
Submitted by
Lisa Maria Kritzinger

Submitted at
Institute for Software
Systems Engineering

Supervisor
Priv.-Doz. Mag. Dr.
Rick Rabiser

Co-Supervisor
DI Thomas Krismayer

September 2018

JOHANNES KEPLER
UNIVERSITY LINZ
Altenbergerstraße 69
4040 Linz, Österreich
www.jku.at
DVR 0093696

Visualization Support
for Requirements
Monitoring in
Systems of Systems

Master Thesis

to obtain the academic degree of

Diplom-IngenieurIn

in the Master’s Program

Computer Sience

Abstract

Nowadays many software systems are so called systems of systems (SoS). The full behavior of
SoS only emerges at runtime and these systems therefore need to be monitored during run-
time to determine compliance with requirements. Although there exists many requirements
monitoring solutions, only few of them provide visualizations to present monitoring results
and details on requirements violations to end users.
The first part of this thesis describes how we extended the existing requirements monito-

ring framework ReMinds (Requirements Monitoring Infrastructure for Diagnosing Systems
of Systems) by developing visualization capabilities motivated by industrial scenarios. The
visualizations support a ‘drill-down’ scenario: starting with a graphical status overview of
the monitored SoS, which allows determining violated systems or components, trends and
statistics about monitoring results can be viewed and the root cause of problems may be
diagnosed by inspecting the dependencies on events and event data that led to a violation.
The second part of this theses describes a study of the usefulness of the developed visua-

lization capabilities. The study consisted of three steps: (1) a walk-through of the tool using
the cognitive dimensions of notations framework from the field of human-computer interacti-
on, (2) a user study involving four researchers followed by some refinements of the tool, and
(3) another study involving five industrial practitioners. All subjects succeeded in monito-
ring a real-world automation system for steelplants and in diagnosing violations by using the
visualization capabilities. The results show that the visualizations particularly helps to un-
derstand the behavior of complex systems. Based on the study results we derive implications,
opportunities, and risks of using visualization in requirements monitoring tools.

iii

Kurzfassung

Heutzutage sind viele Software Systeme sogenannte Systems of Systems (SoS). Alle Teil-
systeme eines SoS interagieren erst während der Laufzeit, weswegen Laufzeitüberwachung
erforderlich ist, um sicherzustellen dass sich das SoS gemäß seiner Anforderungen verhält. Es
existieren zwar einige Lösungen zur Anforderungsüberwachung, aber nur wenige davon bieten
Visualisierungen um einem End-Benutzer die Resultate der Überwachung und die Details von
Anforderungsverletzungen zu präsentieren.

Der erste Teil dieser Arbeit beschreibt die Erweiterung des existierenden Anforderungs-
überwachungsframeworks ReMinds durch die Entwicklung von Visualisierungsmöglichkeiten
motiviert durch industrielle Szenarien. Die Visualisierungen unterstützen ein ‘Drill-Down’-
Szenario: angefangen mit einem grafischen Statusüberblick des überwachten SoS, welches
die Bestimmung von Systemen oder Komponenten mit Anforderungsverletzungen erlaubt,
können Trends und Statistiken über die Monitoring-Resultate betrachtet werden. Durch das
Inspizieren von Abhängigkeiten von Ereignissen und Daten, welche zu einer Verletzung ge-
führt haben, kann die Wurzel der Ursache des Problems diagnostiziert werden.
Der zweite Teil dieser Arbeit beschreibt die Durchführung einer Studie über die Zweck-

mäßigkeit der entwickelten Visualisierungsmöglichkeiten. Die Studie bestand aus drei Teilen:
(1) ein Walkthrough des Tools unter Verwendung des Cognitive Dimension of Notations Fra-
meworks aus dem Feld der Human-Computer Interaktion, (2) die Durchführung einer Studie
mit vier Forschern gefolgt von einer Überarbeitung des Tools und (3) der Durchführung der
selben Studie mit fünf Praktikern aus der Industrie. Alle Teilnehmer konnten erfolgreich ein
echtes Automatisierungssystem für Stahlwerke überwachen und Probleme unter Verwendung
der Visualisierungen diagnostizieren. Die Resultate haben gezeigt, dass die Visualisierungen
vor allem dabei helfen, das Verhalten komplexer Systeme besser zu verstehen. Basierend
auf den Studienergebnissen konnten wir schließlich Implikationen, Chancen und Risiken der
Verwendung verschiedener Visualisierungen in Anforderungsüberwachungstools ableiten.

iv

Contents Contents

Contents

1 Introduction 3

2 Background and Related Work 6
2.1 Requirements Monitoring Model . 6
2.2 REMINDS Framework . 7
2.3 REMINDS Tool . 9

2.3.1 Monitoring Center . 10
2.4 Visualization in other Monitoring Tools . 11

3 Motivating Industrial Scenario 13
3.1 Running Examples . 13
3.2 Required Visualization Capabilities . 15

4 REMINDS Visualizations 18
4.1 System Overview . 19
4.2 Violation-related Visualizations . 20
4.3 Event-related Visualizations . 22
4.4 Diagnosis of Violations . 24
4.5 Application to the Industrial Scenario . 24

5 Selected Implementation Details 27
5.1 Eclipse RCP . 27
5.2 Used Libraries . 29
5.3 Visualization Plugin . 29

6 Evaluation 31
6.1 Method . 31

6.1.1 Identification of Visualization Capabilities 31
6.1.2 Cognitive Assessment and Tool Improvement 33
6.1.3 User Study . 33
6.1.4 Derivation of Implications for Developers 34

1

Contents Contents

6.2 Cognitive Dimensions Assessment . 34
6.2.1 Check System Status . 34
6.2.2 Analyze Trends and Statistics . 34
6.2.3 Analyze Events and Timing Behavior 35
6.2.4 Analyze Requirements Violation . 35
6.2.5 Cross-cutting Aspects . 36

6.3 Usefulness Study . 37
6.3.1 Study System and Subjects . 37
6.3.2 Study Process and Data Collection . 38
6.3.3 Data Analysis and Reporting . 39

6.4 Results . 40
6.4.1 Usability . 40

6.4.1.1 Check System Status . 41
6.4.1.2 Analyze Trends and Statistics 42
6.4.1.3 Analyze Events and Timing Behavior 44
6.4.1.4 Analyze Violation Details . 45
6.4.1.5 Cross-Cutting Results . 46

6.4.2 Utility . 49
6.4.3 Summary and Threats to Validity . 50

7 Discussion 53

8 Conclusion 55

List of Figures 56

List of Tables 57

Bibliography 58

2

1 Introduction

1 Introduction

Many software systems nowadays are so called Systems of Systems (SoS) whose full behavior
only emerges at runtime when the systems interact with each other, hardware and/or legacy or
third-party systems. System testing thus is insufficient to determine the systems’ compliance
with their requirements. The involved systems and their interactions must be continuously
monitored at runtime to discover unexpected behavior.
Robinson [1] is one example of such an approach, it has defined a four-layer architecture

of requirements monitoring that covers support for instrumenting systems, collecting and
aggregating events and data, defining and checking behavior (e.g., using temporal logic [2]),
and visualizing requirements violations to indicate deviations from the expected behavior.
Many other monitoring approaches, supporting observing and checking the behavior of com-
plex systems during operation, are summarized in a survey [3]. However, few of these existing
monitoring approaches provide visualizations to present monitoring results to end users. Only
14 of 37 requirements monitoring frameworks identified in a recent systematic literature re-
view [4] provide support for presenting the monitored events and event data. While not all
of these frameworks have been developed with the goal to support end users, 38% is still
a rather low number, particularly when considering that “most approaches do not provide
a proper validation” with real-world systems and users, who would need or at least benefit
from visualizations [3].
As part of earlier research the tool-supported ReMinds framework [5], [6] has been de-

veloped for requirements monitoring in systems of systems (SoS). The main use case of
ReMinds is continuous monitoring, i.e., checking and presenting the behavior of an SoS
during its operation. An earlier assessment of the usefulness of ReMinds for collecting,
aggregating, and analyzing events and event data at runtime in a study with industrial en-
gineers [7] and further feedback from our industry partner (developing automation software
for metallurgical plants) suggested more advanced tool support for analyzing and visualizing
monitoring results in real-world scenarios. For instance, the study showed that engineers
from industry frequently require details on the monitored events and associated event data
that led to requirements violations when diagnosing problems [8]. Furthermore, trends and
statistics are needed allowing practitioners to understand which (kind of) requirements are

3

1 Introduction

violated during a particular time period, or if the frequency of violations is changing for
specific systems. Particularly in systems of systems, visualizations need to exist for different
levels of granularity, e.g., to depict the status and trends or details about specific violations
for the overall SoS as well as individual systems. As first part of this theses we developed
such visualization capabilities in cooperation with industrial engineers in an ongoing research
project on requirements monitoring in SoS. We also summarized the result in a tool demo
paper [9]. The new visualization features considerably complement and extend the existing
ReMinds tool suite [10].

Typically, monitoring tools have been evaluated with a focus on their performance over-
head and feasibility, while only little empirical research exists on their usefulness for practical
environments and industrial users. Assessing usefulness requires qualitatively studying users
and their behavior [11]. Only few and rather limited usefulness studies exist for monitor-
ing tools, for instance, Wassermann and Emmerich [12] presented an experiment assessing
their Monere tool, Cobleigh et al. [13] reported on an experimental evaluation with end users
specifying formal properties with PROPEL and Fittkau et al. [14] conducted a controlled
experiments with 29 students to compare two software landscape visualizations and their
support for program comprehension. Our own earlier study [7], to the best of our knowledge,
so far is the only study involving industrial software engineers to assess the usefulness of a
requirements monitoring tool. We thus conclude that the usefulness of visualization capabil-
ities for requirements monitoring, especially for industrial practitioners, so far has not been
studied in detail.
Empirical results can lead to increased acceptance of tools in industry, as they help engi-

neers selecting and adapting tool capabilities for their application context. In particular, the
usefulness of software engineering tools covers two dimensions: utility, i.e., to what degree
the tool’s functionality allows its users to do what is needed; and usability, the capability
of the tool “to be understood, learned, used and attractive to the user, when used under
specified conditions” [15], [16], thus showing how well users can exploit the offered function-
ality [17], [18]. As second part of this theses we present a study we have conducted with
both researchers and industrial practitioners to assess the usefulness of the visualization ca-
pabilities as implemented in ReMinds. Specifically, this part provides the following research
contributions:

• An initial assessment of the realized visualization capabilities’ potential usefulness using
the cognitive dimensions of notations framework [19] (Section 6.2).

• The design (Section 6.1) and results (Section 6.3 and 6.4) of an in-depth usability study
involving subjects from industry and academia.

4

1 Introduction

• A discussion of implications for developers of requirements monitoring tools, particu-
larly with regard to visualization support (Section 7).

This theses is organized as follows: Section 2 explains the ReMinds framework, along
with the used Requirements Monitoring Model (RMM) and the tool suite developed based
on the RMM, Section 3 summarizes the motivating industrial scenarios and the derived
required visualization capabilities, Section 4 explains the developed visualizations in detail,
Section 5 shows a few selected implementation details and Section 6 explains the usefulnesses
study method, the Cognitive Dimensions of Notations [19] and their assessment, followed by a
description of the actual study and the results. Section 7 discusses implications for developers
of requirements monitoring tools and Section 8 rounds out the theses with a summary and
conclusions.

5

2 Background and Related Work 2.1 Requirements Monitoring Model

2 Background and Related Work

The following chapter describes the Requirements Monitoring Model the ReMinds frame-
work is based on this model. Section 2.3 describes the monitoring tool suite. The developed
visualization capabilities are an addition to the end user client, the Monitoring Center (cf.
Section 2.3.1). Some other monitoring solutions and their supported visualizations are de-
scribed in Section 2.4.

2.1 Requirements Monitoring Model

ReMinds [5] is based on a Requirements Monitoring Model (RMM) comprising the following
key elements as defined in a meta-model [20] (cf. Figure 2.1).

Figure 2.1: Runtime Monitoring Meta-Model.

The RMM comprises Scopes which can be arranged hierarchically, thus representing the
SoS architecture. A scope may represent a particular system, one or more components, or
a connector (such as interfaces or APIs) between different parts of a SoS. Every Probe is
assigned to the scope which represents the source of this probe, e.g. the system where the
source code was instrumented to define this probe. A probe sends Events to the monitoring
framework. These events may define the occurrence of a relevant system operation or inter-

6

2 Background and Related Work 2.2 REMINDS Framework

action at a certain time. Events can also contain data elements, which are needed for the
evaluation (which is triggered as soon as corresponding events happen at runtime) of a certain
Requirement. Requirements describe functionalities, properties or specific behaviors which
shall be monitored at runtime. Typically requirements ensure the order of events (event A
before event B) or the correctness of event-data (d>0). In ReMinds requirements are defined
as Constraints using a domain-specific language (DSL) [6]. Each constraint in the RMM is
related with one or more events, e. g., the events involved in a particular sequence checked by
the constraint. Further, for each event that led to a constraint violation, the related scope
elements of the SoS architecture can be determined based on the probes when diagnosing
violations.

2.2 REMINDS Framework

This RMM is realized as flexible Monitoring-Framework (cf. Figure 2.2) by ReMinds, which
consists of five layers: Probing and Instrumentation, Aggregation and Distribution, Process-
ing and Analysis, Views and an additional cross-cutting layer over all other layers, which is
responsible for managing variability [21].

Figure 2.2: ReMinds Framework Architecture [5].

Probing and Instrumentation. The first layer collects events as well as corresponding
data from different systems of the SoS using probes intercepting or extracting system infor-
mation. ReMinds offers templates for probes which are often needed. Depending on the
system to be monitored different probes are designed to either extract data directly from the
running systems or to analyze the output of these systems.

7

2 Background and Related Work 2.2 REMINDS Framework

For example, Java-based system can be instrumented without modification of the source
code by using AspectJ (an aspect-oriented extension of Java for the implementation of an
event-based system) [22]. For example, AspectJ allows to define that before each call of
certain methods an event "MethodX-occurred" is sent. Other technologies like C and C++,
require the modification of the source code to implement probes.
Aggregation and Distribution. Monitoring data of different systems of the SoS is

collected by this layer by providing an access point for probes. Monitored events are auto-
matically forwarded to all interested clients registered at the distribution server. ReMinds
also provides a persistence interface for storing events and their data, monitoring results and
informations about the system status. The persistence component executes the archiving of
the monitored events and allows to query of past events, data or constraints. Persistent data
can also be forwarded to registered clients for visualization and analysis.
Processing and Analysis. To allow the definition of global constraints, which require

data from different systems, low-level-event-processing and high-level-constraint-management
is separated in ReMinds. The evaluation of the data is thus done on a separate layer. All
needed constraints are defined and verified here.

ReMinds provides a domain-specific language (DSL) [23] for constraint definition and a
constraint checker. Every constraints starts with the indication of an event, which triggers
the evaluation of this constraint, called trigger-event, followed by the specification of the
conditional statement (cf. Figure 2.3).

Figure 2.3: Event-flow and Constraint Types of the ReMinds DSL [6].

Constraints can have three types: (1) data constraints allow checking if the event data
equals a certain value, (2) past occurrence constraints allow checking which events must have

8

2 Background and Related Work 2.3 REMINDS Tool

occurred before the trigger event and/or in which order they must have occurred, (3) future
occurrence constraints allow checking the occurrence, order and/or timing of events that
occur after the trigger-event.
Views. ReMinds provides an end-user application, the monitoring client [10], showing

a basic representation of scopes, probes, events and data, and requirements violations. We
developed visualization capabilities (Section 4) to complement and extend this tool to make
it more suitable for industrial monitoring scenarios.

2.3 REMINDS Tool

ReMinds consists of different tools, which have been developed based on the monitoring
framework.
The tools provide support for the layers of the framework and are therefore divided into

several categories (cf. Figure 2.4).

Figure 2.4: ReMinds tool architecture [10].

The framework component consists of the Processing & Analysis component containing
event processors, the constraint checking engine and a violation handler, the Aggregation and

9

2 Background and Related Work 2.3 REMINDS Tool

Distribution Component containing an event broker and an implementation of the RMM
and a Persistence Component providing support for different databases and distributed file
systems.
The User Interface Component consists of different user interfaces which provides editors

and tools for managing the elements of the RMM, like constraints or scope models.

2.3.1 Monitoring Center

Figure 2.5: Previous version of the ReMinds tool.

The end-user interface, called monitoring center, provides all needed editors to setup a
scope/event model, to define constraints and to analyze and diagnose event flows and con-
straint checks of such models at runtime.
In particular, the Requirements Editor allows to define requirements, from which con-

straints can be defined in a next step in the Constraint DSL Editor [6]. This editor is based
on the XText [24] framework, it supports auto-completion, syntax-highlighting and is inte-
grated with the monitoring server, so that new constraints are automatically transferred to
the server, compiled and activated at runtime. The hierarchical scope and event models can
be defined and arranged using the Scope Editor and the Event Model Editor.

The Events/Violations Reviewer provides capabilities for reviewing past violations and
recorded event traces. The Monitoring & Diagnosis view can finally be used to observe the

10

2 Background and Related Work 2.4 Visualization in other Monitoring Tools

current system status (active scopes, incoming events, constraint violations). The developed
visualization capabilities are an addition to this last mentioned view to improve the possibil-
ities of analyzing and diagnosing system behavior and constraint violations, particularly for
end users. Figure 2.5 shows the old version of the Monitoring & Diagnosis view before we
added the visualization capabilities and other changes to improve the tools usability.

2.4 Visualization in other Monitoring Tools

Even though most monitoring tools lack support for presenting monitoring results to end
users [4], some tools provide visualizations for several purposes.
Monitoring and visualization of service-oriented systems is, for example, supported by

ECoWare [25]. Its dashboard supports on-line and off-line violation drill-down analyses when
monitoring service-based systems. RuMoR [26] supports monitoring and recovery of Web
service applications, directly integrated in the IBM WebSphere environment. A violation
reporter generates a web page with information about detected violations, as well as a form
for selecting a recovery plan. The SOA4All framework [27] provides three different views
that visualize the key performance indicators of monitored processes and services, the human
or mechanized resources required for executing processes, and the business objects such as
inquiries, orders or claims. These views are supplemented with basic descriptive statistics.
In contrast to these tools, ReMinds is not limited to service-based systems. It also offers
visualizations providing details about monitored events and violations (cf. Section 4) in
addition to logs, trends, and statistics.
Visualization support of the architecture of the monitored systems is supported by some

other monitoring solutions like ARAMIS [28] which focuses on real-time visualization of
software architectures. A web-based tool builds and visualizes sequence diagrams in real-time.
Similarly, the MOSAICO [29] approach to monitoring architectural properties allows to define
and visualize property sequence charts using a UML-based notation. The ExplorViz [14]
approach offers hierarchical visualization and multi-layer monitoring from landscape level to
application level, e.g., for cloud-based applications. Our visualization of scopes and their
relations also provides a higher-level visualization of the architecture of a monitored SoS as
a starting point, but unlike to the other tools it also allow to ‘dig deeper’ and investigate
events and violations in detail.
Monitoring BPEL processes is purpose of the Monere [12] which provides a hierarchical

overview for resource trees of all monitored components and a dependency view displaying
dependencies of a selected component. Unlike to ReMinds Monere focuses on (business)
process monitoring and provide more details on constraint violations.

11

2 Background and Related Work 2.4 Visualization in other Monitoring Tools

The requirements monitoring framework ReqMon [1] provides a digital dashboard for mon-
itoring results presenting information on the status of requirements at runtime along with
historical data. The ReqMon presenter uses UML diagrams, like message sequence diagrams
and activity diagrams, for visualization. Our tool has a different focus (systems of systems)
and it also visualizes the relations of events and the violations they caused in more detail
allowing to observe the event flow and visually recognize deviations from the normal course.
(Application) performance monitoring tools, such as Kieker [30] or Dynatrace [31] provide

diverse sophisticated visualizations of a monitored system’s performance, but do not focus
on monitoring requirements. Similar to our tool, they support a drill down from higher-level
visualizations to details about monitored components.

12

3 Motivating Industrial Scenario 3.1 Running Examples

3 Motivating Industrial Scenario

The ReMinds framework is developed in cooperation with Primetals Technologies, a leading
engineering and plant-building company in the iron, steel, and aluminum industries [5]. The
company’s plant automation SoS (PAS) tracks and optimizes different stages of the metal-
lurgical production process. It comprises systems for process automation of melting iron ore
and raw materials, refining liquid iron to produce steel, and casting liquid steel. The correct
interplay between these independently developed software and hardware systems is crucial
to guarantee continuous, uninterrupted production and high-quality products.

Engineers at Primetals Technologies thus monitor if and how the PAS meets its require-
ments at runtime. Even though the basic capabilities essential for running the PAS and
ensuring its safety are checked and guaranteed already on the machine automation layer,
the full behavior of the process optimization and automation systems can only be checked
at runtime when they interact with each other, the hardware, and third-party systems. For
instance, engineers need to check the components’ correct timing or measure performance
and resource consumption.

3.1 Running Examples

To explain and illustrate both parts of this thesis we will use two running examples for such
components and their requirements.
Optimizer. This system optimizes the cutting of steel slabs to minimize scrap and maxi-

mize the resulting quality of the slabs. A key requirement for the Optimizer regards its correct
operation and performance, i. e., after being triggered by another system or the user, it must
perform the correct sequence of events (read material tracking data, calculate optimizations,
provide calculation results to other systems) within a certain time period.
Quality Control System (QCS). This system tracks the overall production process

through multiple stages, helps to ensure the quality of the produced steel slabs, and allows
to detect errors in the process flow. For this purpose the QCS, e.g., checks that different
parts of the production process are executed in the correct order and adhere to given time
constraints.

13

3 Motivating Industrial Scenario 3.1 Running Examples

Constraints for such requirements can be defined in our DSL [23] as follows: Constraint 1
defines that whenever the event Optimizer.feedCyclicData_START occurs, the indicated
sequence of events must also occur within 10 seconds. Other events may also occur between
this sequence.

1 trigger = if event " Optimizer . feedCyclicData_START " occurs
2 condition = events " Optimizer . feedCyclicData_FINISHED ",
3 " Optimizer . optimize_START ",
4 " Optimizer . writeOptiData ",
5 " Optimizer . optimize_FINISHED ",
6 " Optimizer . getOptimizationResult ",
7 " Cutting . feedOptimizationResult "
8 occur ignore others within 10 seconds

Listing 3.1: C1 — Order of Events.

Constraint 2 defines that whenever the event QCS.Strip_Data occurs, event QCS.Genea-

ogy_Data must occur as well, maybe along with other events, within 12 seconds and the
indicated data elements must be equal to each other.

1 trigger = if event "QCS. Strip_Data " occurs
2 condition = events "QCS. Genealogy_Data " as "e" where
3 "e".data(" general ", "ID") == data(" general ", "ID")
4 occur ignore others within 12 seconds

Listing 3.2: C2 — ID valid.

In the context of this thesis, to test and present such scenarios without the need of running
them in a real steel plant we built mockups which simulate the system, e.g., they send a
default sequence of events based on the real events recorded from Primetals’ system earlier.
These mockups are built to trigger evaluations, which result in multiple severity levels. In
particular, we defined one mock-up probe for each scenario.
Mockup-Probe 1 is associated with the scope Optimizer and sends the events indicated in

Table 3.1 in an endless loop with a certain timeout between the events. In some randomly
picked cases the event Optimizer.getOptimizationResult is not sent and in some other
randomly picked cases the timeout between Optimizer.writeOptiData and Optimizer.-

optimize_FINISHED increases from one second to five seconds. Therefore constraint C1
- Order of events will be violated for two reasons: (1) a timeout will occur because the
timeouts sum up to more then 10 seconds, (2) a wrong sequence will be detected when
Cutting.feedOptimizationResult is sent instead of Optimizer.getOptimizationResult.

14

3 Motivating Industrial Scenario 3.2 Required Visualization Capabilities

Table 3.1: Mockup-Probe 1.

Event Type Timeout∑
7000 or 11000

Occurrence

Optimizer.feedCyclicData_START 500 every loop
Optimizer.feedCyclicData_FINISHED 1000 every loop
Steel.StatusUp 500 every loop
Steel.StatusDown 1000 every loop
Optimizer.optimize_START 500 every loop
Optimizer.writeOptiData 1000 or 5000 every loop
Optimizer.optimize_FINISHED 500 every loop
Optimizer.getOptimizationResult 1000 randomly
Cutting.feedOptimizationResult 1000 every loop

Mockup-Probe 2 is associated with a scope named QCS-Downstream, a component of the
QCS system. It sends the events indicated in Table 3.2 in an endless loop. QCS.Strip_Data

containts the data element general.ID with the value 0 in every loop, while QCS.Genea-

ogy_Data contains randomly either no data element or also general.ID where the value is
also randomly either 0 or 1. This means the evaluation of constraint C2 - ID valid will fail
in some cases, because the data element of QCS.Geneaogy_Data cannot be found and lead to
a violation in some other cases because the IDs of both events are not equal.

Table 3.2: Mockup-Probe 2.
Event Type Data Element Data Value
Caster.SData general.ID 0
QCS.Strip_Data None
Caster.Schedule None
QCS.Genealogy_Data general.ID or None 0 or 1
QCS.Cyclic None

3.2 Required Visualization Capabilities

When violations of such constraints are recognized at runtime, the engineers need to inves-
tigate the cause of the violation: Based on these industrial scenarios and through checking
existing monitoring tools [9] [3], we define the following four key visualization capabilities (cf.
Figure 3.1) as essential to support detecting and diagnosing violations when monitoring com-
plex software systems such as the PAS:

15

3 Motivating Industrial Scenario 3.2 Required Visualization Capabilities

Figure 3.1: Monitoring a plant automation system of systems: drill-down scenario.

(C1) Check system status. In case of a violation, engineers first need to check the
status of the overall system (e.g., the PAS) to determine for which (sub-)systems (e.g., the
QCS) or components violations have been detected. Thus a key capability of monitoring
tools is a high-level visualization of the monitored system to understand its architecture
and quickly assess the status of its components. For this purpose they need an overview of
the monitored SoS and the violations that have occurred. Our tool provides such a status
overview visualizing the monitored systems and their relations in a tree and highlighting
systems with violations. For example, the status view may highlight the Optimizer system
to indicate its error-state.

(C2) Analyze trends and statistics. Engineers then need to investigate which and how
many violations already occurred for the monitored system(s), and in which time period. For
instance, a pie chart could depict that one specific requirement was checked X times and
violated Y times. Also, they may require further details about the change rate of the detected
violations. Thus a monitoring tool must allow to compute and visualize trends and statistics
on violations. For this purpose we provide views with area chart diagrams and line diagrams.
For example, these views can depict that the relative number of violations of one or several
QCS constraints increased after a certain point in time.

16

3 Motivating Industrial Scenario 3.2 Required Visualization Capabilities

(C3) Analyze events and timing behavior. Upon the detection of violations engineers
need to analyze details of the occurred events and their timing behavior (e.g., which events
of the Optimizer occurred in which order). For example, the violations could be the result
of missing events or caused by delays in executing the required sequence of events. For this
analysis the engineers need details on the order of events preceding the violation to discover
behavioral patterns, as provided by our Event Flow view described in Section 4.3. For each
violation or performance issue detected, a monitoring tool must allow to check events and
timing behavior.
(C4) Analyze violation details. Engineers then analyze the violations in detail, e.g.,

by reviewing details on the event time and event data recorded when the violation occurred.
We provide a visualization for this purpose, which allows users to view the events related
to a violation and inspect the data associated with these events, e.g., the events monitored
when the QCS violation occurred. For example, when analyzing a violation for the QCS, an
engineer needs to view the QCS events monitored and their associated data items in relation
to constraints and their violations.
Eventually, to investigate the root cause of (missing) events that led to the violation, the

engineer will inspect related source code or other artifacts. For this purpose, the engineer
will use other engineering tools such IDEs, debugging tools, or issue trackers [8].

17

4 REMINDS Visualizations

4 REMINDS Visualizations

This chapter describes the developed visualizations which extend the ReMinds Monitor-
ing Center (Section 2.3.1). These visualizations were motivated by the earlier conducted
study with engineers of Primetals Technologies [7] and the industrial scenario as described in
Section 3.
The extension consists of six visualizations in three groups:

1. Status Overview. These visualizations provide an overview about the current status of
the monitored SoS, the detected constraint violations and how often they are violated
(cf. Section 4.1).

2. Trending and Statistics. The two corresponding views shows more details about each
active constraint. They provide not just the total amount of violations of each constraint
but also the number of violations in different time periods and the change rate of the
violations (cf. Section 4.2).

3. Event Behavior. These views provide details on the monitored events, like the common
sequence they are appearing along with indications of outliers and their dependencies
to constraint violations (cf. Section 4.3).

These views are developed to allow usage as independent views, but we also provide guid-
ance within the ReMinds tool to support the drill-down scenario (cf. Section 3).
Figure 4.1 shows how these views are implemented in the ReMinds framework. All views

are an addition to the Monitoring & Diagnosis view of the client, which must be subscribed
to the server to receive the needed informations (events, violations). The view is separated
into three parts, a tab-folder where Trending and Statistics views are added via the provided
extensions point (EP), a view which provides the system overview and another tab-folder, in
which all Event Behavior views are added via EP.

The starting point in ReMinds to begin a drill down is the overview of the monitored
SoS, in which the user can choose one particular system or component to diagnose. Using
context menus or buttons one can switch among the different trending, statistics and event
views in the suggested order. Furthermore, a status bar provides important informations for

18

4 REMINDS Visualizations 4.1 System Overview

Figure 4.1: Visualization Capabilities extended to the ReMinds Framework.

the visualizations, e.g., the currently selected time interval, which filters all visualizations
except of the Status Overview views to show just information about this interval. We use the
Optimizer scenario as a running example throughout this Section and additionally the QCS

scenario in Section 4.1.

4.1 System Overview

ReMinds provides a tree-based view, which consists of important components and systems
of the monitored SoS, which are depicted using icons for different scope types (SoS, Systems,
Components or Connectors) [20]. Edges with arrows indicate relations between scopes, e.g.,
the Caster system is part of the Plant Automation System and the Optimizer component
is part of the Caster system. Scopes with violated constraints are highlighted by adding an
error symbol to the corresponding node and by coloring the nodes icon red when the first
violation is detected. Figure 4.2 (right) shows that both active scopes (= a probe has been
registered to them) QCS-Downstream and Optimizer have violated constraints.

19

4 REMINDS Visualizations 4.2 Violation-related Visualizations

Figure 4.2: System Status Overview.

More details about the constraint status are provided via pie charts (cf. Fig. 4.2 (left)).
This view shows one pie chart for each active constraint (= not manually deactivated and
an evaluation has been triggered) grouped by user-defined constraint groups. Each pie chart
shows the percentage of violations detected among all checks performed for this constraint.
Severity levels of violations are indicated using different colors: green (consistent = the

constraint has been checked and no violation was detected), orange (failure = the constraint
check has been triggered but could not be evaluated, e.g., due to missing data), yellow (warn-
ing = a violation with low severity has been detected for this constraint), red (error = a critical
violation has been detected for this constraint).
In the example depicted in Figure 4.2 (left) the pie charts show that a constraint check-

ing the correct order and timing of Optimizer events (C1 - Order of Events) was vio-
lated in 28 of 34 cases and the evaluation of another constraint checking the ID of the
QCS-Downstream (C2 - ID Valid) was triggered 45 times, 29 times the evaluation failed,
15 times it was evaluated without detecting any violation and one evaluation resulted in an
error.

4.2 Violation-related Visualizations

The Trending and Statistics views provide diagrams for each constraint to allow a more
detailed analysis of the system status, using the same colors as the pie charts to indicate con-
straint status/violation severity. Figure 4.3a shows that area chart diagrams in the Violation

20

4 REMINDS Visualizations 4.2 Violation-related Visualizations

(a) Trending area chart diagrams. (b) Status/Interval diagrams.

Figure 4.3: Trending and Statistics Views.

Trending view depict the percentage of violations detected among the performed checks (y-
axis) for a certain point in time (x-axis) for each constraint. The diagram is regularly updated
with current values.

With these area diagrams it is easy for the user to identify time ranges in which the system
behavior changed, e.g., the figure shows that the amount of violations decreases at about
12:45 (the green area is growing) and increases again a few minutes later (the red area is
growing), afterwards the violation rate did not change much anymore. The user can select
such a time range (cf. the black rectangle in Fig. 4.3a), e. g., the range with changing behavior.
The selection of a time range is then used by all other visualizations except of the System
Overview views until changed again or reseted.

The Status/Interval view (cf. Fig. 4.3b) provides another visualization of the status of
constraints. It provides a multi-plot diagram for each constraint where the absolute number
of evaluations and their status/severity for a certain interval is shown as stacked bars and the
percentage of violations detected among the checks performed in the same intervals as lines.

21

4 REMINDS Visualizations 4.3 Event-related Visualizations

The height of bars refers to the values shown on the right y-axis, i. e., the absolute number
of performed evaluations, which resulted in an error, failure, warning or consistent state in
the time interval. The left y-axis depicts the percentage referring to the line diagram. The
x-axis indicates the time interval, which remains the same information for both plots. This
view is updated in the same regular intervals as the area diagrams and shows the last ten
entries with a slider allowing to move the time interval to the past (if not currently focused
on a particular time range already). In the example this view already shows the information
for the selected time interval in Figure 4.3a.

4.3 Event-related Visualizations

(a) Event Trending. (b) Event Flow.

Figure 4.4: Live Event/Violation Views.

Two Event-related views allow the user to observe the behavior of the monitored events
and the constraint checks and violations they trigger beside the overall constraint status

22

4 REMINDS Visualizations 4.3 Event-related Visualizations

informations. These views are referring to the currently selected SoS component in the tree-
based system overview.
The Event Trending view (cf. Fig. 4.4a) shows a stacked bar per predefined time interval.

Again, selecting a certain time range is possible. The behavior of this diagram equals the
behavior of the Interval/Status diagrams, i. e., per default the latest ten entries (bars) are
displayed and a slider allows to move the view to the past.
Whenever an event occurs (i. e., an Optimizer event), the stacked bar element is updated.

Events are represented by colored rectangles added to the stack. Different colors represent
different event types. Details such as event name, timestamp, and related event data can be
displayed on demand when selecting a stacked bar element. In Fig. 4.4a, for example, the
third last stack is selected. This stack contains seven events and all of this events occurred
once in the corresponding time interval. Also one violation of the C1 - Order of Events

constraint occurred within this interval because the wrong event type occurred in the checked
sequence of events. Whenever a violation occurs, it is added as a dot in the associated bar
with respect to the time the violation was detected and the number of violations which
occurred in this interval. The total amount is depicted by the values of the y-axis. For both
plots, they indicate the number of event types and the number of violations occurred. Upon
selecting a violation, the events involved in the violation are highlighted using darker variants
of the same colors.
The Event Flow view (cf. Fig. 4.4b) shows the standard sequence of the occurrence of

events as a graph (in this case the events monitored from the Optimizer). This graph does
not depict every single event but the different event types. It is automatically generated
based on the events monitored by ReMinds: when an event of a new type occurs, a new
node and a connection from the previous event type (if any) are added to the graph. In case
the event type already exists, either a new connection is generated (if no connection existed
before) or the connection line weight is updated, if the connection already existed.
The last occurred event type is displayed with a white background (i. e., Cutting.feed-

OptimizationResult), while all others have a gray or red background (if they triggered a
violation). The last connection (from Optimizer.optimize_FINISHED to Cutting.feed-

OptimizationResult) is colored in black and dotted, all others are gray and solid. When
a violation occurs, the trigger event is highlighted using a red border (i. e., Cutting.feed-

CyclicData_Start). It is also possible to show all events related with a certain violation by
selecting the radio button at the top right of the trigger event node. For instance, Opti-

mizer.feedCyclicData_START as the trigger event of the C1 - Order of Events constraint
led to a violation because the wrong event type occurred in the checked sequence of events.
In particular, Optimizer.getOptimizationResult did not occur in this sequence loop.

23

4 REMINDS Visualizations 4.5 Application to the Industrial Scenario

The weight of the connection lines provides information on how often this connection
has occurred compared to all other connections, i. e., how often a particular event type was
followed by a particular other event type. This makes the normal flow of events and alternative
courses visible to the user. As depicted in Fig. 4.4b, the connections from Optimizer.opti-

mize_FINISHED to Cutting.feedOptimizationResult or Optimizer.getOptimizationRe-

sult and from Optimizer.getOptimizationResult to Cutting.feedOptimizationResult

did occur less then all other connections, but quite equal often to each other.
It is also possible to ‘replay’ a past time period by visualizing recorded events and violations.

The user can replay the event flow of a specific time period either step by step or by re-playing
a sequence until the next violation appears. Also stepping back is possible. In both cases,
the user can pause the event-flow at any time, for example, to investigate violations. The
user can also define filters, e. g., to only show events of certain types or to only show event
types which triggered violations.

4.4 Diagnosis of Violations

Providing an explanation of detected violations or performance issues is essential for moni-
toring tools to help users to analyze violation details. Commercial tools like Dynatrace [31]
provide detailed error analyses along with AI assistants explaining issues. However, research
prototypes such as ReqMon [1] or Monere [12] only report an error, but do not provide de-
tailed information for diagnosing these errors. Thus engineers would need to inspect related
source code or other artifacts to investigate the root cause of such errors. For this purpose,
the engineer would need interfaces to related engineering tools such IDEs, debugging tools,
or issue trackers [8].
In ReMinds we provide an extensive violation details dialog. Figure 4.5a shows the dialog

for a violation of the constraint C1 - Order of Events and Figure 4.5b for a violation of
the constraint C2 - ID Valid. Informations about the violation severity, the timestamp,
the reason (e.g. timeout, data missing) is given along with the constraint description and
definition. The event sequence and events which led to the violation can also be viewed in a
table view, which allows users to investigate event or data details by clicking on these entries,
followed by a simple textual description of the violation.

4.5 Application to the Industrial Scenario

The drill-down scenario described in Section 3.2 is supported by interrelating the previously
described views. The tree-based system status view (Fig. 4.2) provides an overview of the

24

4 REMINDS Visualizations 4.5 Application to the Industrial Scenario

(a) C1 - Order of Events- Error. (b) C2 - ID Valid- Failure.

Figure 4.5: Violation Dialogs.

monitored system (cf. scenario step (1)) as the starting point. The user can either display
trends and statistics for the overall system (cf. scenario step (2)) or use the context menu of
a node of the tree-based status view to directly navigate to the violated constraints of that
particular system component (cf. scenario step (3)), e. g., the Optimizer.

From each pie chart diagram, again using the context menu, the user can open the Violation
Trending view (the area chart of the same constraint; cf. Fig. 4.3a) to analyze trends regarding
a specific violation (cf. scenario steps (2) and (3)). In this view it is easily possible to choose
a specific time range, e. g., the period with the most violations which allows to restrict the
area to be diagnosed further more. This time interval is then set to other views like the
Status/Interval view (Fig. 4.3b), depicting the bar chart and line plot diagram providing
details for the selected time period.

The user can navigate to the Event Trending view (Fig. 4.4a) from both the Violation
Trending as well as the Status/Interval view using the context menu. If a time range was
selected before, it is also used in the Event Trending view. The engineer can then investigate

25

4 REMINDS Visualizations 4.5 Application to the Industrial Scenario

which events have occurred in this time range and which have led to violations (cf. scenario
step (4)). Further details regarding the events can be investigated by switching to the Event
Flow view. The user can either replay the event-flow of the time range until the violation
to be diagnosed occurs or walk through step by step (i. e., event by event). In our example,
using the Event Flow view the user can check the typical event-flow of the Optimizer and
then check the C1 - Order of Events violation and its relation to particular events using
the violation details dialog.

26

5 Selected Implementation Details 5.1 Eclipse RCP

5 Selected Implementation Details

The ReMinds Monitoring Center is developed using Eclipse RCP [32]. All developed visu-
alization capabilities are plugin components added to the main client. The following chapter
explains some selected principles of the Eclipse RCP platform and the extension point concept
(Section 5.1), some used libraries (Section 5.2) and some details of the visualization plugin
(Section 5.3).

5.1 Eclipse RCP

Figure 5.1: Eclipse RCP architecture [32].

The Eclipse Rich Client Platform (RCP) can be used used as a basis to create feature-rich
stand-alone applications. Although the Eclipse programming model was simplified in version
4, we are still using version 3.8 for most of the client parts of ReMinds as our industrial
partner is working with this standard as well. Applications developed with Eclipse RCP
benefit from the existing user interface and the internal framework, and can reuse existing

27

5 Selected Implementation Details 5.1 Eclipse RCP

plug-ins and features. As the Eclipse plattform is the basis of one of the most used Java
IDE, it is very stable. It provides some default user interface components, which can be
extended, changed or removed and allows the development of component-based systems due
to its modular approach.
High-level architecture. An Eclipse application consists of individual software com-

ponents, called plugins. They typically are based on some basic components and other
components provide additional functionality on top of them. For example, a new plug-in can
create new menu entries or toolbar entries. The Eclipse IDE (cf. Figure 5.1) is for example
a special Eclipse application with the focus on supporting software development. The Java
development tools (JDT) provide the functionality to develop Java applications.
Extensions and extension points. Eclipse RCP provides a concept of adding extensions

to extend functionality to a certain type (defined by a plug-in via an extension point) of API.
These extensions can be contributions to one or more plug-ins. Listing 5.1 shows an example
of the definition of an extension point and Listing 5.2 shows the implementation of this
extension point. In particular, this EP is used to add tabs to a tab-folder. Listing 5.2
describes the implementation of the Event Flow tab.

1 <?xml version ="1.0" encoding ="utf -8"?>
2 <? eclipse version ="3.2"?>
3 <plugin >
4 <extension -point
5 id=" scopetab "
6 name=" scopetab "
7 schema =" schema / scopetab .exsd" />
8 </plugin >

Listing 5.1: Example of an extension point.

1 <plugin >
2 <extension point="at.jku.mevss. idetools . runtimeviewer . scopetab ">
3 <tab
4 class="at.jku.mevss. idetools . runtimeviewer . visualization .scope.

statechart . VisualizationScopeTab "
5 icon=" IMG_MM_MENU_STATECHART "
6 order="1"
7 tabTitle ="Event Flow">
8 </tab >
9 </extension >

10 </plugin >

Listing 5.2: Example of an extension.

28

5 Selected Implementation Details 5.3 Visualization Plugin

5.2 Used Libraries

Along with Eclipse RCP we use some libraries to ease the implementation of certain parts. In
the scope of this thesis the Zest [33] toolkit is used for the tree-based system overview (Section
4.1) and the event flow view (Section 4.3), and JFreeChart [34] is used for the development
of all different chart diagrams (Section 4).
Zest. This visualization toolkit provides a set of visualization components for Eclipse. The

whole library is developed in SWT (Standard Widget Toolkit), an open source widget toolkit
for Java designed to provide efficient access to the user-interface facilities of the operating
systems on which it is implemented. All Zest views conform to the same standards and
conventions as existing Eclipse views. An additional graph layout package can be used
independently within existing Java applications to provide layout locations for a set of entities
and relationships.
JFreeChart. This Java chart library can be used to display professional quality charts in

Java applications. It consists of a consistent and well-documented API, supporting a wide
range of chart types. Its flexible design is easy to extend, and targets both server-side and
client-side applications. Furthermore it provides support for many output types, including
Swing and JavaFX components, image files like PNG and JPEG, and vector graphics file
formats like PDF, EPS and SVG.

5.3 Visualization Plugin

Our visualization capabilities are developed as a set of three plug-ins. The main plug-in
manages all visualizations by providing some higher-level APIs, handlers for global function-
alities. It also collects and provides the data needed for the visualization views. The two
other plug-ins provide extensions to display the views in tabs. The Violation-related visual-
izations (Section 4.2) and the Event-related visualizations (Section 4.3) are implemented in
each case one of the two plug-ins.

Figure 5.2 shows the lifeline of the visualization plug-in. Plugin can in this graphic be
interpreted as the set of all three visualization plug-ins. When the plugin is started the visu-
alization handler is created, followed by all available visualizations, which are then registered
to the handler. The handler creates a thread to refresh all registered visualizations in a cer-
tain time interval. Some user actions, like setting and resetting the time interval are directly
performed by the handler for every registered visualization.

29

5 Selected Implementation Details 5.3 Visualization Plugin

Figure 5.2: Sequence Diagram of the Visualization Plugin.

30

6 Evaluation 6.1 Method

6 Evaluation

The following sections describes how we conducted the evaluation of this work. The chosen
method for the evaluation of this thesis is explained in Section 6.1. In Section 6.2 we describe
how we performed a walkthrough of our visualizations using the Cognitive Dimensions of
Notations framework [19]. Section 6.3 explains the conducted usefulness study and the results
of this study are summarized in Section 6.4.

6.1 Method

The field of Human-Computer Interaction distinguishes inspection-based approaches and test-
based techniques to usability evaluation [18]: Inspection-based methods aim at improving the
usability of an interface design by checking it against some standard such as Nielson’s usabil-
ity attributes [17] or the Cognitive Dimensions (CD) of notations framework [19]. Test-based
approaches directly involve end users in the evaluation. Given the complexity and high
interactivity needed to visualize results of monitoring large software systems, our research
approach covers both inspection-based and test-based elements. Specifically, we investigate
two research questions on the usefulness of requirements monitoring tools’ visualization ca-
pabilities using the example of ReMinds: (1) Regarding usability we assessed ReMinds’s
visualization capabilities from the perspective of researchers as well as industrial software
engineers, guided by the CD framework [19] and Nielsen’s usability attributes [17]. (2) Re-
garding utility we observed users monitoring a real-world industrial system using ReMinds’s
visualization capabilities.

6.1.1 Identification of Visualization Capabilities

As described in Section 3.2, to identify key requirements monitoring activities that can benefit
from visualization capabilities, we analyzed our industrial requirements monitoring scenario
to define key user activities and visualization capabilities for end users. We also analyzed the
support for these capabilities in existing frameworks and tools [4] [3].

31

6 Evaluation 6.1 Method

Table 6.1: Cognitive Dimensions of Notation [19].

Viscosity A viscous system needs many user actions to accomplish
one goal.

Example Setting a time interval for all views could need one inter-
action per view.

Visibility Systems that bury information in encapsulations reduce
visibility.

Example ReMinds supports multiple options to complete certain
tasks, e.g., a button and a context menu option.

Hidden dependencies Systems with hidden dependencies have important links
between entities, which are not visible.

Example If setting a time interval in one view affects other view, this
change must be made visible to the user.

Role-expressiveness The purpose of an entity shall be readily inferred.

Example All visualizations use the same color for the same violation
severity.

Abstraction Abstractions group a number of elements together which
shall be treated as one entity.

Example The terminology of key ReMinds abstractions are chosen
to be as understandable as possible (scope, constraint).

Secondary notation Extra information shall be provided in means other than
formal syntax.

Example The time interval can be set via drag and drop in the Vio-
lation Trending view and via a settings dialog in all views.

Diffuseness Notations should not be long-winded, or occupy too much
valuable “real-estate” within a display area.

Example The time indications are in short format (hh:mm:ss.s), the
whole date can be viewed via tooltip.

Consistency Similar semantics are expressed in similar syntactic forms.
Example An error is always highlighted using red color.
Error-proneness This systems have notations, which invite mistakes.

Closeness of mapping The notation shall be closely related to the result it is de-
scribing.

Hard mental operations The demand on cognitive resources shell be as low as pos-
sible.

Provisionality Provisionality allows users to make indicative selections be-
fore making definitive choices.

Progressive evaluation It shall be easy to evaluate and obtain feedback on an in-
complete solution.

32

6 Evaluation 6.1 Method

6.1.2 Cognitive Assessment and Tool Improvement

We assessed ReMinds’s visualization capabilities using an inspection-based walkthrough
based on the CD framework [19] to reveal usability flaws that could bias a study with end
users. The CD framework is well known in the HCI community and has been used suc-
cessfully to assess software engineering tools in the past. For instance, Wassermann and
Emmerich [12] describe an experiment assessing the Monere tool for diagnosing errors in
service-based systems. Another example is the study by Cobleigh et al. [13] describing an
experimental evaluation with end users specifying formal properties with PROPEL. Fittkau
et al. [14] describe controlled experiments with 29 students to compare two software land-
scape visualizations and their support for program comprehension. In their 2017 article
they also write “to the best of our knowledge, we are the first to conduct such a controlled
experiment” [14].

Our own earlier study [7] on the usefulness of ReMinds for collecting, aggregating, and
analyzing events and event data at runtime, to the best of our knowledge, so far was the
only study involving industrial software engineers to assess the usefulness of a requirements
monitoring tool.
The CD framework supports evaluating and characterizing capabilities of interactive arti-

facts, such as software tools, and offers a vocabulary for discussing trade-offs based on a set
of basic user activities and cognitive dimensions. The notational dimensions are described in
Table 6.1 with examples from the ReMinds visualization capabilities (if applicable).
We addressed any usability issues discovered in the walkthrough and then conducted a

pilot study in our lab involving four researchers unfamiliar with the visualization capabilities
of the tool as well as a study with industrial software engineers as described below.

6.1.3 User Study

We conducted a usefulness study involving researchers as well as industrial software engi-
neers. We defined the study method based on findings from the CD assessment, following
the guidelines for conducting empirical studies described by Runeson and Höst [35].
We selected the study system and the subjects working with the monitoring tool. We

also defined the experimental setting, the monitoring tasks to be conducted by subjects, the
data collection methods and sources, as well as the data analysis and reporting process (cf.
Section 6.3).
Specifically, during the study, ReMinds was used by researchers from our lab and soft-

ware engineers of our industry partner to monitor a plant automation software system (cf.
Section 3). For instance, using the visualizations, the subjects had to investigate the cur-

33

6 Evaluation 6.2 Cognitive Dimensions Assessment

rent system status and diagnose constraint violations of different complexity. We asked each
subject to “think aloud” [18], i.e., to describe what they were doing and to comment on any
concerns. After the working session with the tool, we performed a utility interview [36] and
handed out a usability questionnaire [17]. We describe results structured by our two research
questions (cf. Section 6.4).

6.1.4 Derivation of Implications for Developers

We use the results recorded during the study to discuss lessons learned and findings for both
researchers and practitioners (cf. Section 7). We also discuss the perceived opportunities and
risks [36] of using visualization capabilities in practice.

6.2 Cognitive Dimensions Assessment

Here we report the results of our cognitive dimensions assessment, which are additionally
summarized in Table 6.2.

6.2.1 Check System Status

The System Status is affected by cognitive dimension abstraction, as the visualized scope
hierarchy is an abstraction of the real monitored system. The same holds true for the different
types of violations shown in both the System Status and the Constraint Status views, e.g.,
different colors represent different types of constraint check results. While we were confident
these abstractions would work for users, we decided to put a special focus on this in our user
study.
The cognitive dimension hidden dependencies is also relevant: the System Status view

displays the scope hierarchy and connected probes, but does not show events, data, and
constraints, which are shown in separate views/tabs (on the right). Of particular relevancy
to the system overview is cognitive dimension diffuseness, i.e., our scope visualization might
waste too much of the available screen space.

6.2.2 Analyze Trends and Statistics

Selecting a time interval in the Violation Trending view affects multiple other views such as
the Event Trending and Event Flow views (cf. Section 4.3). During the assessment we decided
that if this is not properly communicated to the user, this could easily lead to problems (show
stopper), particularly related with the cognitive dimension hidden dependencies. Before the
study we thus implemented a status bar that highlights the set time interval. During the

34

6 Evaluation 6.2 Cognitive Dimensions Assessment

study, we wanted to assess whether users still need additional support. Similarly, the selection
of the time period to focus on can be done by selecting it in the trending area chart as well
as via a settings menu. This is related with cognitive dimensions secondary notation and
consistency and we decided to investigate this in detail in the user study. The cognitive
dimension viscosity also needs to be studied here, as changing the time is automatically
applied to multiple views, (repetition viscosity) which might not be immediately obvious to
the user.

6.2.3 Analyze Events and Timing Behavior

The Event Trending and Event Flow visualizations are affected by the cognitive dimension
viscosity, i.e., these views might focus on a particular time period, which can be set in other
views (e.g., the violation trending view). We expected this to be a potential problem for
users to investigate in our user study. Also the Event Trending view highlights events related
with a particular violation by changing colors to a darker tone. Our assessment showed that
this negatively affects the cognitive dimension consistency. We thus decided to fix this by
also highlighting the events using a border. Our CD assessment also revealed that the colors
used by the Event Trending have another negative effect on consistency, i.e., they were too
similar to the colors used to visualize the results of constraint checks and violations. We
also fixed this show stopper by using a different set of colors. During our CD assessment
we also noted to focus on abstraction and diffuseness during our user study, i.e., to find out
the users’ opinion on the abstractions used to represent monitored events in both the Event
Trending and Event Flow views and their perception on whether the views present too much
information.

6.2.4 Analyze Requirements Violation

For the violation details dialog our assessment revealed that cognitive dimension hidden
dependencies is affected, as the dialog in its original version did not include the original
constraint definition, but only the violation text. We thus fixed this potential show stopper
before the user study by integrating the constraint definition. Furthermore, we decided to
study whether users can correctly identify the cause of a violation with the information
provided in the dialog. This regards the cognitive dimension abstraction. Also, diffuseness is
relevant here as the textual explanation of violations might be too long-winded.

35

6 Evaluation 6.2 Cognitive Dimensions Assessment

Table 6.2: Results of the initial cognitive dimensions assessment. For each visualization ca-
pability and corresponding tool views, multiple cognitive dimensions were either
considered as to be studied in more detail during the user study (STUDY) or show
stopper fixed (FIX) before the user study.

Visualization
Capability Tool Views Cognitive

Dimensions [19]
Assess-
ment

Usability
(Sec-
tion 6.4)

Check System Status System Overview
and Pie charts

Abstraction
Hidden dependencies
Diffuseness

STUDY
STUDY
STUDY

+
+
+

Analyze Trends and
Statistics

Trending,
Status/Interval and
Statistics

Hidden dependencies
Secondary Notation
Viscosity
Consistency

FIX
STUDY
STUDY
STUDY

+/−
−
+/−
+/−

Analyze Events and
Timing

Event Trending and
Event Statechart

Viscosity
Consistency
Abstraction
Diffuseness

STUDY
FIX
STUDY
STUDY

+
−
+/−
−

Analyze Requirement
Violation

Violation
Details Dialog

Hidden dependencies
Abstraction
Diffuseness

FIX
STUDY
STUDY

+/−
+
−

Cross-cutting aspects All views

Visibility
Premature Commitment
Hidden dependencies
Abstraction
Consistency
Diffuseness

STUDY
FIX
STUDY
STUDY
STUDY
STUDY

+
+
+/−
+
+/−
−

6.2.5 Cross-cutting Aspects

Several cognitive dimensions were found to be relevant for all views of ReMinds. For in-
stance, the overall GUI layout (order and arrangement of views) regards the dimension vis-
ibility and was decided to be explored in detail with users. During the CD assessment we
found that premature commitment could become a showstopper as the time period to focus on
could not be set in all views. We thus fixed this by integrating a settings button in all views.
Hidden dependencies also affects all views, e.g., each view focuses on particular elements of
our model and hides elements or dependencies to other elements. We thus decided to inves-
tigate this in detail during the user study. Similarly, all views abstract from the monitored
system and we want to investigate during the study whether our abstractions really work for
users. Furthermore, we decided to investigate consistency regarding the use of colors and
icons throughout the tool and diffuseness regarding unnecessary or unnecessarily complex
views.

36

6 Evaluation 6.3 Usefulness Study

6.3 Usefulness Study

Based on the CD assessment and the improvement of ReMinds to address the potential
showstoppers, our qualitative study investigates the usefulness (usability and utility) of Re-
Minds’s visualizations as perceived by researchers and practitioners. We defined and struc-
tured our study based on the guidelines by Runeson and Höst [35]. We also followed the
guidelines by Ko et al. [37] to select the tasks to be conducted by our subjects. Specifically,
based on the initial assessment of the visualization capabilities we defined several tasks and
iteratively refined our initial definition, i.e., we tested the task difficulty ourselves and later
with four researchers from our lab, who had never used the visualizations before. Based on
their feedback, we made some minor adaptations in the study method, e.g., we removed am-
biguities by rephrasing text in the material we later handed out to the industrial engineers.
To increase the participation of industrial users, our goal was to ensure that subjects could
complete all tasks in less than one hour, while still covering all visualization capabilities. We
also considered the results of our initial cognitive dimensions assessment and selected tasks
that allow us to provide empirical data on the cognitive dimensions we wanted to investigate
in more detail in the study.

6.3.1 Study System and Subjects

With the help of Primetals Technologies we selected five experienced people as subjects for
the study in addition to the four researchers from our lab. We already had interviewed
the subjects from Primetals Technologies in an earlier study [7]. This ensured that people
already knew the context and purpose of monitoring software systems (cf. the inclusion
condition defined by Ko et al. [37]). Most of our subjects (8/9) have a Master’s degree in
computer science, while one has a Bachelor’s degree. Two additionally have a PhD degree.
The average experience with automation software development of all our subjects was 6.4
years and the average time of the five Primetals Technologies subjects working at Primetals
Technologies was 10.6 years. Only two subjects said they have already worked with the QCS
before the study. Five subjects had seen ReMinds before and wrote some constraints to be
monitored, but none of our subjects has used the visualizations before. This means that while
we performed the study with experienced people, they were not familiar with the ReMinds
visualizations nor the study system. The whole data collected of our subjects is summarized
in Table 6.3.
We used the Quality Control System of Primetals Technologies already described in Section

3.1 as the study system. Probes instrumenting the QCS as well as constraints were developed
before the study by an expert from Primetals Technologies. For the study, we selected two

37

6 Evaluation 6.3 Usefulness Study

Table 6.3: Some information on our nine subjects.
Average Education Master CS
Highest Education Level (2 subjects) PhD
Lowest Education Level (1 subject) Bachelor CS
Average Experience in Automation Software
Development (yrs) 6,44

Average Time Working at Primetals
(yrs; only of those 5 working at Primetals) 10,6

Experience with QCS 1 little, 1 yes, 7 no
Experience with ReMinds 5 yes, but only writing constraints, 4 no

constraints: one checking the order and timing of multiple events in the QCS and one checking
the order and timing of two events as well as data attached to the two events. We prepared the
probes to randomly but frequently produce violations of the two constraints, which subjects
then had to diagnose using our visualizations. the first constraint checks that after event
QCS-Schedule occurred, events QCS-SData and QCS-GData occur within 12 seconds, while
ignoring any other events that might occur in between. For this constraint, we modified
the probes such that sometimes it takes longer than 12 seconds for all events to occur, thus
leading to a violation of the required timing. For the second constraint – checking that after
event QCS-SData, event QCS-GData occurs within 12 seconds and that the C-ID attached to
event QCS-SData equals the C3-ID attached to event QCS-GData – we modified the probes to
sometimes not provide the data at all (leading The constraint check to fail) and sometimes
to send a wrong id for one of the events (leading to a data-check violation).

6.3.2 Study Process and Data Collection

We conducted the following process taking 56 minutes on average (min. 45 and max. 75) for
each subject:
Preparatory steps. We started ReMinds 10 minutes before each session to ensure a

considerable amount of events and data had already been monitored and visualizations were
thus already filled with information, before the subject started.
Briefing. The moderator first explained the goals of the study to the subject and asked for

consent to publish the findings [37]. The moderator also introduced ReMinds, i.e., explained
the main views as well as the key concepts: scope, constraint, event. The moderator also
explained the different possible results of a constraint check. Also, the moderator provided
the subject with a printed document explaining the selected constraints, the events and data
checked by these constraints, and a list of tasks to be completed (cf. capabilities):

38

6 Evaluation 6.3 Usefulness Study

1. Check status. Find out which system/component has violations, which constraints did
violate, and how often they violated.

2. Analyze violation trends. Find out for each constraint with violations, in which time
window most violations occurred and set this time period as the period to focus on.

3. Analyze details about the violation. Review the events/data and/or event timing be-
havior that led to each violation, i.e., review event trending and event flow.

4. Diagnose and find the reason for the violation. Possible reasons: data outside defined
range, event missing, timeout occurred, event sequence occurred in unexpected/wrong
order, or constraint check failed.

We asked each subject to “think aloud” [18], i.e., to describe what s/he was doing and
to comment on any concerns. One scribe documented the think-aloud statements. Another
scribe watched the subject and took additional notes on interesting observations beyond the
think-aloud protocol. The moderator also took notes.
Data Collection. After the monitoring phase, the moderator performed semi-structured

interviews on utility and usability with each subject, covering questions on the results of the
cognitive dimensions assessment (cf. Section 6.2) and the utility questionnaire by Davis [36].
More specifically, regarding usability we asked questions such as “How did you like the capa-
bilities to define time intervals to focus on and did you experience any problems with that”?
or “What did you like/dislike about the tool”? Regarding utility, we asked questions such
as “What opportunities and risks do you see for Primetals Technologies when using this tool
in daily business?” We also used the interview to collect demographic information. After
the interview, the moderator handed out a usability questionnaire, which was followed by a
debriefing. The questionnaire is based on Nielsen’s usability attributes [17] and covers the
different views of ReMinds. We phrased the attributes as questions, e.g., “how easy was it
to learn working with the visualizations”? and “were the visualizations pleasant to use”?.
The templates we used for writing think-aloud and observer protocols, the usability ques-

tionnaire, as well as the interview questions can be downloaded from https://tinyurl.com/

REMINDSVisStudy

6.3.3 Data Analysis and Reporting

Three researchers carefully transcribed the think-aloud protocols and observer notes using
an open coding technique [11] and related all statements to the visualization capabilities
(cf. Section 3). A total of 122 think-aloud statements (14 per subject on average) and 180

39

https://tinyurl.com/REMINDSVisStudy
https://tinyurl.com/REMINDSVisStudy

6 Evaluation 6.4 Results

observations were recorded by the scribes. We cannot reveal all of them here, but focus on
the derived findings instead. We quote several think-aloud statements as well as observations
throughout the next section. Table 6.4 depicts three examples of such think-aloud statements.

Table 6.4: Examples for think-aloud statements.
Task Think Aloud Protocol

Details about the Violations The Event Trending should show only full integers on y-
axis.

Violation Trends and Interval It should not be possible to zoom the x-axis.
Violation Trends and Interval Zooming would be great for Status/Interval too.

The coding technique [11] allowed us to relate many think-aloud statements with the cogni-
tive dimensions as discussed in Section 6.2. We discussed the interpretation of all think-aloud
statements and observer notes as well as the answers given by study subjects in the interviews
to derive implications on usability and utility (Section 6.4) and also general implications (Sec-
tion 7). As we related interview questions regarding usability with activities and cognitive
dimensions, we can discuss the subjects’ answers in the light of the CD framework [19].

6.4 Results

In this Section we discuss the results of our study regarding the usability and utility of the
ReMinds visualizations.

6.4.1 Usability

Table 6.5 depicts the results of the usability questionnaire following Nielsen’s [17] attributes
of usability we handed out to our nine subjects. In our discussion the subject keys S1-S4
refer to the researchers, while S5-S9 refer to the practitioners. We do not report results
about memorability here as users were all novices in using the visualizations and were only
available for a single session. Most subjects found the tool easy to learn. Most found the
system overview and status visualizations as very easy to learn and the violation trends and
event-based visualizations as easy to learn. Only three subjects (S1, S2, S6) gave negative
ratings regarding learnability of these visualizations. Regarding efficiency, all subjects found
that once learned, they could efficiently use our tool. While some errors occurred in the study,
only one subject (S5) found that too many errors occurred. Unfortunately, an unexpected
crash occurred during the session with this subject. Regarding subjective satisfaction, most
subjects liked our tool, only two negative comments (by S1 and S5) were made on the violation

40

6 Evaluation 6.4 Results

Table 6.5: Results of the usability questionnaires. We used a four-point scale (-2, -1, 1, 2),
cf. the online material.

Nielsen’s Attributes [17] S1 S2 S3 S4 S5 S6 S7 S8 S9 Avg
Learnability
(very easy (2), easy (1), hard (-1), very hard (-2)) 1 1 2 2 1 1 2 1 1 1

· System Overview/Status 2 2 2 2 2 2 2 1 1 2
· Violation Trends/Interval -1 1 2 2 1 -1 2 1 1 1
· Event Trends/Flow 1 -1 2 1 1 1 1 1 1 1
Efficiency
(very eff. (2), eff. (1), ineff. (-1), very ineff. (-2)) 2 2 2 2 1 1 1 2 2 2

Accuracy
(too many (-2), many (-1), some (1), no errors (2)) 2 1 2 2 -2 1 2 1 1 1

· System Overview/Status 2 2 1 2 1 2 2 1 2 2
· Violation Trends/Interval 1 -1 2 2 -2 1 2 1 1 1
· Event Trends/Flow 2 2 2 1 -2 1 1 1 1 1
Subject Satisfaction
(very good (2), good (1), bad (-1), very bad (-2)) 1 2 2 2 1 1 2 1 2 2

· System Overview/Status 2 2 2 2 1 2 1 1 2 2
· Violation Trends/Interval 1 2 2 2 -1 1 2 1 2 2
· Event Trends/Flow -1 1 2 1 1 1 2 1 1 1

trends and on the event-related views.
The think-aloud statements and the observations as well as the answers to the interview

questions allow us to discuss the usability of the ReMinds visualizations in detail. We first
discuss some general comments (cf Table 6.6) and then analyze results for each of the four
visualization capabilities in detail. We conclude by discussing cross-cutting results regarding
multiple capabilities or visualizations (mostly resulting from the interview). Tables 6.7-6.15
summarize the results regarding usability for each capabilities and list examples of think-
aloud statements and observations.

Table 6.6: Examples for general comments.

General comment S3: “Progress bars should be shown when diagrams are built
after start”

General comment S1:

“Notifications (e.g., similar to Microsoft Windows noti-
fications) could be helpful for users to understand key
changes/settings they make (and to explain consequences),
e.g., selected time to focus on, applied search/filter, etc.”

6.4.1.1 Check System Status

Our general observation is that the subjects had no problems to complete this task, i.e., the
System Status and the Constraint Status views allowed them to easily spot violating con-
straints together with the frequency and severity of the violations. S5, however, commented
that “for a high number of constraints, it could lead to problems that all constraints are

41

6 Evaluation 6.4 Results

Table 6.7: Check System Status results.
System Overview, Constraint Status
Abstraction +
Hidden Dependencies +
Diffuseness +

shown all the time” and that the legend of the pie charts is missing some details, e.g., the
number of consistent constraint checks. S2 wondered about the order of constraint-related
views, i.e., whether the trending visualizations (one per constraint) are sorted by constraint
name. In fact they are, and they can also be filtered dynamically using a text box just above
the visualizations. Overall, we can, however, conclude that apart from minor issues, abstrac-
tion, hidden dependencies, and diffuseness are well supported in ReMinds when it comes to
checking the system status.

Table 6.8: Examples for observations and think-aloud statements.

Observation on S7 Subject could easily find out what constraints violated how
often and with what severity

General comment S1:

“Notifications (e.g., similar to Microsoft Windows noti-
fications) could be helpful for users to understand key
changes/settings they make (and to explain consequences),
e.g., selected time to focus on, applied search/filter, etc.”

Think aloud comment of S5 “It could lead to problems that all constraints are shown
all the time for a high number of constraints”

Observation on S2 User wondered about order of constraints (why not sorted
by name)

6.4.1.2 Analyze Trends and Statistics

Table 6.9: Analyze Trends and Statistics results.
Trending area charts; Status/Interval diagrams; Statistics view
Hidden Dependencies +/-
Secondary Notation -
Viscosity +/-
Consistency +/-

Think-aloud comments and observations confirm that subjects found the trending visu-
alizations, as S9 put it, “useful for easily finding and selecting the time period with most

42

6 Evaluation 6.4 Results

violations”. Regarding hidden dependencies we received a comment by S5 that there should
be a warning if the selected time interval does not contain any data. Also regarding hidden
dependencies, but also viscosity, we observed that multiple subjects wondered if setting a
time to focus on has effects on all views. S3 even wondered whether setting a time interval
has effects on the shown scopes in the system overview (it does not) and should not as this
view does not depend on the selected time).

Table 6.10: Examples for observations and think-aloud statements.
Observation on S7 Subject could easily select a time interval to focus on

Observation on S7
like many other subjects, this subject, when asked to se-
lect an “interesting” time period, immediately selected the
biggest spike in the diagram

Observation on S8 Subject is confused by two types of diagrams in one (the
status/interval violation diagram)

Think aloud comment by S5
and S7 “Trending, it should not be possible to zoom x-axis”

Observation on S5
Subject prefers to set an interval to focus on by using a
settings dialog than the graphical (draw a rectangle with
the mouse) option

Observation on S4 User wonders if setting a time to focus on has effects on all
views

Think aloud comment by S3 “setting a time interval does not have effects on the shown
scopes in the system overview . . . should it?”

As we knew this was a critical capability, to further investigate the usability of the time
interval definition features, we also asked a question during the follow-up interview to get
feedback on the feature for defining time intervals.
How did you like the capabilities to define time intervals to focus on and did you experience

any problems with that (viscosity)?
Three subjects (S3, S7, S9) said they did not experience any problems and four subjects

(S2, S3, S4, S8) said they liked the features. S2 and S8, however, also commented that it was
not clearly visible to them at first what time they had selected. Three subjects (S4, S5, S6)
found the feature “a bit buggy”. Our observations reveal that selecting a time period in the
trending area chart sometimes can indeed lead to bugs, if users move the mouse outside the
area chart too fast. Two subjects (S1 and S8) also commented that views should be better
linked, i.e., it should be made explicit what views are affected based on the time definition.
We now added a specific icon to all views to indicate that. Overall, we think selecting a time
interval works nice now, but only after several rounds of improvements and bugfixes.

43

6 Evaluation 6.4 Results

In addition to the time-setting feature, S8 was confused by the two different types of
diagrams (trending area chart vs. status/interval diagram) visualizing similar information
in different ways (cf. cognitive dimension secondary notation). Our observations confirm
the confusion. A key observation we made with multiple subjects was that the violation
status/interval view was perceived as overwhelming, in particular as two visualizations are
shown at the same time in one diagram (interval and trend). We thus conclude that ReMinds
should be improved with regard to secondary notations.
Regarding consistency, while most subjects identified issues that regard all views (cf. below

under cross-cutting results), the subjects S5 and S7 specifically commented on a consistency
issue of the violation trends: they would have expected a feature to select a time period
to focus on to work similar to other diagrams in other tools they knew, i.e., to not only
allow selecting a time period (by drawing a rectangle from top-left to bottom-right) but
to allow resetting the selected time interval by selecting a rectangle from bottom-right to
top-left, similar to other tools they knew. S3 and S8 also expected that the selected time
window could be “moved” as a whole to change both start and end time of the interval
simultaneously back and forth in time, as they knew this behavior from other diagrams. In
most cases, however, subjects found the trending views are similar to time(interval)-based
views they already knew. We thus conclude consistency is acceptable but could be improved.

6.4.1.3 Analyze Events and Timing Behavior

Table 6.11: Analyze Events and Timing Behavior results.
Event Trending; Event State chart
Viscosity +
Diffuseness -
Consistency -
Abstraction +/-

When observing subjects, we noticed that they liked the feature allowing them to step
through the events in the state chart view until reaching the first violation (in this interval).
However, the subjects S2 and S4 also commented that it would make sense to show the current
time (when stepping through events) in the violation trending views to show the progress in
stepping through the events. S5 also would have wished support to go to the first violation.
This is related with cognitive dimension viscosity.
A key observation we made with multiple subjects was that the event trending view was not

self-explanatory and overwhelming for users at first (cognitive dimension diffuseness). Also,

44

6 Evaluation 6.4 Results

and this regards cognitive dimension consistency, users found the colors of events confusing at
first because of their similarity to the colors used to represent constraint check results. Also,
regarding abstraction, it was not clear to three subjects (S3, S5 and S9) in the event-related
views, “which events belong to a specific violation”. In this context, three subjects (S2, S5,
and S7) also suggested a filter based on concrete violations and severity (only show events
related with a certain violation or violation type) to facilitate the highlighting of the violated
nodes. S4 also commented that both, the current number of events focused on (through
the selected time interval) as well as the total number of events (that could be displayed)
should be shown in the event-related views, so that a user knows that “there are more events
available”.

Table 6.12: Examples for observations and think-aloud statements.
Think aloud comment by S5
and S9

“In the event interval it is not clear which events belong to
a specific violation”

Think aloud comment by S5 “Violations list, filter for severity would be great”
Think aloud comment by S5 “ live tracking should be deactivated when interval is set”
Think aloud comment by S5 State Chart: violated nodes should be highlighted better

Observation on S5
Subject prefers to set an interval to focus on by using a
settings dialog than the graphical (draw a rectangle with
the mouse) option

Observation on S3 Make it more obvious which events should be checked for
a certain violation

Think aloud comment by S2 Violations should also be shown in live tracking [added af-
ter in-lab study]

6.4.1.4 Analyze Violation Details

Table 6.13: Analyze Violation Details results.
Violation details dialog
Hidden dependencies +/-
Abstraction +
Consistency -
Diffuseness -

The violation details dialog overall was perceived as usable by all subjects and we received
positive comments such as “a data mismatch is easy to discover due to highlighting of dif-
ferences in value comparisons” (S5 and S7) and “it is clear that a time-out was the reason

45

6 Evaluation 6.4 Results

for this violation” (abstraction). One subject (S1) even commented that the information
provided in the violation dialog would be enough for him/her to diagnose most violations,
without also having to check the other visualizations (no hidden dependencies perceived by
this subject).
Six subjects, however, also experienced some issues: both S6 and S8 found it hard to

find the “missing events” in the displayed sequence of events, due to the long list of quite
long event names. This regards diffuseness. Both S7 and S8 had difficulties parsing the
error message due to too much text, again related with diffuseness. Subject S3 would have
liked to also see the full definition of the constraint in the violation details dialog to better
understand the violation (hidden dependencies). The subjects S2, S3, and S4 missed details
in the description of the violations, which is not surprising, as these were subjects not familiar
with the study system QCS.

Table 6.14: Examples for observations and think-aloud statements.
Think aloud comment by S5
and S7

“Data mismatch is easy to discover due to highlighting of
differences in value comparison”

Observation on S7 Subject could easily diagnose both constraints and per-
fectly understood the violation reason

Observation on S8 Subject has a hard time finding the “missing events” in
checked sequence of events in the violation dialog

Observation on S7 and S8 Subject has difficulties parsing the error message in the
violation dialog (too much text)

Observation on S6 Violation Details Dialog, missing event should be indicated
in sequence of events, subject would be much faster

Think aloud comment by S2 “Violation View: Time since last violation would be very
interesting information (currently missing)”

6.4.1.5 Cross-Cutting Results

Table 6.15: Cross-cutting results.
Cross-Cutting Results

Visibility +
Premature commitment +
Hidden dependencies +/-
Abstraction +
Consistency +/-
Diffuseness -

46

6 Evaluation 6.4 Results

Regarding cognitive dimension visibility, we asked users during the interview: Did you
use multiple visualizations at the same time or did you rather use them one after the other?
The subjects’ answers as well as observations showed an unclear picture on this issue: Five
subjects (S2, S3, S4, S5, and S9) prefer parallel/side-by-side visualizations and want to be
able to compare information presented in different views (e.g., violation-related trends and
event-related timing behavior). Four subjects said they rather prefer to view one visualization
at a time and switch back and forth. We thus developed the possibility to detach views from
the main GUI (as dialogs), this allows to view all at the same time and also the possibility
to close different types of views, which allows to view one visualization at a time.
Regarding visibility we also asked Did you find the visualizations you needed [to complete

your tasks] easily? Six subjects (S2-S6 and S9) commented they could find everything easily
and S1 even commented that s/he “found the icons/buttons [representing views and allowing
to navigate between views] useful”. Subject S8 would have preferred a different grouping of
views, i.e., all views affected by time interval changes should be in one, visually separated
group. S7 commented “this is a complex tool and some learning will always be required for
such tools, but after minimal learning, I think one can easily use this tool.” Overall, we thus
concluded that the dimension visibility is well supported.
Regarding the cognitive dimension premature commitment, we asked users how they like

the feature to change the time interval.
Did you modify any settings? If yes, how did you like this feature? If no, why not?.
All subjects defined one or multiple time intervals to focus on (not surprisingly as this was

required as part of task 2). While all subjects liked the feature, four subjects had issues as
also described above under viscosity with the effects of selecting a time interval. After they
understood these effects, our observation was that all subjects liked this feature, especially
as the time interval can be reset at any time.
Regarding hidden dependencies, we also asked subjects if they were aware of the currently

selected time period. Three subjects (S1, S5, S7) commented that this was not clear to
them and that it should be made explicit, e.g., by showing better highlighting which views
are filtered (which we now do with an explicit icon). Three subjects (S3, S8, S9) said they
were aware, but our observations reveal they were also briefly uncertain before they found
the information in the status bar. Two subjects (S2 and S6) commented that the status bar
showing the selected time interval should be visually closer to the filtered views. We changed
the layout of the tool to achieve that. We conclude that, after our improvements, hidden
dependencies should not be a big issue anymore.
Regarding abstraction we asked about problems with the used terminology, i.e., naming

of displayed content and/or icons used?. Subject S9 commented that s/he found legends of

47

6 Evaluation 6.4 Results

diagrams confusing due to the use of abbreviations (e.g., E for Error, W for Warning). S8
commented that some buttons have icons, while others have not, which s/he found confusing.
S7 on the other hand explicitly said s/he liked these icons. Six subjects (S1, S2, S4-S7)
said they found the used abstractions were clear and natural. S5 even commented “the
terminology is natural, especially for someone with computer science background”. We thus
rate abstraction as very positive for ReMinds.

When asking users if they experienced any inconsistencies three subjects (S6, S7, S9) said
that they found the visualization features consistent. S8 commented that there are some
rounding errors in diagrams and that especially the axes should be labeled consistently. The
subjects S1, S3 and S4 all found the similarity of event colors in the event trending vs. the
violation colors in all views confusing (as we had expected, cf. CD assessment). S3 also
commented on different font sizes used in different views. S1 and S2 found that “clicks
do not always lead to the same result in different views” (e.g., left click selects/highlights,
double-click opens dialog, right-click displays context menu with other options)”. We now
fixed these issues. We conclude that consistency was good, but not ideal.
Regarding diffuseness, we asked users if they perceived any items or views as unnecessary

or unnecessarily complex. S1, S8 and S9 found the event trending view too colorful and
presenting too much information (events in multiple intervals, all related violations and data
elements). S1 found the amount of information presented in all views hard to understand
at first. S4 generally did not like the interval-based views as she found the other views
sufficient to complete his/her tasks. Five subjects (S2, S3, S5, S6, S7) said they did not find
the views unnecessarily complex, but two of them also suggested simplifications do better
deal with many/events violations: S3 suggested to provide more filtering capabilities, e.g.,
filtering all views based on severity or event type, and S6 suggested to remove unnecessary
information. The latter needs to be done very carefully, to not also negatively affect other
cognitive dimensions such as abstraction and hidden dependencies.
At the end of the interview, we also asked subjects what they liked or disliked about the

tool. In their responses subjects liked the overall intuitive GUI, the system overview, the
violation trending, the event state chart, the feature allowing to step through events until
reaching violations, and the violation dialog. S6 commented that “complexity results from
the need to understand quite complex constraints/system behavior [...] and ReMinds helps
a lot with that”. Four subjects (S1, S5, S6, S7) did not like the interval-based visualizations,
especially the event trending view, as they found them hard to understand at first and thought
the other visualizations would be sufficient to complete the tasks. These visualizations indeed
only make real sense when a large number of events and violations needs to be diagnosed
over a longer period of time. Other than that, subjects commented that there were some

48

6 Evaluation 6.4 Results

bugs and inconsistencies but nothing really bad.
Overall 100 minor usability issues (mostly improvements but also some bugs) resulted

from comments by participants of the study. For example, several subjects commented on
missing tooltips, legends and axis labels in diagrams. Addressing such issues contributes a
lot to improving a tool’s usability.

6.4.2 Utility

Regarding the utility of ReMinds’s visualizations, we first asked subjects whether they
liked the workflow of using visualizations we envisioned, i.e., check status first, then trends
and statistics, then event details and timing, and finally violation details. Specifically, we
asked them whether they found that order natural in the user study or whether they would
prefer any other order. Six subjects found the order natural, e.g., S6 commented: “Yes, I
think starting with the constraints (their violations), then selecting the time interval most
interesting, and then looking at event details is a very natural way for finding out how the
monitored system behaves”. However, three of these six subjects and also three other subjects
commented that the arrangement of visualizations in the GUI did not naturally support this
envisioned order or at least confused them at first. Specifically, while the user first is presented
with the system overview on the left and the status and trending visualizations (regarding all
systems) on the right, selecting a particular system with a violation opens a set of system-
related views (with event details) directly to the right of the system overview (and thus left
of the status and trending views). Re-arranging the views in the GUI (cf. Fig. 4.1; status
regarding all systems left and event details regarding only the currently selected system
right) – helps users to follow the envisioned order, while they still are free to switch to any
visualization at any time. As commented by S9: “It’s good that the user has the freedom to
choose, but that a certain order can be followed too.”
We also asked users whether they missed a specific tool feature and whether they had

any other comments. Six subjects provided us with feedback. For instance, S7 commented
that the violation trends and the event state chart should be more closely related, i.e., when
stepping through events in the event state chart, the violation trending area diagram should
display the current position in time in parallel. In general, better linking multiple visualization
is a very important improvement we learned from the study. S5 commented that s/he would
want to (visually) compare multiple data items attached to (multiple) events and would
expect more capabilities to filter visualizations based on, e.g., violation types and severity
levels. S3 found that it would make sense to highlight affected systems (in the system
overview), when focusing on particular constraints/their violations. S2 suggested the event

49

6 Evaluation 6.4 Results

state chart to explicitly show constraint violations as elements, instead of (or in addition to)
just highlighting events that caused violations. Other comments were rather minor and, e.g.,
regarded the need to display the “time since last violation” somewhere.

To further assess utility, we asked the subjects from Primetals Technologies what are the
opportunities and risks of using ReMinds in daily business.

Opportunities

• Could be very useful for commissioning and for acceptance tests (3 subjects).

• Faster identification of issues than without the tool, i.e., visualizations point the user
to the right time/location.

• We could use the tool to analyze view model behavior in our human-machine interface.

• For large, distributed, systems of systems the tool provides a very good overview of
what is happening/has happened.

Risks

• Tool not used due to too much maintenance or configuration effort (4 subjects).

• Engineers don’t see “their” concrete benefit, e.g., if not finding violations quicker with
than without the tool.

• If there are too many violations (visualized), at some point people start ignoring
them/no longer diagnose them.

• The GUI might be overwhelming (too much information visualized) for some engineers.

6.4.3 Summary and Threats to Validity

Figure 6.1 shows improvements and bugs found during the three phases of the study (walk-
through, In-Lab-Study and Primetals-Study). Overall we discovered 37 minor, 30 medium
and 16 major improvements and 5 minor bugs, 11 medium and 2 major. We define an
improvement as a change to the user interface that changes the way users can interact with
it in some way and a bug as a change to the user interface that corrects an error, flaw, failure
or fault that causes the interface to produce an incorrect or unexpected result. Table 6.16
shows examples for small and major bugs and improvements.

We conclude that the usability and utility of the ReMinds visualizations are very good.
All subjects liked the tool and could complete their tasks in a rather short time, especially

50

6 Evaluation 6.4 Results

Table 6.16: Examples for major/small bugs/improvements.
Type Example
Bug, small The dialog to display event data has two scrollbars.
Bug, major Using drag and drop to select a time interval lead to an error.
Improvement, small List of constraints shall be sorted by name.

Improvement, major It should be possible to switch between percent and absolute values
in the Violation Trending view.

Figure 6.1: Improvements and Bugs found during the Study.

considering that they did not use the visualizations before. While one could claim this is
due to the simplicity of tasks, the constraints we selected for subjects to diagnose are real
constraints from a real automation system currently running in a plant in China. Subjects’
comments have and will help us to further improve our tool. Particularly the opportunities
and risks will help us to focus further developments and motivate further research into the
automation of certain user tasks and the simplification of the overall GUI.

A threat to construct validity is the potential bias caused by the system we selected for the
study. We selected the QCS as it allows working with all visualization capabilities described
and is easy to explain. Also, all industry subjects have at least heard of it and know what it
does. A further threat is that our study assumes the QCS probes to be correct and providing
the correct events, a fact that has been confirmed by industry experts, but is hard to verify.
There are also threats to internal validity, i.e., the results might have been influenced

by our treatment. Subjects were selected together with our industry partner and based on

51

6 Evaluation 6.4 Results

their availability. However, this was done based on criteria such as domain experience and
their participation in earlier studies, which provided the context for this work. Also, the
number of subjects may seem relatively small. However, subjects have a lot of experience in
the development and testing of (automation) software systems (average experience of over six
years) and are well qualified for the study. While additional experienced industry participants
may have added further value and insights to the study, we feel that the results we discovered
nicely converged and there were many common insights.

Regarding conclusion validity, there is a threat that the results are based on qualitative
data [11]. However, given that an aim of the study was to study the behavior and opinions
of users of a tool, qualitative research methods are well suited. The analysis of the collected
data still depends on our interpretation. The work was performed by three researchers and
all results were also checked by another senior researcher.
With respect to external validity, we selected a system representative for the automation

software domain and asked experienced industry people as well as researchers to be part
of the study. Although the derived implications depend on our experiences of using and
implementing ReMinds, the capabilities are common in other monitoring tools, as discussed
in Section 3.2. The mapping to the CD framework also relates our results to HCI knowledge.

52

7 Discussion

7 Discussion

Besides important, yet not very surprising findings such as that the consistent use of colors
is essential and too similar colors should not be used for different views/things, we discuss
implications for researchers and practitioners designing software monitoring tools.
Support both guidance and freedom in navigation. While some users preferred step-

by-step guidance through the different views, others wanted to choose freely when switching
between different visualizations. We conclude that it is essential, especially when offering
multiple visualizations, to offer both a certain order guiding users, but still allow them to
freely choose among available views. Detailed guidance can support a “drill-down” approach
to diagnose violations by starting with a high-level system overview, then focusing on one
system in a certain time interval, to finally analyze event and violation details. At the same
time, depending on the monitoring task, it may be preferable to freely choose among the
available views. This finding is rooted in the cognitive dimensions premature commitment and
hidden dependencies and confirms results presented in an earlier study regarding “branching
and navigation” vs. “freedom in navigation” and is related with.
Allow combinations of multiple interrelated views. Interestingly, some users pre-

ferred to see and compare multiple visualization at the same time, while others only selected
a single visualization for the task. This calls for support to detach and/or close views. How-
ever, when using multiple visualizations concurrently it becomes particularly important to
keep them consistent with each other. For instance, users liked the feature allowing them
to step through the events to understand system behavior and to diagnose violations in a
certain period. However, due to the potentially high number of events, this feature relies on
the feature to set a certain time interval. When multiple views are involved it is important
to consider the cognitive dimension viscosity, i.e., to make the effects of a setting on different
views explicit, e.g., highlighting which views are filtered based on time.
Several subjects in our study commented that views should be better linked, e.g., the

current position when stepping though events should in parallel be shown in the violation
trending visualization (with both views being based on the same time scale). Especially when
supporting multiple views in parallel, explicitly linking multiple visualizations is essential to
guide users, especially when diagnosing a monitored system by stepping back and forth in

53

7 Discussion

time. This mainly regards cognitive dimension hidden dependencies.
This is also related with cognitive dimension diffuseness. Talking of this feature – setting

a time interval – all subjects liked this feature, especially as the selected time interval can be
reset at any time.
Ease finding unusual behavior. We found that users typically tried to find and select

violation peaks to reveal unusual behavior, e.g., based on the trending visualizations. A low-
hanging fruit is to support users by detecting such peaks automatically and point them to
the most relevant time periods.
Keep visualizations comprehensible. A key observation we also made with multiple

subjects – independent of their experience – was that visualizations can easily become over-
whelming (cf. cognitive dimensions diffuseness and abstraction). Particularly, the violation
status/interval and the event trending views – especially the fact that there are 2 visualiza-
tions shown at the same time in one diagram (two y-axes, interval and trend) – were hard
to grasp for several users. This suggests an incremental visualization approach showing first
only the visualizations essential for understand system behavior and adding more complex
visualizations only if requested. This, however, needs to be done carefully, to avoid possible
negative effects on the dimensions abstraction and hidden dependencies. Complex visualiza-
tions can be made more comprehensible by providing searching and filtering capabilities.
Provide explanations of behavior. Analyzing system behavior can be very challeng-

ing, depending on the complexity of the checked constraints and the detected violations.
Visualizations support users in understanding system behavior. However, the success of a
monitoring tool depends also on providing proper explanations of each detected violation in
a textual form (cf. our violation details dialog). Such explanations must be brief and clearly
describe what happened. Features such as highlighting of differences and explicit listing of
missing information (events) can really help users, as the subjects in our study confirmed.
This is again related with both diffuseness and abstraction.
Automate initial set-up and maintenance. Regarding the utility of a tool like Re-

Minds, it is essential to keep the effort for the initial set-up as well as frequently required
maintenance as low as possible. This can be achieved, for instance, by automating the def-
inition and maintenance of constraints, e.g., using mining approaches such as specification
mining [38] or process mining [39]. Especially for large, distributed, systems of systems a
tool like ReMinds can provide a very good overview of what is currently happening/has
happened.

54

8 Conclusion

8 Conclusion

In the first part of this thesis we presented different visualizations we developed based on
an industrial scenario and integrated into the ReMinds requirements monitoring tool for
systems of systems. Specifically, different views in the tool depict the system status, detected
requirements violations, violation trends and statistics, and the events leading to violations.
ReMinds is currently used by our industry partner Primetals Technologies to capture and
analyze events and data from particular systems in their plant automation SoS at runtime.
As a second part we evaluated the usefulness of our visualizations in detail, e. g., by perform-

ing a user study with our industry partner and some researchers. Specifically, we presented
the results of assessing the usefulness of visualization capabilities for requirements monitor-
ing as implemented in our own tool ReMinds using the cognitive dimensions of notations
framework and the user study involving researchers and industrial practitioners. We used
the results of the assessment and the user study to discuss both specific implications for
ReMinds as well as general implications for researchers and practitioners working in the
area of software monitoring. Explaining monitored system behavior is hard, but (the right)
visualizations can really help. In our future work we plan to further improve our tool, espe-
cially lower the effort for initial set-up and maintenance, and conduct experiments with other
systems and users.

55

List of Figures List of Figures

List of Figures

2.1 Runtime Monitoring Meta-Model. 6
2.2 ReMinds Framework Architecture [5]. 7
2.3 Event-flow and Constraint Types of the ReMinds DSL [6]. 8
2.4 ReMinds tool architecture [10]. 9
2.5 Previous version of the ReMinds tool. 10

3.1 Monitoring a plant automation system of systems: drill-down scenario. 16

4.1 Visualization Capabilities extended to the ReMinds Framework. 19
4.2 System Status Overview. 20
4.3 Trending and Statistics Views. 21
4.4 Live Event/Violation Views. 22
4.5 Violation Dialogs. 25

5.1 Eclipse RCP architecture [32]. 27
5.2 Sequence Diagram of the Visualization Plugin. 30

6.1 Improvements and Bugs found during the Study. 51

56

List of Tables List of Tables

List of Tables

3.1 Mockup-Probe 1. 15
3.2 Mockup-Probe 2. 15

6.1 Cognitive Dimensions of Notation [19]. 32
6.2 Results of the initial cognitive dimensions assessment. For each visualization

capability and corresponding tool views, multiple cognitive dimensions were ei-
ther considered as to be studied in more detail during the user study (STUDY)
or show stopper fixed (FIX) before the user study. 36

6.3 Some information on our nine subjects. 38
6.4 Examples for think-aloud statements. 40
6.5 Results of the usability questionnaires. We used a four-point scale (-2, -1, 1,

2), cf. the online material. 41
6.6 Examples for general comments. 41
6.7 Check System Status results. 42
6.8 Examples for observations and think-aloud statements. 42
6.9 Analyze Trends and Statistics results. 42
6.10 Examples for observations and think-aloud statements. 43
6.11 Analyze Events and Timing Behavior results. 44
6.12 Examples for observations and think-aloud statements. 45
6.13 Analyze Violation Details results. 45
6.14 Examples for observations and think-aloud statements. 46
6.15 Cross-cutting results. 46
6.16 Examples for major/small bugs/improvements. 51

57

Bibliography

Bibliography

[1] W. Robinson, “A requirements monitoring framework for enterprise systems”, Require-
ments Engineering, vol. 11, no. 1, pp. 17–41, 2006.

[2] N. Delgado, A. Q. Gates, and S. Roach, “A taxonomy and catalog of runtime software-
fault monitoring tools”, IEEE Transactions on software Engineering, vol. 30, no. 12,
pp. 859–872, 2004.

[3] R. Rabiser, S. Guinea, M. Vierhauser, L. Baresi, and P. Grünbacher, “A Comparison
Framework for Runtime Monitoring Approaches”, Journal of Systems and Software,
vol. 125, pp. 309–321, 2017.

[4] M. Vierhauser, R. Rabiser, and Grünbacher, “Requirements Monitoring Frameworks: A
Systematic Review”, Information and Software Technology, vol. 80, pp. 89–109, 2016.

[5] M. Vierhauser, R. Rabiser, P. Grünbacher, K. Seyerlehner, S. Wallner, and H. Zeisel,
“ReMinds: A Flexible Runtime Monitoring Framework for Systems of Systems”, Journal
of Systems and Software, vol. 112, pp. 123–136, 2016.

[6] M. Vierhauser, R. Rabiser, Grünbacher, and A. Egyed, “Developing a DSL-Based Ap-
proach for Event-Based Monitoring of Systems of Systems: Experiences and Lessons
Learned”, in 30th IEEE/ACM Int’l Conf. on Automated Software Engineering, IEEE,
2015, pp. 715–725.

[7] R. Rabiser, M. Vierhauser, and P. Grünbacher, “Assessing the Usefulness of a Require-
ments Monitoring Tool: A Study Involving Industrial Software Engineers”, in 38th Int’l
Conf. on Software Engineering, ICSE Companion, ACM, 2016, pp. 122–131.

[8] M. Vierhauser, R. Rabiser, and J. Cleland-Huang, “From Requirements Monitoring to
Diagnosis Support in System of Systems”, in 23rd Int’l Working Conf. on Requirements
Engineering: Foundation for Software Quality, Springer, 2017, pp. 181–187.

[9] L. M. Kritzinger, T. Krismayer, M. Vierhauser, R. Rabiser, and P. Grünbacher, “Visual-
ization Support for Requirements Monitoring in Systems of Systems, BookTitle = 32th
IEEE/ACM Int’l Conf. on Automated Software Engineering”, IEEE, 2017, pp. 889–894.

58

Bibliography

[10] M. Vierhauser, R. Rabiser, Grünbacher, and J. Thanhofer-Pilisch, “The REMINDS
Tool Suite for Runtime Monitoring of Systems of Systems”, in 30th IEEE/ACM Int’l
Conf. on Automated Software Engineering, IEEE, 2015, pp. 777–781.

[11] C. B. Seaman, “Qualitative Methods in Empirical Studies of Software Engineering”,
IEEE Transactions on Software Engineering, vol. 25, no. 4, pp. 557–572, 1999.

[12] B. Wassermann andW. Emmerich, “Monere: Monitoring of service compositions for fail-
ure diagnosis”, in Int’l Conf. on Service-Oriented Computing, Springer, 2011, pp. 344–
358.

[13] R. L. Cobleigh, G. S. Avrunin, and L. A. Clarke, “User guidance for creating precise and
accessible property specifications”, in 14th ACM SIGSOFT Int’l Symp. on Foundations
of Software Engineering, ACM, 2006, pp. 208–218.

[14] F. Fittkau, A. Krause, and W. Hasselbring, “Software landscape and application visu-
alization for system comprehension with ExplorViz”, Information and Software Tech-
nology, vol. 87, pp. 259–277, 2017.

[15] A. Abran, A. Khelifi, W. Suryn, and A. Seffah, “Usability Meanings and Interpretations
in ISO Standards”, Software Quality Journal, vol. 11, no. 4, pp. 325–338, 2003.

[16] “ISO/IEC 9126. Software engineering – Product quality”, Tech. Rep., 2001.

[17] J. Nielsen, Usability Engineering. Morgan Kaufmann, 1994.

[18] A. Holzinger, “Usability engineering methods for software developers”, Communications
of the ACM, vol. 48, no. 1, pp. 71–74, 2005.

[19] A. Blackwell and T. Green, “Notational Systems – the Cognitive Dimensions of No-
tations framework”, in HCI Models, Theories, and Frameworks: Toward a Multidisci-
plinary Science, J. Carroll, Ed., San Francisco: Morgan Kaufmann, 2003, pp. 103–134.

[20] M. Vierhauser, R. Rabiser, P. Grünbacher, and B. Aumayr, “A Requirements Moni-
toring Model for Systems of Systems”, in 23rd IEEE Int’l Requirements Engineering
Conf., IEEE, 2015, pp. 96–105.

[21] R. Rabiser, M. Vierhauser, and P. Grünbacher, “Variability Management for a Runtime
Monitoring Infrastructure”, in 9th International Workshop on Variability Modelling of
Software-intensive Systems (VaMoS 2015), Hildesheim, Germany: ACM, 2015, pp. 35–
42.

[22] AspectJ, https://www.eclipse.org/aspectj, Accessed: 2018-07-31.

59

https://www.eclipse.org/aspectj

Bibliography

[23] R. Rabiser, J. Thanhofer-Pilisch, M. Vierhauser, P. Grünbacher, and A. Egyed, “De-
veloping and Evolving a DSL-Based Approach for Runtime Monitoring of Systems of
Systems”, Automated Software Engineering, 2018. doi: 10.1007/s10515-018-0241-x.

[24] XText, http://www.eclipse.org/Xtext, Accessed: 2018-07-31.

[25] L. Baresi and S. Guinea, “Event-based multi-level service monitoring”, in IEEE 20th
Int’l Conf. on Web Services, IEEE, 2013, pp. 83–90.

[26] J. Simmonds, S. Ben-David, and M. Chechik, “Monitoring and recovery for web service
applications”, Computing, vol. 95, no. 3, pp. 223–267, 2013.

[27] A. Mos, C. Pedrinaci, G. A. Rey, J. M. Gomez, D. Liu, G. Vaudaux-Ruth, and S.
Quaireau, “Multi-level monitoring and analysis of web-scale service based applications”,
in Service-Oriented Computing. ICSOC/ServiceWave 2009 Workshops, Springer, 2010,
pp. 269–282.

[28] A. Dragomir and H. Lichter, “Run-time monitoring and real-time visualization of soft-
ware architectures”, in 20th Asia-Pacific Software Engineering Conf., IEEE, 2013,
pp. 396–403.

[29] H. Muccini, A. Polini, F. Ricci, and A. Bertolino, “Monitoring architectural properties
in dynamic component-based systems”, in Int’l Symp. on Component-Based Software
Engineering, Springer, 2007, pp. 124–139.

[30] A. van Hoorn, J. Waller, and W. Hasselbring, “Kieker: A Framework for Application
Performance Monitoring and Dynamic Software Analysis”, in 3rd joint ACM/SPEC
Int’l Conf. on Performance Engineering, ACM, 2012, pp. 247–248.

[31] Dynatrace, http://www.dynatrace.com, Accessed: 2018-07-31.

[32] Eclipse RCP (Rich Client Plattform), http://www.vogella.com/tutorials/EclipseRCP/

article.html, Accessed: 2018-08-20.

[33] Eclipse Zest, http://www.vogella.com/tutorials/EclipseZest/article.html,
Accessed: 2018-08-20.

[34] JFreeChart, http : / / www . vogella . com / tutorials / JFreeChart / article . html,
Accessed: 2018-08-20.

[35] P. Runeson and M. Höst, “Guidelines for conducting and reporting case study research
in software engineering”, Empirical Software Engineering, vol. 14, no. 2, pp. 131–164,
2009.

[36] F. D. Davis, “Perceived usefulness, perceived ease of use and user acceptance of infor-
mation technology”, MIS Quarterly, vol. 13, pp. 319–340, 1989.

60

https://doi.org/10.1007/s10515-018-0241-x
http://www.eclipse.org/Xtext
http://www.dynatrace.com
http://www.vogella.com/tutorials/EclipseRCP/article.html
http://www.vogella.com/tutorials/EclipseRCP/article.html
http://www.vogella.com/tutorials/EclipseZest/article.html
http://www.vogella.com/tutorials/JFreeChart/article.html

Bibliography

[37] A. J. Ko, T. D. LaToza, and M. M. Burnett, “A practical guide to controlled ex-
periments of software engineering tools with human participants”, Empirical Software
Engineering, vol. 20, no. 1, pp. 110–141, 2015.

[38] D. Lo, S.-C. Khoo, J. Han, and C. Liu, Mining Software Specifications: Methodologies
and Applications. CRC Press, 2011.

[39] A. R. C. Maita, L. C. Martins, C. R. L. Paz, L. Rafferty, P. C. K. Hung, S. M. Peres, and
M. Fantinato, “A systematic mapping study of process mining”, Enterprise Information
Systems, pp. 1–45, 2017. [Online]. Available: https://doi.org/10.1080/17517575.

2017.1402371.

61

https://doi.org/10.1080/17517575.2017.1402371
https://doi.org/10.1080/17517575.2017.1402371

Lisa Maria Kritzinger
Curriculum Vitae

PERSONAL DETAILS

Birth April 13, 1992

Address Rilkestraße 20/17/118, 4020 Linz

Phone 0650 883 12 55

Mail kritzinger@gmx.net

EDUCATION

Master of Science 2016-present
Johannes Kepler University Linz, Austria

Software Engineering

Bachelor of Science 2012-2016
Johannes Kepler University Linz, Austria

High School Diploma (German: Reife- und Diplomprüfung) 2006-2012
Bundeshandelsakademie Vöcklabruck

Informationstechnologie und -management

WORK EXPERIENCE

Student Researcher 2016-present
Johannes Kepler University Linz, Austria

Christian Doppler Laboratory

Monitoring and Evolution of Very-Large-Scale Software Systems

Software Tester 2015-2016
fmade GmbH

Intern July 2011
Gemeinde Neukirchen an der Vöckla

Trainee 2009-2010
Ing. Philipp GmbH & Co.KG

Office clerk

Intern August 2009
Gemeinde Neukirchen an der Vöckla

SKILLS

Languages German (mother tongue)
English (fluent)

Computer Skills Programming Skills: Java, C#, C++, C
Knowledge of Operating System: Windows, Linux

Driving License Category B

Eidesstattliche Erklärung

Ich erkläre an Eides statt, dass ich die vorliegende Masterarbeit selbstständig und ohne
fremde Hilfe verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt bzw.
die wörtlich oder sinngemäß entnommenen Stellen als solche kenntlich gemacht habe. Die
vorliegende Masterarbeit ist mit dem elektronisch übermittelten Textdokument identisch.

Linz, am 5. September 2018

Lisa Maria Kritzinger, BSc

	Introduction
	Background and Related Work
	Requirements Monitoring Model
	REMINDS Framework
	REMINDS Tool
	Monitoring Center

	Visualization in other Monitoring Tools

	Motivating Industrial Scenario
	Running Examples
	Required Visualization Capabilities

	REMINDS Visualizations
	System Overview
	Violation-related Visualizations
	Event-related Visualizations
	Diagnosis of Violations
	Application to the Industrial Scenario

	Selected Implementation Details
	Eclipse RCP
	Used Libraries
	Visualization Plugin

	Evaluation
	Method
	Identification of Visualization Capabilities
	Cognitive Assessment and Tool Improvement
	User Study
	Derivation of Implications for Developers

	Cognitive Dimensions Assessment
	Check System Status
	Analyze Trends and Statistics
	Analyze Events and Timing Behavior
	Analyze Requirements Violation
	Cross-cutting Aspects

	Usefulness Study
	Study System and Subjects
	Study Process and Data Collection
	Data Analysis and Reporting

	Results
	Usability
	Check System Status
	Analyze Trends and Statistics
	Analyze Events and Timing Behavior
	Analyze Violation Details
	Cross-Cutting Results

	Utility
	Summary and Threats to Validity

	Discussion
	Conclusion
	List of Figures
	List of Tables
	Bibliography

