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Abstract—This work is motivated by the pervasive use of
method invocations in object-oriented (OO) programs, and in-
deed their prevalence in patches of OO-program bugs. We
propose a generate-and-validate repair technique, called ELIXIR
designed to be able to generate such patches. ELIXIR aggressively
uses method calls, on par with local variables, fields, or constants,
to construct more expressive repair-expressions, that go into
synthesizing patches. The ensuing enlargement of the repair
space, on account of the wider use of method calls, is effectively
tackled by using a machine-learnt model to rank concrete repairs.
The machine-learnt model relies on four features derived from
the program context, i.e., the code surrounding the potential
repair location, and the bug report. We implement ELIXIR and
evaluate it on two datasets, the popular Defects4J dataset and
a new dataset Bugs.jar created by us, and against 2 baseline
versions of our technique, and 5 other techniques representing
the state of the art in program repair. Our evaluation shows that
ELIXIR is able to increase the number of correctly repaired bugs
in Defects4J by 85% (from 14 to 26) and by 57% in Bugs.jar (from
14 to 22), while also significantly out-performing other state-of-
the-art repair techniques including ACS, HD-Repair, NOPOL,
PAR, and jGenProg.

I. INTRODUCTION

As software applications continue to grow in size and com-
plexity, and fuel the development of new application domains,
such as cloud computing, big-data analytics, mobile comput-
ing, and software-defined networks, they inevitably produce a
corresponding increase in the number of software bugs, and
ultimately in the cost of fixing these bugs. For example, a study
from the University of Cambridge showed that, as of 2013, the
global cost of debugging software had risen to $312 billion
annually [1]. Further, the research found that, on average,
software developers spend 50% of their programming time
finding and fixing bugs. Automatic software repair techniques
have the potential to mitigate some of these costs and thereby
increase developer productivity.

Object-oriented (OO) languages dominate the programming
landscape today. In fact, 4 of the top 5 languages on the
TIOBE Index [2], namely Java, C++, C#, and Python, are
object-oriented or bear at least some object-oriented features.
However, most techniques for automatic program repair [3],
[4], [5], [6], [7], [8], [9], [10], [11], with a few notable
exceptions [12], [13], [14], [15], have been developed in the
context of C programs, i.e., procedural programs. Studies have
shown [16] that bug-patterns can be language specific. Thus,
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there is a strong need to develop automatic repair techniques
targeting object-oriented programs.

One of the core principles of object-oriented language de-
sign is the notion of encapsulation [17], whereby the internal
data representation of a class (object) and its implementation
of operations is hidden from external users of the class. Exter-
nal objects can only access this data and operations through
the public methods of the class (object). Thus, the construct of
a method invocation (MI) (used inter-changeably with the term
method call in this paper) on an object, constitutes the basic
unit of data access and computation in object-oriented pro-
grams. In fact, according to an empirical study we conducted
on three popular Java projects (discussed in Section II-A),
as many as 57% of program statements in each of these
applications contain one or more method invocations. Further,
according to the same study, 77% of one-line bug-fixes made
during the lifetime of each of these projects involved a change
to or insertion of a method invocation. These data points
demonstrate the need to incorporate repair and synthesis of
method invocations, in a comprehensive manner, in the repair
of bugs in object-oriented programs. For concreteness, the rest
of the paper uses Java as a representative of OO-languages.
However, the discussion would be equally applicable to other
OO-languages, such as C++.

A number of program repair techniques, proposed for Java
programs, like PAR [12], NOPOL [13], HD-Repair [14],
and ACS [15], in fact manipulate method invocations in
their repairs. However, this is done through very specific
schemas and with tight restrictions. For instance, NOPOL
is the only tool that synthesizes (i.e., creates from scratch)
method calls, but only on manually specified, side-effect-free,
parameter-free method calls and only as guards of inserted
if-conditions. PAR replaces names or parameters of method
calls but only with other names or expressions appearing in
other method calls in the same method. A plausible reason for
such restrictions, documented in a recent work by Martinez
and Monperrus [18], is the combinatorial explosion that would
result from expanding the repair space to include a much wider
scope of method call modifications and insertions. Figure 2
shows a simple example of this, using a bug fix from the
Apache Commons Lang project, that is correctly patched by
our proposed tool, ELIXIR. As shown, the patch consists of
a single method invocation. However, for constructing such a
method invocation, that is correctly typed and in scope, there
are more than 800 concrete candidates! Obviously, a repair
approach cannot afford to iterate through each of them.
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This work proposes a generate-and-validate repair tech-
nique, called ELIXIR, developed for the repair of object-
oriented programs. A key innovation in ELIXIR is the aggres-
sive use of method calls, on par with local variables, fields,
and constants, to construct more expressive repair expressions,
that go into synthesizing patches. The ensuing enlargement of
the repair space is effectively tackled by using a machine-
learned model to rank concrete repairs. The machine-learned
model relies on four features derived from the repair context,
i.e., the code surrounding the potential repair location, and
from the bug report. The features describe a given identifier,
which could represent a local variable or object, a constant,
or a method call. In particular the features quantify (1) how
frequently the identifier has been used in the current context,
(2) the distance of the place of last use from the repair
location, (3) whether “similarly named” tokens have been
used in the repair context, and (4) if the identifier or sub-
tokens thereof have been referenced in the bug report (if one
is present). Variants of some of these features have been used
in heuristics employed in code recommendation [19], [20],
bug localization [21], [22], and program repair [23]. However,
a key contribution of our work is the choice and specific
incarnation of those features in the present context, and their
use in a machine-learned model used to guide a program repair
technique. Also novel is the insight that such a technique can
effectively navigate a huge repair space to fix bugs involving
method invocations in OO-programs, specifically Java.

We implement and evaluate ELIXIR on two datasets, the
popular Defects4J dataset and a new dataset Bugs.jar created
by us, and against two baseline versions of our technique, as
well as five other tools/techniques representing the state of the
art in program repair. Our evaluation shows that ELIXIR is able
to increase the number of correctly repaired bugs in Defects4J
by 85% (from 14 to 26) and by 57% for Bugs.jar (from 14
to 22), while also significantly out-performing other state-of-
the-art repair techniques including ACS [15], HD-Repair [14],
NOPOL [13], PAR [12], and jGenProg [24]. This paper makes
the following key contributions:

• Empirical study: An empirical study highlighting the
prevalence of method invocations in patches of Java
programs, as a motivation for our proposed technique.

• Technique: A novel technique, ELIXIR that aggressively
employs method invocations in constructing repairs for
Java programs, and object-oriented programs in general.

• Implementation: An implementation of ELIXIR in our
in-house Java repair framework, along with two baseline
versions of ELIXIR.

• Dataset: A new, large dataset of 1,158 bugs and patches,
Bugs.jar, made available to the research community at
[25], to complement existing datasets like Defects4J.

• Evaluation: A comprehensive evaluation of ELIXIR on
two datasets, Defects4J and Bugs.jar, and against seven
competing techniques, including two baseline versions
of ELIXIR and five external tools/techniques, ACS, HD-
Repair, NOPOL, PAR, and jGenProg.

Fig. 1. Distribution of Bug-Fixing Changes. Based on 1186, 1031, and 985
one-line bug fixes in Eclipse JDT, Platform, and BIRT projects respectively.

II. MOTIVATION

This section demonstrates the prevalence of method invo-
cations (MI) and MI-related bugs, in Java programs, through
an empirical study and two real-world motivating examples.

A. An Empirical Study on the Method Invocation Construct
and Its Relevance to Bugs in Java Programs

The construct of method invocation (MI) is fundamental to
orchestrating data access and computation in OO-programs,
and indeed for enforcing key OO features, such as encap-
sulation. However, it is natural to ask if real-world OO-
programs (e.g., Java applications) demonstrate a quantitatively
greater use of MIs than procedure-oriented programs (e.g.,
C). To investigate this empirically, we selected three Java
projects: Eclipse JDT, Platform, and BIRT, which are popular
Java projects used in bug localization research [22] and the
ManyBugs [26] benchmarks, widely used in C program repair
research, representing C applications. The Java projects were
intentionally chosen to be distinct from our experimental
datasets (Defects4J and Bugs.jar), to guard against learning
bias. We parsed all the source code files of both Java and C
applications, excluding test cases, and counted the fraction of
executable statements having an MI or a function call. Our
results show that, on average, 57% of statements in each of
the Java applications have an MI, compared to only 33% for
the C programs. Thus, this study, while decidedly limited in
scope, supports the hypothesis that Java programs use MIs
substantially more than C programs.

We further analyzed all the one-line bug-fixes in each of
the three Java projects to investigate how often MIs appear in
those patches. We focus on one-line bug-fixes since current
automatic program repair tools mainly target such fixes. We
used ChangeDistiller [27] to extract the one-line bug-fixes
throughout each project’s history, and automatically classified
each patch into one of a few mutually exclusive categories
based on the type of that statement, such as method invocation,
if condition, variable declarations and initializations, return
statements, and assignments etc. Figure 1 plots this classifica-
tion, per project, for the top 5 categories. The results show that
30%-40% of one-line bug-fixes, the most dominant class, are
stand-alone MI statements. And this does not include indirect
MI changes, for example, changing an MI in the guard of an
if condition, currently classified as an if condition change in
Figure 1. Manually investigating each of the non-MI labeled
bug-fixes revealed that almost 60% of if condition changes,
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Bug Report Summary: DateFormatUtils.format does not correctly change Calen-
dar TimeZone in certain situations

public StringBuffer format(Calendar calendar, StringBuffer buf) {
if (mTimeZoneForced) {

+ calendar.getTime(); /// LANG-538
calendar = (Calendar) calendar.clone();
calendar.setTimeZone(mTimeZone);

}
return applyRules(calendar, buf);

}

Fig. 2. The bug report summary (top) and fix (bottom) for LANG-538

Bug Report Summary: Field not initialized in constructor:
org.apache.commons.lang.LocaleUtils.cAvailableLocaleSet

public static boolean isAvailableLocale(Locale locale) {
- return cAvailableLocaleSet.contains(locale);
+ return availableLocaleList().contains(locale);

}

Fig. 3. The bug report summary (top) and fix (bottom) for LANG-304

and at least 80% of other changes (variable initializations, as-
signments, and return expressions) involved MIs. In aggregate,
77% of the studied one-line bug-fixes involved MI changes,
either stand-alone or part of another construct.

These results demonstrate the need to incorporate MI-
related modifications, in a comprehensive manner, in the
search space examined by a repair tool. The following exam-
ples illustrate the shortcomings of current tools in this respect.

B. Motivating Examples

Now we discuss two real-world examples that are beyond
the scope of current repair tools, since they entail synthesis
of substantially new MIs, typically rendered infeasible by a
combinatorial explosion in the number of candidate patches.

Figure 2 presents a bug-fix (Bug ID: LANG-538) in the
Apache Commons Lang project, taken from the popular
Defects4J dataset. This patch requires the insertion of a
new method invocation statement and is outside the repair
space of current repair tools, since including such MIs would
increase the repair search space significantly. For example,
to fix this bug, ELIXIR synthesizes 836 valid MIs for that
location (Table I). Certainly, validating such a large number
of candidates, for a given repair location and a transformation
schema, in a brute-force fashion is not practical. The only way
the existing tools (such as SPR [8], PAR [12], or GenProg [3])
could attempt this bug fix would be by copying and pasting
the same exact statement calendar.getTime() from elsewhere
in the code. However, this statement is not present elsewhere.

Figure 3 shows another bug (LANG-304) also from Commons
Lang in Defects4J. From an automatic repair point of view, this
is also a non-trivial fix since the object of an MI is replaced
by another MI that returns a compatible (type List) but not
exactly the same type (type Set) of object. Current repair tools
do not include such complex MI transformations in their repair
space, to keep the search manageable. Also, the patch cannot
be copied verbatim from elsewhere in the program either.

Proposed approach: Our proposed technique, ELIXIR can
synthesize the correct patches for both the above bugs by,
(1) first synthesizing a population of candidate patches and,
(2) then ranking this candidate population and validating

TABLE I
CANDIDATE PATCHES FOR LANG-538

Rank Synthesized MIs

1 format(calendar)
2 calendar.clear()
3 format(calendar, buf)
:
6 calendar.setLenient(mTimeZoneForced)
7 calendar.getTime()
: Other 800+ Candidates

only the top several candidates. To synthesize the candi-
dates ELIXIR first extracts atomic elements such as objects,
variables, and literals in scope, and then synthesizes valid
MI (e.g., obj.foo(a,b)) and field access (e.g., obj.a) ex-
pressions. These expressions constitute the building blocks
(termed repair-expression) for synthesizing patches, and are
then plugged into various program transformation schemas to
generate candidate patches.

To effectively deal with the large set of candidate patches
resulting from a rich set of repair-expressions, ELIXIR ranks
the candidates using a machine-learned model and only se-
lects the top few for validation against the test-suite. The
machine-learned model is built on a set of four simple, but
potent features, described in Section III-C. For our motivating
example, bug LANG-538, when ELIXIR instantiates the MI-
insertion schema (described in Section III-B1), the correct
patch is ranked at 7th out of 836 candidate patches (Table I)
and hence can be quickly validated through the test-suite.

III. ELIXIR

The overall structure of ELIXIR is presented in Figure 4.
For a given bug, ELIXIR takes as input a buggy program, a
test suite (having at least one bug reproducing test case), and
optionally a bug report, and produces a patch that passes all
the test cases, i.e., fixes the bug. ELIXIR works in four steps.
(A) Bug Localization. This step identifies a list of suspicious

statements in the buggy program. Then for each potential
buggy statement (repair location), ELIXIR performs the
following steps until a plausible patch1 is found.

(B) Generating Candidate Patches. ELIXIR includes a set
of program transformation schemas described in Sec-
tion III-B1. For each schema, ELIXIR generates a list
of candidate patches by plugging in various repair-
expressions into the schema, and performs the following
steps until a plausible patch is found.

(C) Ranking and Selection of Candidate Patches. ELIXIR
uses a machine-learned model to rank the candidate
patches and selects the top N patches for validation.

(D) Validating Selected Candidate Patches. ELIXIR applies
the selected patches one at a time, beginning from the top
of the ranked-list, on the buggy program, and runs the
test cases. If all the test cases pass, ELIXIR terminates
and returns that patch as a plausible patch.

1A plausible patch is one that simply passes all test-cases (including failing
tests) in the test suite, but may still be incorrect because the test-suite may
provide an incomplete specification.
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Fig. 4. Overview of ELIXIR.

A. Bug Localization

ELIXIR uses the Ochiai technique [28], a popular existing
spectrum-based bug localization approach to identify potential
buggy statements. According to the Ochiai technique, ELIXIR
instruments the program at statement level, and collects test
spectrum–i.e., the statements executed by each test case, and
computes a suspiciousness score for each statement. Finally,
all statements are ranked in a descending order of supicious-
ness score, i.e., the top statement is the most suspicious.
B. Generation of Candidate Patches

Fixing a bug involves applying appropriate changes at
the buggy location. Allowing arbitrarily complex transforma-
tions can results in an infinite number of candidate patches.
Therefore, program repair tools typically define their repair
space through a fixed set of parameterized program transfor-
mation schemas, paired with a restricted set of expressions
to instantiate those schemas. We term these expressions as
repair-expressions. For example, the schema Insertion of a
Method Invocation instantiated with the MI repair-expression
calendar.getTime() yields the patch in Figure 2.

1) Program Transformation Schemas: ELIXIR applies the
following program transformation schemas in the presented
order to produce candidate patches for a given statement.
(T1) Widening Type: For a variable declaration statement,

this schema replaces the type of the variable with a
widened type – e.g., float to double.

(T2) Changing Expression in Return Statement: This
schema replaces a returned expression by another expres-
sion having compatible types.

(T3) Checking Null Pointer: If a statement has an object
reference, this schema adds an if guard that ensures no
null object is accessed.

(T4) Checking Array Range and Collection Size: If a
statement has array references or collection objects, this
schema adds an if guard to ensure that all array or col-
lection accesses are within range, to prevent exceptions.

(T5) Changing Infix Boolean Operator: This schema in-
cludes common mutation operators from mutation testing
research. For example, an infix expression like a > b can
be changed to a ≥ b, a < b, and so on.

literal→ boolean | number | null
varable→ id

field→ id.id

array → id[expression]

expression→ literal | variable | field | array
argumentList→ argumentList, expression | expression

methodInvocation→ id(argumentList) | id.id(argumentList)

Fig. 5. Grammar to Describe the Specific Repair-Expressions in ELIXIR. It
should be that this grammar simply presents the structures of expressions.
Please refer to the relevant documentation [29] for the accurate grammar.

(T6) Loosening and Tightening Boolean Expression : If
a boolean expression is an if condition or in a return
statement, this schema may remove or add predicates.

(T7) Changing Method Invocation (MI): This is a complex
schema comprised of the following schemas:
• Replacing Object Expression: Replaces the object

reference by another compatible-typed expression.
• Replacing Method Name: Replaces the method name

with another method name having the same signature.
• Replacing Argument: Replaces an argument expres-

sion by another expression having compatible types.
• Replacing a full MI by a synthesized MI: Replaces

the complete MI by a synthesized MI (can also be an
overloaded MI) that returns a compatible type.

(T8) Insertion of a Method Invocation: This is a new
schema in ELIXIR. It synthesizes MIs, and inserts them
as a part of an expression or as a complete statement.

2) Synthesis of Repair-Expressions: One of the key features
of ELIXIR is that it uses a rich set of repair-expressions that
are effective in fixing real bugs in OO-programs. In particular,
this entails a generous use of MIs and object accesses. Figure 5
shows the grammar of repair-expressions used in ELIXIR.

The synthesis of repair-expressions involves i) extracting
relevant program elements in scope, and ii) creating repair-
expressions using them. Specifically, given a repair location,
ELIXIR extracts all the local variables and literals in scope,
fields in the same class, and all the public fields in other
classes that are relevant to the buggy class. Here, relevant
classes are ones whose fields are accessed or methods are
invoked within the buggy method. For example, for the bug
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Fig. 6. Ranking and Selection of Repair-Expressions.

in Figure 2, Calendar and StringBuffer constitute relevant
classes. Further, ELIXIR extracts the signatures of all the
methods that can be invoked from the repair location. Next,
ELIXIR creates field expressions (e.g., a.b), and concrete MIs
using the extracted method signatures, variables, literals, and
fields, as per Figure 5. All these variables, literals, fields,
and concrete method invocations constitute the pool of repair-
expressions used in the next step.

3) Synthesis of Candidate Patches: The synthesized repair-
expressions are used to instantiate the program transformation
schemas to produce a set of concrete candidate patches. It
should be noted that the first five schemas of ELIXIR (T1 - T5)
require only a small set of repair-expressions. For example,
we have to only add null checkers for only those objects
that are accessed in the repair location. Using widening type
schema we can change int a; to {long | float | double}
a;. Therefore, these schemas generate a small set of concrete
patches. However, the rest of the schemas involve any repair-
expressions defined in Figure 5. Therefore, they may produce
a significantly large number of candidate patches. Although
generation of patches is fast, compiling the program after
applying a patch, and testing it is expensive. To cope with
this search space explosion, ELIXIR ranks all the candidate
patches and selects the top N patches for validation.

C. Ranking and Selection of Candidate Patches

Ranking candidate patches is a challenging problem since
any valid (i.e., compilable) patch can be the correct patch.
Our key insight is that the program context and the bug
report may provide valuable clues to identify the truly relevant
patches. Therefore, we propose a machine learning technique
to rank and select candidate patches. From a machine learning
standpoint, the selection of repair candidates can be viewed
as a binary classification problem, where our objective is to
determine whether a particular candidate patch is relevant to
a particular program context. Furthermore, we can compute a
relevance score of each candidate patch, and use that to rank all
the candidate patches. To this end, we use logistic regression,
which is a widely used machine learning technique in practice.

Figure 6 presents the overall approach for ranking candidate
patches. Given a set of candidate patches, ELIXIR first extracts
four feature scores for each candidate patch from the used
repair-expressions in it. These feature scores are calculated
based on the repair context and the bug report. Then these
feature scores are passed to an already trained logistic re-
gression model that computes a probability score for each

candidate patch representing its relevance. The learned logistic
regression model is trained offline in advance using the same
features from a set of previous bug fixes (training dataset).
The subsequent sections describe the approach in more detail.

1) Selection of Feature Set and Calculation of Feature
Scores: Based on an extensive study on prior literature on
code completion, bug localization, and program repair tech-
niques, we selected four features for our task: i) distance,
ii) contextual similarity, iii) frequency in the context, and iv)
bug report similarity. Note that repair-expressions used in a
candidate patch is composed of one or more elements (e.g.,
variables/fields/literals). A variable itself is a single-element
repair-expression, whereas an MI is multi-element repair-
expression since several variables and objects may involve
there. Therefore, we compute the feature scores of a patch
in terms of the feature scores of new repair-expressions in the
patch. For example, when we change a method parameter, the
feature scores of the new parameter represent the patch feature
scores. Therefore, ELIXIR first computes the feature score at
element-level and then at patch-level.

Distance. Our first insight is that the more a repair-
expression is composed of closer elements to the repair loca-
tion, the more it is relevant. PAR [12] uses a similar concept
in terms of AST nodes to sort the candidate variables. To
compute the distance score of a repair-expression, ELIXIR first
computes the distance score of each element (ξ) in the repair-
expression from the repair location (<) using Equation 1.

Sd =

{
1− ld(ξ,<)

len(m) if len(m) ≥ ld(ξ,<)
0 otherwise

(1)

where ld(ξ,<) is the number of comment-free lines between
< and the closest occurrence of ξ, and len(m) is the number
of comment-free lines in the method. For multi-element repair-
expression, we average the distance scores of elements.

Contextual Similarity. Repair context, i.e., the surrounding
code of repair location often provide useful hint to determine
which repair-expressions are more consistent than others. Pro-
gram context has been effectively used in auto code comple-
tion [30], API [20] and parameter recommendation [19]. Our
insight is that the more a repair-expression is textually similar
to the context, the more relevant it is for the repair location.
We set the size of program context to six lines, i.e., three lines
before and after the repair location. This size has been found to
be effective in a recent work on API recommendation [20]. We
compute the contextual similarity between a repair-expression
and its program context as follows:

1) We extract the identifier names of the given
repair-expression, and split CamelCase identifiers
(cAvailableLocaleSet) into a set of tokens (c,
available, locale, and set), which we call (S1).

2) We extract all the identifier names from the context. If
the CamelCase repair-expression identifiers are exactly
present in the context, we remove it. Otherwise, it would
get similarity with itself. We split the resulting context
identifiers, which becomes the context token set S2.
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3) We compute the token similarity using Jaccard Similarity
Coefficient (Equation 2)

Scontext =
|S1 ∩ S2|
S1 ∪ S2

(2)

Frequency in the context. Our third insight is that the more
a repair-expression is composed of frequently used elements,
the more it is relevant in that context. However, it depends on
the type of the element. For example, an object or a variable
may be used repeatedly in a program context to perform some
operations on it. However, an MI may not be used repeatedly in
the same context. We performed a “Correlation-based Feature
Subset Selection” technique from Weka toolkit [31] on our
training dataset and found that frequency is not correlated
with choosing method names but correlated with variables
and objects. Therefore, for multi-element repair-expression we
average the frequency of only objects and variables.

Bug Report Similarity. Bug reports have been widely used
in information retrieval based bug localization [21], [22], [32].
The idea is based on the fact that bug reporters use similar
words to describe a bug that are in the buggy source code.
Sometimes, reporters also write about possible fixes. Liu et
al. [23] used bug reports for fixing buffer overflows, null
pointer bugs, and memory leaks in C programs. Our insight
is that the information from the bug report can be used in
prioritizing repair-expressions. To this end, we calculate the
similarity score of a repair-expression with bug report in terms
of token similarity using Equation 2, where S1 and S2 are the
set of repair-expression and the bug report tokens respectively.

2) Logistic Regression Model for Ranking: The objective
of our approach is to learn a model that aggregates the feature
scores of a candidate patch (P) in such a way that, for a given
repair location, the candidate patch that are highly relevant
would get a higher score than the irrelevant patches. Let us
assume that for a given candidate patch, P , the four feature
scores: distance, bug report similarity, context similarity, and
frequency are Sdist, Scon, Sbr, and Sfrq . ELIXIR aggregates
the feature scores by a weighted sum:

f(P, θ) = α×Sdist+β×Scon+γ×Sbr+ ζ×Sfreq (3)

Here θ is the weight vector [α, β, γ, ζ]. These weights (θ)
are learned from a training dataset.

For a given patch P and its feature vector
[Sdist,Scon,Sbr,Sfreq], our objective is to compute
the probability of P being relevant to the program context.
Logistic regression machine learning technique is a powerful
statistical way of modeling a binomial outcome with a
probability score. Logistic regression function is defined as:

σ(t) =
1

1 + e−t
(4)

Substituting t in Equation 4 by f(P, θ), we get:

σ(f(P, θ)) = 1

1 + e−f(P,θ)
(5)

For binomial classification, we can assume that a data
instance follows Bernoulli distribution [33], which is:

p(f(P, θ), y|θ) = σ(f(P, θ))y(1− σ(f(P, θ)))(1−y) (6)

TABLE II
DETAILS OF SUBJECTS IN DEFECTS4J [38]

Subject #Bugs KLOC #Tests

Commons Math 106 85 3,602
Commons Lang 65 22 2,245
Joda-Time 27 28 4,130
JFreeChart 26 96 2,205

where y is 1 when the candidate patch is relevant and 0
when it is irrelevant. Therefore, to learn the weights of the
model, θ, we compute p(θ|ξ, y), which is the posterior proba-
bility, from a training dataset. We use Weka’s implementation
of logistic regression [34] to learn θ.

IV. EXPERIMENTAL SETUP

A. Implementation

ELIXIR is implemented on the top of an automatic program
repair framework, called FLAiR that we developed. FLAiR
has its own bug localization system, various program trans-
formation schemas, an in-memory compilation system, JUnit
test case execution system, and a run-time data monitoring
system. All the tools in FLAiR are written in Java, leveraging
existing libraries where possible. More specifically, FLAIR
bug localization system uses the ASM byte code library [35]
to instrument programs’ source code. FLAiR uses Spoon [36]
library to modify a program at the abstract syntax tree
(AST) level. After applying a repair schema, FLAIR leverages
javax.tools [37] for in-memory compilation. Then FLAIR uses
JUnit APIs to run the test cases programmatically. We also
implement two other variants of ELIXIR on FLAiR framework.

ELIXIR-Baseline uses exactly the same program transfor-
mation schema as in ELIXIR. However, it uses the repair-
expressions following the existing tools such as ACS, PAR,
and HD-Repair. This baseline helps us to demonstrate the
contribution of our rich set of repair-expressions.

ELIXIR-NoML uses both ELIXIR’s schemas and repair-
expressions. However, it selects N patches randomly instead
of any machine learning technique. This baseline helps us to
demonstrate the contribution of our proposed ranking model.
B. Dataset

In order to rigorously evaluate ELIXIR, we used two dataset.
1) Defects4J: Our first dataset is the popular Defects4J

dataset [38]. We used the same four subjects from Defects4J
that the existing repair tools are evaluated on. Table II (taken
from [38]) presents the details of the dataset.

2) Bugs.jar: Our second dataset is Bugs.jar, created by
us. The reasons for creating Bugs.jar are twofold: i) since
ELIXIR is an ML-based approach, we need a training dataset,
ii) evaluating ELIXIR on a different dataset than Defects4J.

Bugs.jar is a large-scale full-fledged real-world bug dataset.
Since this is a new dataset, we briefly discuss our methodology
to create Bugs.jar. Each bug in Bugs.jar contains (1) the
buggy version of the source code, (2) a test-suite, serving as a
correctness specification, comprising at least one failing (bug
reproducing) test case and one passing test case (to guard
against regression), and (3) the developer’s patch to fix the
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TABLE III
DETAILS OF BUGS.JAR

Project Tags By Commits Bugs Size Bugs
Apache Reports [KLoC] Selected

Accumulo database 8,714 2,041 458 98
Camel network-client/server 24,096 1,081 257 147
Commons Math library 5,994 635 187 147
Flink big data 8,906 2,070 345 70
Jackrabbit Oak XML 10,810 1,686 228 278
Log4J2 library 6,971 784 104 81
Maven build management 10,264 2,863 100 48
Wicket web framework 19,386 3,770 177 289

Total 95,141 14,930 1,856 1,158

bug, which passes all the test cases. Furthermore, each bug in
Bugs.jar has the original bug report associated with it.

Design Criteria. The design of our dataset was driven
by four broad criteria: i) real-world relevance: having large,
active projects, with a rich development history, ii) diversity:
having projects covering the spectrum of applications, iii)
reproducibility: having consistently reproducible bugs, and iv)
automatability: building and testing the projects automatically.

Methodology. After conducting a rigorous search on
GitHub and Google Code, we found that projects developed
by the Apache Foundation fulfill our real-world relevance
and automatability criteria. Further, there are several hundred
projects in this ecosystem and projects are tagged with one or
more of 28 different keywords, such as library, big data, etc.,
representing the application domain of the project. Thus we
chose the Apache ecosystem on GitHub, which has 260 such
tagged projects, for constructing our dataset. Then we selected
the top 8 groups, each of which has at least 20 projects. This
strategy respects our diversity criterion. Then for each group,
we selected a representative subject that has at least 50KLoc
and 5000 commits. Then for each project, we identified the
bug fixing commits following Apache developers’ convention
that a Bug ID is present in the commit message. Then we
consistently reproduce bugs by running test cases at least 10
times. Finally, we manually verified each reproducible bug.
Table III provides the details of Bugs.jar.

C. Research Questions

We evaluate ELIXIR with respect to four research questions:
RQ1: How effective ELIXIR is compared to state-of-the-art

on Defects4J?
RQ2: What is the contribution of repair-expressions, and

ranking and selection model of ELIXIR?
RQ3: Are all features used in ELIXIR contributed toward the

overall performance?
RQ4: Is ELIXIR’s performance on Defects4J also reflected on

Bugs.jar?

D. Training ELIXIR

For training ELIXIR, we used all the one-line bug-fixes
from the subjects in Bugs.jar. For all these bugs, we extracted
all the positive repair-expressions (that actually used in the
repair) and all the negative repair-expressions with their feature
vectors. Since negative repair-expressions are a lot more than

the number of positive repair-expressions, to balance the
training dataset, we replicated each positive repair-expressions
4 times, and for each positive repair-expression we randomly
chose equal number of negative but similar (e.g., variables
or MIs) repair-expressions. Similar strategy has been used in
other work as well [33]. In this way, we obtained 1,580 data
points, which is sufficient for our prediction model [39].

For evaluating ELIXIR on Defects4J, we used training
dataset from all subjects except Commons Math in Bugs.jar.
However, for evaluating ELIXIR on Bugs.jar, we removed the
subject under evaluation from the training dataset. This makes
sure that our training and testing dataset are always mutually
exclusive. We followed the standard 10-fold cross validation
methodology to train ELIXIR.

E. Evaluation Metric and Patch Correctness

We evaluate each tool in terms of number of correct and
incorrect patches. We classify a patch as correct, if it is
semantically equivalent to the developer-provided patch, based
on a manual examination. This is consistent with previous
work [40], [8], [41], [9], [10]. An incorrect patch is a patch
that is not correct. To determine the correctness of a patch, two
authors of the paper evaluated all the patches independently.
In case of disagreement, we all had a group discussion until
we had a mutual agreement.

F. Experimental Configurations

System. We used 2 Core of Intel(R) Core(TM) i7-4790 CPU
of 3.60GHz and 4GB memory per instance for our experiment.
We used Ubuntu 14.04 LTS operating system and Java 7.

ELIXIR. Currently, ELIXIR iterates through top 200 state-
ments returned by the bug localization tool. For each schema,
ELIXIR selects top 50 candidates returned by logistic regres-
sion model. ELIXIR’s timeout is set to 90 minutes.

V. EXPERIMENTAL RESULTS

A. RQ1: Comparison with state-of-the-art approaches

To compare ELIXIR with state-of-the-art, we chose five
state-of-the-art G&V repair tools: jGenProg [24], NOPOL[24],
a reimplementation of PAR (we call PAR′) by Le et al. [14]),
history driven repair (we call HD-Repair) [14], and ACS [15].
To the best of our knowledge, these include all the repair tools
that were evaluated on Defects4J. Since automatic program
repair experiments are very expensive, we discarded all the
bugs that required multi-hunk fixes since they are by definition
out of scope of ELIXIR. Similar strategy is also followed
by Le et al. [14] while evaluating HD-Repair. Therefore,
the presented results of ELIXIR for 82 bugs that required
a single-hunk fix. The results of other tools are taken from
the respective papers [24], [14], [15]. Table IV presents the
results of each tool in terms of number of correct and incorrect
patches. The overall results show that ELIXIR produced 26
correct patches, which is the highest on Defects4J. The second
best is 18 patches by recently introduced ACS. All other tools
generated 10 or less correct patches first. It should be noted
that HD-Repair generated 16 patches but among them 10 were
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TABLE IV
COMPARISON WITH EXISTING TECHNIQUES (CORRECT/INCORRECT)

Subject C.Math C.Lang Joda-Time JFreeChart Total

ELIXIR 12/7 8/4 2/1 4/3 26/15
ACS 12/4 3/1 1/0 2/0 18/5
HD-Repair 6/NR 7/NR 1/NR 2/NR 16(10*)/NR
NOPOL 1/20 3/4 0/1 1/5 5/30
PAR′ 2/NR 1/NR 0/NR 0/NR 3/NR
jGenProg 5/13 0/0 0/7 0/2 5/22

NR=Not Reported.
* HD-Repair generated correct patches for 16 defects, but only 10 were ranked
first [15]. All other tools terminate at the first plausible patch.

TABLE V
CONTRIBUTION OF PROGRAM TRANSFORMATION SCHEMAS (ELIXIR)

Transformation Schema Correct Incorrect

Change in MI 12 6
Change in Boolean Expression 6 8
Insertion of MI 3 0
Type Widening 2 0
Change in Return Expression 2 0
If Guard (Null/Array Size Checking) 1 1

ranked first. Since ELIXIR terminates at the first plausible
patch, 10 is the fair number to compare for HD-Repair.

Since ACS fixed the second highest number patches, we
further investigated the nature of patches by ACS and ELIXIR.
We observed that only 4 patches are common between ELIXIR
and ACS. This observation matches our expectation since
ELIXIR targets more on MI-related bugs, whereas ACS targets
condition-synthesis related bugs. It would be interesting to
investigate how a tool performs that combines ELIXIR and
ACS. However, that is beyond the scope of our current
evaluation. Although bug specific results are not available for
HD-Repair, from the results it is clear that ELIXIR (26 patches)
fixed a lot more new bugs than HD-Repair (10 patches).

We also investigated which schemas of ELIXIR contributed
more in generating the plausible (both correct and incorrect)
patches. From Table V, we observe that changing MI in a
comprehensive way is the most effective schema. It generated
12 correct patches, although it generated 6 incorrect patches.
The second effective is the broad category of changes in
Boolean expressions. This comprises several schema described
in Section III-B1. They generated 6 correct patches. However,
these schemas are also the source of many incorrect patches
(8). Insertion of MI generated 3 correct patches with no incor-
rect patches. This result clearly demonstrates the effectiveness
of ELIXIR on (prevalent) MI-related bugs.

B. RQ2: Contribution of ELIXIR’s Repair-Expressions and
Ranking and Selection

From the results of RQ1, it is hard to understand the sole
contribution of our rich repair-expressions since various tools
targeted various kinds of bugs, used various repair-expressions
and transformation schemas. Therefore, we ran our two base-
lines: ELIXIR-Baseline and ELIXIR-NoML on the same set
of bugs in Defects4J that we used for RQ1. Recalling from
Section IV-A, both baselines have the same program trans-
formation schemas as of ELIXIR. ELIXIR-Baseline uses the

TABLE VI
CONTRIBUTION OF ELIXIR’S INGREDIENTS, AND RANKING AND

SELECTION OF CANDIDATE PATCHES

Variant Repair-Expressions Ranking Correct Incorrect

ELIXIR-Baseline Traditional Off 14 16
ELIXIR-NoML Extended Random 13 5
ELIXIR Extended LR 26 15

LR = Logistic Regression

repair-expressions following the existing tools, and ELIXIR-
NoML uses ELIXIR’s repair-expressions but selects 50 patches
(same number as ELIXIR) randomly instead of any machine
learning technique. We ran ELIXIR-Baseline 10 times due to
its randomness, and counted the patches as correct even it
generated the correct patches for one out of 10 times.

Table VI shows that even though we use the same set
of transformation schemas of ELIXIR, ELIXIR-Baseline can
fix 14 bugs. By comparing these results with Table IV, we
see that ELIXIR-Baseline is almost as good as ACS, and
outperforms other tools. However, ELIXIR-Baseline cannot
generate any correct patches for the bugs that we presented
in the motivating examples. Therefore, this result clearly
demonstrates the contributions of our rich repair-expressions.

The results of ELIXIR-NoML demonstrates that simply
extending the set of repair-expressions without any effective
selection and pruning actually decreases the number of correct
patches (14 vs. 13). In our experiments, we observed that
median size of our expanded repair-expressions is 30 times
larger than the basic repair-expressions. Certainly we cannot
apply and validate all the patches resulting from them. There-
fore, we picked 50 patches randomly. When we investigated
each correct patch from ELIXIR-NoML, we observed that 10
patches are the same as that of ELIXIR-Baseline. Six of these
10 patches are not affected by the expanded repair-expressions
because the used schemas (T1-T5 in Section III-B1) are repair-
expressions independent. Due to expanded repair-expressions,
although ELIXIR-NoML generated correct patches for 3 new
bugs that ELIXIR-Baseline could not produce, it lost patches
for 4 bugs that ELIXIR-Baseline produced. However, with the
machine learning technique, ELIXIR has not lost any patches
that ELIXIR-Baseline generated, and additionally it generated
correct patches for 12 more bugs.

C. RQ3: Effect of Each Feature in Ranking and Selection

To investigate whether all the features contributed in the
ranking and selection of candidate patches, we turned off one
of the four features at a time during the training and testing
phase of ELIXIR. The results in Table VII indeed show that
each feature contributed in the ranking of correct patch in the
search space. Turning off any feature reduces the number of
correct patches. Among them distance turned out to be the
least influential feature whereas the bug report and frequency
are the dominant features. More specifically, ELIXIR lost only
one patch in absence of distance, whereas lost 5 and 6 patches
in absence of frequency and bug report respectively.

Figure 7 presents an example where ELIXIR could not gen-
erate the correct patch when we turned off the frequency fea-

8



Archival copy of the paper “ELIXIR: Effective Object-Oriented Program Repair” published in the proceedings of the 32nd
IEEE/ACM International Conference on Automated Software Engineering (ASE 2017)

TABLE VII
EFFECT OF EACH FEATURE IN RANKING AND SELECTION

Features Correct Incorrect

All-Distance 25 15
All-Context 23 15
All-Bug Report 20 19
All-Frequency 21 17

public static float max(final float a, final float b) {
- return (a <= b) ? b : (Float.isNaN(a+b) ? Float.NaN : b);
+ return (a <= b) ? b : (Float.isNaN(a+b) ? Float.NaN : a);

}

Fig. 7. Fix of MATH-482

ture. From the bug-fix we can see that repair location returns
a very complicated expression which is basically a ternary if
expression. Here the mistake is that b is returned instead of
a. This repair location generates a huge number of candidate
patches since it has MI, return statement etc. In fact, each of a,
b, and Float.NAN can be replaced by 234 repair-expressions.
Some of the candidates include Float.POSITIVE INFINITY,
Float.MIN VALUE, min(a, b) etc. However, since a is one of
the most frequent variables in the context, it got a high score
and ELIXIR generated the correct patch.

The example in Figure 8 shows the effect of bug report
similarity feature. ELIXIR synthesizes 944 valid MIs for the
repair location. From the bug-fix, we see that the inserted MI
does not have any element from the context. However, since
the bug report contains both the terms next and pos, ELIXIR
ranks it at 3rd position. Due to lack of space, we do not provide
concrete examples for distance and context features.

D. RQ4: Effectiveness of ELIXIR on Bugs.jar

Finally, we ran ELIXIR on Bugs.jar to understand its effec-
tiveness on Bugs.jar w.r.t. ELIXIR-Baseline. Since Bugs.jar has
a large number of bugs, we randomly sampled 50% of one-
hunk bugs for this experiment. We could not run our tools
on Log4J2 due to some engineering issues. More specifically,
our framework and many of its dependent libraries used
Log4J2 for logging, which was interfering with the “subject
Log4J2”. This is an interesting engineering problem to solve
in the future. Therefore, we randomly picked 127 bugs from
7 subjects in Bugs.jar to create our sample set.

From Table VIII, we observe that ELIXIR generated correct
patches for 22 bugs, whereas ELIXIR-Baseline generated a
correct patch for 14 bugs. The 8 new correct patches generated
by ELIXIR involved 4 MI insertions, 2 MI changes, 2 fields.
It should be noted that in RQ1, we demonstrated that ELIXIR-
Baseline is better than state-of-the-art techniques except ACS.
Therefore, the results in Table VIII demonstrate that ELIXIR is
similarly effective on Bugs.jar compared to the state-of-the-art.
The similarity in improvement also demonstrates that Bugs.jar
is not biased toward ELIXIR.

When we investigated the correct patches by ELIXIR, we
found many small but complicated fixes. Figure 9 presents a
concrete example that shows the fix for CAMEL-7241, where
ELIXIR replaced a parameter of an MI, which is also an MI
by a completely different MI that ELIXIR synthesized.

if (escapingOn & cstart == QUOTE) {
+ next(pos);

return appendTo == null ? null : appendTo.append(QUOTE);
}

Fig. 8. Fix of LANG-477

TABLE VIII
PATCH GENERATION SUMMARY (CORRECT/INCORRECT) ON BUGS.JAR

Project In Sample ELIXIR ELIXIR-Baseline

Accumulo 10 1/0 1/0
Camel 16 2/1 1/0
Commons Math 21 8/3 6/4
Flink 7 2/0 1/0
Jackrabbit Oak 31 3/6 2/4
Maven 5 0/0 0/0
Wicket 37 6/7 3/8

Total 127 22/17 14/16

VI. THREATS TO VALIDITY

External validity. Our evaluation is conducted only on
the Defects4J and Bugs.jar datasets and our conclusions may
not generalize to subject systems and bugs beyond these
datasets. The use of two, independently constructed datasets
was in part a conscious choice to mitigate this threat. Further,
in constructing Bugs.jar we followed a rigorous, scientific
procedure to identify 8 diverse, representative subject systems,
and included all their reproducible, single-module bugs in our
dataset. Second, ELIXIR has currently only been instantiated
and validated on Java application bugs. While the ELIXIR
technique is conceptually general, the current results may not
generalize to bugs in other OO-languages, such as C++.

Internal validity. Any implementation error of ELIXIR
could impact internal validity. We mitigated this by manual
inspection of all patches produced by the tools and by follow-
ing good development and QA practices.

The Bugs.jar dataset and hence our use of it may pose
several threats too. In creating Bugs.jar, we followed a rigorous
and scientific procedure for selecting subject systems. There-
fore, Bugs.jar is not biased toward any specific type of bugs
or subjects that is beneficial to ELIXIR. Further, errors in the
classification of commits as bugs or feature-enhancements, due
to mis-labeling in JIRA, or errors in our bug-extraction scripts,
could pose a threat. We mitigated this threat by manually re-
examining each selected bug to ensure it was indeed a bug.
Flaky bugs, which may produce unpredictable behavior during
repair, also pose a threat, which we mitigated by selecting only
bugs that consistently re-produced in 10 runs.

Finally, ELIXIR-NoML, which uses randomized prioritiza-
tion of candidate patches, is run 10 times to generate a patch.

Construct validity. Our criterion for classifying patches as
correct or incorrect is based on manual analysis, which is
not scientifically rigorous, even though it is accepted practice
in previous work [40], [8], [41], [10]. We tried to mitigate
this threat by following the protocol in Section IV-E, which
involved independent classification of the patches by the first
two authors and reconciliation of any discrepancies through
deeper examination of the patch in question by all authors.
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public static String toString(ByteBuffer buffer,
Exchange exchange) throws IOException {

- return IOConverter.toString(buffer.array(),exchange);
+ return IOConverter.toString(toByteArray(buffer),exchange);
}

Fig. 9. Fix of CAMEL-7241

VII. RELATED WORK

Search-based repair for C programs. GenProg [3], which
pioneered this area, uses genetic programming to search a
space of repair mutations formed by code snippets copied
from elsewhere in the program. RSRepair [5] uses random
search instead, while AE [4] uses deterministic search cou-
pled by analysis to prune equivalent patches. Relifix [42]
proposes a set of specialized repair schemas customized for
repairing software regression errors. SPR [8] prioritizes repair
of conditional statements, using abstract repair conditions to
implicitly evaluate and prune away infeasible condition repair
candidates (staging) before generating concrete repairs. In
recent work, Tan et al. [11] propose the use of anti-patterns –
a set of generic forbidden repair transformations, to reduce the
incidence of plausible patches, that typically arise in search-
based program repair, due to weak test-suites. The above
contributions can, and in part have, been re-purposed for repair
of Java (or other OO) programs. Our proposed technique
seeks to substantially expand the repair space, by using richer
repair expressions incorporating method invocations, and by
efficiently searching this space using a machine-learnt model.
Thus, it nicely complements the above body of work.

Search-based repair for Java programs. PAR [12] over-
lays GenProg’s search strategy with a set of repair templates
manually derived from human-written patches. History-driven
repair [14] uses a rich set of templates drawn from Gen-
Prog, PAR, and mutation testing, to produce a large pool of
candidate repairs which it then prioritizes and prunes based
on the frequency of previous (human-written) patches. In a
very recent work, ACS [15] proposes a method for precise
condition synthesis by instantiating variables in predicates that
frequently occur in a given corpus of code, using various
heuristics to rank and choose the variables. While each of
these techniques handles the Java language as such, unlike us,
they use method invocations in very limited and specific ways,
ostensibly to avoid an explosion in the repair search space.
By contrast, the expanded and generalized use of method
invocations in repairs is the main contribution of our work.

Oracle-based repair. SemFix [6] uses symbolic execution
to create an oracular representation of an expression under
repair and then uses program synthesis to generate a repaired
statement compatible with this “oracle”. MintHint [43] follows
SemFix in creating the oracle but uses statistical analysis to
search for a repair. DirectFix [7] generates minimal repairs to
obtain comprehensible repairs by encoding the problem as a
partial maximum satisfiability problem over SMT formulas.
Angelix [10] solves the scalability problems of DirectFix
by using a lightweight repair constraint. SearchRepair [44]
uses semantic search to search a corpus of human-written

patches, encoded as satisfiability modulo theories (SMT) con-
straints, for possible matches to a repair problem. All of
these techniques target C programs. The only exception is
NOPOL [13], which targets Java programs. It focuses on
the repair of branch conditions, using instrumented test-suite
executions to synthesize an oracle, which is converted into
a suitable SMT formula and solved to obtain a patch. Like
search-based Java repair techniques, NOPOL also incorporates
method invocations in a very limited way to curb explosion of
the repair space. In principle, our repair space ranking ideas
could be applied in the patch-synthesis stage of an oracle-
based repair technique, i.e., in generation of a concrete patch
from the oracle. This could constitute interesting future work.

AI in program repair. This is a nascent branch of research
in program repair. Prophet [9] builds on the SPR technique,
further using a machine learned model of previously-known
correct human patches to prioritize candidate repairs. Con-
ceptually, ELIXIR also uses machine learning to rank repair
candidates. However, unlike Prophet’s elaborate model with
over 3000 features, which produces only a 25% improvement
in repair outcomes (from 12 to 15 patches) we use a simple
model with only 4 potent features, interestingly with substan-
tially better repair outcomes (85% improvement from 14 to 26
patches). Also, our use of machine learning is paired with a
meaningful expansion in the repair space to target a specific
aspect of patches, i.e., incorporating MIs in repair expressions.
DeepFix [45] employs deep learning to fix language-level
common programming errors in C programs. This work while
interesting in its own right, is somewhat different from the
test-suite based repair of functional errors, targeted by vast
majority of program repair research, including ours.

VIII. CONCLUSIONS

This work was motivated by the extensive use of method
invocations (MI) in object-oriented (OO) programs, and indeed
their prevalence in patches of OO-program bugs. We proposed
a generate-and-validate repair technique, ELIXIR, designed for
repair of OO-programs, and instantiated it for Java program
repair. ELIXIR aggressively uses MIs, on par with local vari-
ables, fields, and constants, to construct more expressive repair
expressions, that go into synthesizing patches. The ensuing
enlargement of the repair space is effectively tackled by using
a machine-learnt model to rank concrete repairs. The model
relies on four features derived from the program context, i.e.,
the code surrounding the repair location, and from the bug
report. ELIXIR was evaluated on two separate datasets, namely
the popular Defects4J dataset, and another large-scale dataset
Bugs.jar created by us. The evaluation shows that, by enlarging
and effectively searching the larger repair space, ELIXIR is
able to significantly increase the number of correctly repaired
bugs while also out-performing other state-of-the-art tools like
ACS, HD-Repair, NOPOL, PAR, and jGenProg.

We believe that this work is a promising demonstration of
how AI/ML techniques can be used to expand the scope of
automatic program repair techniques. In future, we hope to
pursue and realize the full potential of this branch of research.
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