Revised Timed Automaton for Agent

Fig. 8. Timed Automaton for Object

the object. This is modeled as the state heading4job. After
time(src, o.src) time units where o.src denotes the location
of the object, the agent reaches the location of the object. The
agent is then at waiting state where he might wait for a while
until the object is there (i.e., the concrete service which results
an object being at the location may take time to execute). After
the object is ready at the location (captured by the condition
o.cl == o.src, i.e. the object’s current location is its source
location), the agent enters state working which means that
he is now working on delivering the object. After exactly
time(o.src, o.des) time units, the agent sends a synchronous
message to the object so as to signal that the object is now
delivered to its destination. Afterwards, the agent goes back the
idle state so that it may be assigned to another delivering job. If
the agent has its own destination after all the object delivering,
it enters the state going2des and takes the respective amount
of time to reach its destination and terminates.

This heuristic helps to reduce the number of states in
each agent model significantly. In fact, the number of states
in the agent model and the object model remain constant.
The complexity in identifying the optimal execution is thus
largely depending the number of combinations on assigning
the objects to different agents. As we have discussed above,
this complexity could be easily tamed by using multiple
computers to compute the optimal cost of each choice.

V. EVALUATION

To evaluate the proposed approach, we conduct an experi-
mental study to answer the following two research questions.

• RQ1: Can O2O service composition considering route
planning and social collaboration provide better compos-
ite services than otherwise, i.e., simply treating offline
services as online services or having O2O service com-
position without social collaboration? (Effectiveness)

• RQ2: How scalable is the proposed approach for solving
the problem of O2O service composition with social
collaboration, in the presence of an increasing number
of agents and candidate services? (Scalability)



A. Experimental Setup

In order to answer RQ1, we evaluate our approach by solv-
ing the composite service Reproduce Borrowed Document
shown in Section II and compare its performance with two
baseline methods. One is an conventional approach. In this
approach, offline services are treated the same way as online
services and thus the optimal service composition is identified
through existing service selection approaches [4], [5], [29],
[30]. It means that we select each concrete service based on
its QoS values without considering route planning or social
collaboration. As a result, given a time constraint the same
set of concrete services will be always selected for the best
concrete composite service. We assume that the user would
follow the best route to execute all the selected offline services
by himself/herself. The other is an offline-aware approach.
In this approach, we identify the optimal service execution
through concrete service selection as well as considering the
route planning for offline services. However, there is no social
collaboration and the user himself/herself would execute all the
offline services. The difference between the two approaches is
on whether the cost of executing offline services is considered
during concrete service selection.

In order to answer RQ2, we evaluate the computation time
of our proposed approach with different numbers of agents
and candidate concrete services. The evaluation is also based
on the composite service Reproduce Borrowed Document
shown in Section II. As the shortest route and traveling
time between two locations can be directly obtained, we do
not consider the influence of the size of the map on the
computation time.

We use the following settings for both RQ1 and RQ2. The
time each agent needs to travel between two locations is shown
in Table I. For example, traveling from L0 to L1 or L1 to L0

needs 200 time units. The cost of agent is set as 0.01 per
time unit. For example, the cost of one agent transporting one
object from L0 to L1 is 200 × 0.01 = 2.

The cost threshold in Algorithm 1 is set as the optimal cost
identified using the offline-aware approach with the same
initial user location. For example, if the user is at Lx and
the optimal cost identified using the offline-aware approach
is y, y is set as the cost threshold for our approach for the
cases where the user is initially at Lx. This way, we can
evaluate whether our approach can identify better executions
in a reasonable amount of time. We remark that setting the
threshold to be a constant value independent of the initial user
location is not ideal because the cost could vary significantly
with different initial user location. The accept rate used at line
10 of Algorithm 1 is fixed as 0.1 heuristically.

All the experiments are conducted on the same machine
with a Dual-core 2.9GHz CPU and 8 GB RAM. The version
of UPPAAL-CORA used in the experiments is 060910.

B. Effectiveness (RQ1)

We evaluate the performance of the three approaches under
different time constraints. For each time constraint, we conduct
twelve experiments for each of the three approaches. In each

TABLE I
TIME REQUIRED TO TRAVEL BETWEEN LOCATIONS

Loc. L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11
L0 0 200 400 400 220 480 660 660 940 820 1120 960
L1 - 0 200 200 360 420 460 600 760 760 920 900
L2 - - 0 400 500 240 260 420 560 580 720 720
L3 - - - 0 480 220 660 400 680 560 840 700
L4 - - - - 0 260 760 440 720 600 880 740
L5 - - - - - 0 500 180 460 340 620 480
L6 - - - - - - 0 580 300 760 460 620
L7 - - - - - - - 0 280 520 440 600
L8 - - - - - - - - 0 460 160 320
L9 - - - - - - - - - 0 260 140
L10 - - - - - - - - - - 0 120
L11 - - - - - - - - - - - 0

experiment, the user is at a different initial location in the map
of Figure 2 (i.e., L0 to L11). We apply the three approaches to
identify an optimal solution, i.e., a concrete composite service
and an execution plan of it which has the minimum cost. Note
that the cost includes the cost for both concrete services and
the cost of agents traveling between different locations.

In order to evaluate our proposed approach in the presence
of multiple agents, we generate five different groups of agents.
Each group contains five agents (including the user him-
self/herself) with random initial (and destination) locations.
We apply these five agent groups in all the twelve experiments,
and compute the cost of the composite service with each
agent group. Note that in each experiment the two baseline
approaches produce the same results for all the agent groups
as they do not consider social collaboration. The time out of
Algorithm 1 is set to be 120 seconds.

Figure 9 shows the optimal cost identified by the above-
mentioned three approaches under different time constraints
(1200, 2400, 3600 time units). The X axis denotes the different
initial locations of the user and the five groups of agents, and
the Y axis denotes the identified optimal cost. If a point is
missing, it means that the corresponding approach can not
find a solution with the given initial location and agent group.

From the results, it can be seen that, when the time
constraint is tight (1200 time units) our approach can find
a solution in 85% cases, while the offline-aware approach
can only find a solution in 25% cases and the conventional
approach can find a solution in none of the cases; when the
time constraint is less tight (2400 time units) both our approach
and the offline-aware approach can find a solution in all the
cases, while the conventional approach fails to find a solution
in any of the cases; when the time constraint is loose (3600
time units) both our approach and the offline-aware approach
can find a solution in all the cases, and the conventional
approach can find a solution in 83.3% cases. On average, our
approach improves the solution of the conventional approach
by 29.8% with a median of 29.2% and improves the offline-
aware approach by 7.2% with a median of 8.6% when both
approaches can find a solution.

Although the solution found by our approach is almost
always the best among all the three approaches, we can also
observe that in several cases the solution found by the offline-
aware approach is even better than the solution found by our
approach, including a case of L1 in Figure 9(a), a case of L9

in Figure 9(b), and a case of L9 in Figure 9(c). There are two
reasons for this. First, the MCMC algorithm we use in our



(a) time constraint = 1200 time units (b) time constraint = 2400 time units (c) time constraint = 3600 time units
Fig. 9. Performance of the Three Approaches under Different Time Constraints

Fig. 10. Computation Time of the Proposed Approach

approach works by random walking through the search space
and thus it does not guarantee that every time the solution is
better with collaborative agents. Second, our approach needs
more time than the offline-aware approach. As a result, a
solution with a cost more than the threshold may be returned
when timeout occurs despite that there could be other better
solutions with less cost.

The solutions found by our approach involve one to three
agents. The average numbers of agents involved in the solu-
tions are 2.33, 1.83, 1.78 when the time constraints are 1200,
2400, 3600 time units. The result suggests that when the time
constraint is tight, social collaboration becomes important and
our approach is able to find such collaborative solutions.

The above results are expected as the conventional ap-
proach completely ignores the route planning, which is es-
sential for O2O service composition, and thus always has the
highest cost or fails to find a solution. Our approach takes into
consideration the route planning for offline services, and takes
advantage of social collaboration to further reduce the cost,
and thus nearly always has the best cost.

The above analysis answers RQ1 positively that our ap-
proach nearly always results in better O2O service composi-
tion solution than the other two alternative approaches.

C. Scalability (RQ2)

For a given number of agents and a given number of
concrete services of each abstract service, we run our approach
with 60 different settings by considering different initial user
locations (from L0 to L11), each with five different groups of
agents with random initial (and destination) locations. We take
the average computation time of the 60 settings as the result.
In all the experiments, the time constraint is set as 3600 time
units. The time out of Algorithm 1 is set to be 600 seconds.

Figure 10 shows the change of the time used to identify the
optimal solution using our approach. The X axis denotes the
number of candidate concrete services of each abstract service
and the Y axis denotes the time (by seconds). Each curve in

Figure 10 represents a different number of agents (from one to
five). It can be observed that with the increase of the number of
agents and candidate services our approach takes more time to
find an optimal solution. With one to three agents, it takes 0.1s
to 34.7s to generate a solution when the number of candidates
for each service increases from one to seven. With four agents,
it takes 0.9s to 144.1s. With five agents, it takes 2.5s to 430.8s.
While indeed state space explosion would eventually happen,
thanks to our heuristics presented in the previous section, the
time increases steadily rather than exponentially. In practice,
we believe that having a social collaboration with five agents
is reasonably sufficient for most O2O service composition.
Because often the more agents, the more likely the social
collaboration becomes chaotic and unreliable. For example,
certain agents, i.e., human beings, may fail to execute an
offline service as planned when some accidents happen, and
more agents involved in the collaboration are more likely
resulting in failing the service process. In our experiments, the
proposed approach could give a solution with five agents in no
more than one minute on average when each abstract service
has up to five candidates. This is acceptable considering
a composite service involving offline services usually takes
dozens of minutes to several hours. Moreover, if we parallelize
the MCMC algorithm, the time for generating one solution can
be further shortened.

The above analysis answers RQ2 positively that our ap-
proach performs well with an increasing number of agents.
The time for generating one solution grows if the number of
agents increases. Nonetheless, considering that five agents may
be sufficient for most O2O service composition scenarios, the
time for generating one solution for the proposed approach is
sufficiently fast.

VI. DISCUSSION

The composition of online to offline services in practice
can be complicated by the uncertain nature of offline services.
Currently we assume that the availability and execution time of
an offline service are known in composition planning, but they
may be uncertain and continuously changing. For example, the
time required to get an offline service may depend on how
many customers are waiting for it. So is the traveling time
of agents. Currently, we assume that the time required for an
agent to travel between two locations can be predicted before
hand. In practice, it heavily depends on the traffic on the way,
and the bus/train schedule if public transportation is chosen.

On the other hand, the social collaboration involved in the



composition of O2O services can be complicated by social
issues in practice. People participating in the collaboration
need to share their routes with the platform, but not necessarily
with others. They can remain anonymous when participating
others’ tasks except that they need to deliver objects with
others face to face. To encourage people to participate in
social collaboration, it is required that some kind of incentive
mechanism is established. For example, people can get bonus
points for their efforts, which can be used in the future to
recruit others for help.

Based on the above analysis, we foresee that large-scale
application of O2O service composition can be achieved by
integrating it with, and supplying it on, a location-based live
service platform with mobile social networking. With the
platform, offline services can be registered with their locations
on the map and users can use its map service to navigate to
destinations. Based on the locations of offline services and
the destinations of users, the platform can plan collaboration
solutions and invite users to participate. On the other hand, a
user can use the social networking service to limit the scope
of collaboration for privacy.

Furthermore, the platform can connect and analyze big data
from a wide range of sources (e.g., vehicles, traffic surveillance
cameras) to construct customer-oriented composite services as
suggested in [28]. Among the sources there can be crowd sens-
ing data from the users. For example, they can report whether
an offline service is available and how many customers are
waiting for it. With this kind of big data, the platform can not
only predict the execution time of offline services and traveling
time on the way but also dynamically adapt the composition
and execution plan according to real-time information.

VII. RELATED WORK

Traditional service composition research focuses on the
combinational selection of component services by local se-
lection [7], [19], global optimization [4], [5], [29], [30], or
a combination [1]. Some research [24] synthesizes local QoS
constraints (e.g., response time) of component services that
guarantee the global QoS requirements. O2O service com-
position is more than selecting an optimal set of component
services. For each concrete composite service, O2O service
composition needs to further identify a cost-effective execution
by finding an optimal collaboration among involved agents.

Researchers have seen the necessity of integrating virtual
(such as cloud services) and physical (such as public trans-
portation) services from various domains to produce composite
service solutions to meet customer requirements [28]. The
current research is mainly focused on physical services in a
local environment. Guinard et al. [13] propose a process and a
system architecture that enables developers and business pro-
cess designers to dynamically query, select, and use services
running on physical devices in the context of composite, real-
world business applications. Stavropoulos et al. [23] report on
a survey of service composition in ambient intelligence envi-
ronments involving services provided by devices and sensors.
This kind of device and sensor services can be regarded as

offline services, since they can only be accessed in certain
locations, but the service composition considers local services
instead of geographically distributed offline services.

O2O service composition is also different from the so-called
location based services (LBS), which provide personalized and
context-aware services according to the geographic location of
a user or other entity [18], [10]. Location based services are
usually online services that can be accessed anywhere but may
provide different information (e.g., advertisement of a nearby
restaurant) depending on users’ locations.

Related to this work in self-adaptive software systems,
Bennaceur et al. [9] propose a vision to support collaborative
security by mediating emerging components in an environment
such that the constraints of individual components may be
complemented or compensated by another to achieve oppor-
tunistic benefit such as availability and resilience. This work
adds to the vision that social collaboration could happen
among people when their constraints can be formally modeled
and reasoned about.

Recently, there has been increasing interest in leveraging
large-scale collaboration for problem solving by crowdsourc-
ing. Franklin et al. [12] propose a relational query processing
system that uses micro task based crowdsourcing to answer
queries that cannot otherwise be answered. Li et al. [20]
propose a framework for automatically discovering and target-
ing at the specific group of high-quality workers for a given
crowdsourcing task. In the area of crowd sensing [21], [27],
[31], mobile users in a large scale are involved to contribute
sensing data (e.g., position, air pollution) using their mobile
phones. The collaboration in this kind of crowdsourcing is
targeted at data collection and information acquisition and
does not involve location-based execution planning.

VIII. CONCLUSION

O2O commerce is driving the need of constructing
customer-oriented composite services by seamlessly compos-
ing online and offline services. In this paper, we have proposed
an approach to O2O service selection and composition which
incorporates offline route planning and collaboration among
the social agents. Modelling with timed automata, we define
the O2O service composition precisely as an optimization
problem. We propose practical algorithms to approximate
the optimal solution, which include an MCMC algorithm to
stochastically select a concrete composite service and a model
checking approach to searching for an optimal collaboration
plan among the agents. The approach has been evaluated
using a simulated scenario and the results have confirmed
its effectiveness and scalability. As future work we foresee
the integration of O2O service composition with a location-
based real life service platform to enable customer-oriented
composite service planning and adaptation.
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[24] Tian Huat Tan, Étienne André, Jun Sun, Yang Liu, Jin Song Dong, and
Manman Chen. Dynamic synthesis of local time requirement for service
composition. In Proceedings of the 35th International Conference on
Software Engineering, ICSE 2013, pages 542–551, San Francisco, CA,
USA, 2013.

[25] Tian Huat Tan, Manman Chen, Étienne André, Jun Sun, Yang Liu, and
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