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Abstract—The ModelWriter platform provides a generic
framework for automated traceability analysis. In this paper,
we demonstrate how this framework can be used to trace the
consistency and completeness of technical documents that consist
of a set of System Installation Design Principles used by Airbus to
ensure the correctness of aircraft system installation. We show in
particular, how the platform allows the integration of two types of
reasoning: reasoning about the meaning of text using semantic
parsing and description logic theorem proving; and reasoning
about document structure using first-order relational logic and
finite model finding for traceability analysis.

https://itea3.org/project/modelwriter.html

I. INTRODUCTION

The complexity of software systems in safety critical do-
mains (e.g. avionics and automotive) has significantly in-
creased over the years. Development of such systems requires
various phases which result in several artifacts (e.g., require-
ments documents, architecture models and test cases). In this
context, traceability [1], [2] not only establishes and maintains
consistency between these artifacts but also helps guarantee
that each requirement is fulfilled by the source code and
test cases properly cover all requirements, a very important
objective in safety critical systems and the standards they
need to comply with DO-178C (Software Considerations in
Airborne Systems and Equipment Certification) [3] and ISO-
26262 (Road Vehicles - Functional Safety) [4]. As a result,
the engineers have to establish and maintain several types of
traces, having different semantics, between and within various
development artifacts.

Traceability is a quality concern that helps users understand
each and every steps in the development or even the end to end
life cycle of a product. Its implementation is highly contextual
as the key artifacts produced or used along a process differ
depending on the product. We want to provide a framework for
users to specify which artifacts they want to precisely identify
and monitor and what is the meaning for trace links between
these artifacts.

The considered Artifacts represented in our context by trace
locations might be of different levels of granularity, ranging

from a complete document or model to fragments of text or
code. Focusing on documents and text, both the structure and
the content might be used to reason about traceability.

To this end, ModelWriter platform provides a generic
traceability analysis applicable to Text & Model artifacts.
Trace locations can be fragments of text, elements of an
architectural model, and parts of program codes. Traces are
relations between trace locations. ModelWriter platform al-
lows axiomatization of these relations and reasoning about
them, i.e. supporting traceability analysis for different types
of artifacts.

In this paper, we focus on demonstrating the features of
ModelWriter platform for the traceability analysis applied to
technical documentation. A particular challenge in this use
case is to take into account the meaning of natural language.
We integrate techniques from Natural Language Processing
(NLP) and Automated Reasoning to reason both about the
meaning and about the structure of text. We use techniques
from semantic parsing to assign formal meaning representa-
tions to NL text. We then use techniques from theorem proving
and model building to infer traceability relations between text
fragments (here SIDPs), to check consistency and to ensure
completeness.

II. THE AIRBUS SIDP USECASE

We illustrate the workings of the ModelWriter platform
based on a set of System Installation Design Principles (SIDP)
used by Airbus to ensure the correctness of aircraft design. A
SIDP rule is actually a kind of system installation requirement,
that is a description of system properties which should be
fulfilled. In this usecase, SIDPs are trace locations and there
are five types of trace links defined between trace locations,
namely CONTAINS, REFINES, CONFLICTS, EQUALS, and RE-
QUIRES. In the following, we informally give the meaning of
the trace-types.

Rule r1 contains Rule r2 . . . rn if r2 . . . rn are parts of the
whole r1 (part-whole hierarchy). The contained rule is a sub-
rule of containing rule. Rule r1 refines another Rule r2 if r1 is
derived from r2 by adding more details to its properties. The
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refined rule can be seen as an abstraction of the detailed rules.
In Fig. 1 contains and refines traces are illustrated. Each box
represents a property of the corresponding rule.

r1

r2

r3

con
tai

ns

contains

r4 r5
refines

Fig. 1. r1 contains r2 and r3, r4 refines r5

Rule r1 conflicts with Rule r2 if the fulfillment of r1
excludes the fulfillment of r2 and vice versa. The existence
of a conflict trace indicates an inconsistency between two
rules. Rule r1 equals to Rule r2 if r1 states exactly the same
properties with their constraints with r2 and vice versa. Rule r1
requires Rule r2 if r1 is fulfilled only when r2 is fulfilled. The
required rule can be seen as a pre-condition for the requiring
rule. In the following Fig. 2 conflicts, equals and requires
traces are illustrated.

r1 r2
conflicts

r1 r2
equals

r1 r2
requires

Fig. 2. Illustration of “conflicts, equals and requires”

Given a set of SIDPs, the ModelWriter platform can be
used to check completeness and consistency as follows. First,
SIDPs are parsed and assigned Description Logic formulae
representing their meaning (cf. Section III-A). Second, traces
are either manually specified by the end user or can be
inferred using semantic parsing and DL theorem proving (cf.
Section III-B). Third, new traces can be inferred upon existing
ones using Relational Logic (cf. Section III-C) and Model
Finding (cf. Section III-D). Importantly, the inference of trace
links allows for the detection of missing or inconsistent SIDPs.

Table I illustrates this process. Given the SIDPs r1-r6,
CONFLICTS and REFINES trace links are first inferred using
semantic parsing and the Hermit theorem prover [5] (DL lines
in the table).

TABLE I
EXAMPLE SIDPS AND INFERENCE OF TRACE LINKS

Nr. Artifact Annotations (Trace-locations)

r1 Bracket shall be used in hydraulic area Alpha
r2 Adhesive bonded bracket shall be used in hydraulic area
r3 Adhesive bonded bracket shall be used in hydraulic area Alpha
r4 Bracket shall be used in hydraulic area
r5 Bracket shall be installed in hydraulic area
r6 Bracket shall be installed in fuel tank

Nr. Inferred Traces Nr. Inferred Traces

DL1 conflicts(r5, r6) RL1 conflicts(r6, r4)
DL2 refines(r3, r2) RL2 requires(r1, r5)
DL3 refines(r2, r4) RL3 conflicts(r6, r1)
DL4 refines(r1, r4) RL4 requires(r2, r5)
DL5 requires(r4, r5) RL5 conflicts(r2, r6)

For example, the DL formulae obtained by parsing sen-
tences r5 and r6 conflict with each other because the un-

derlying ontology to which these axioms are added specifies
that concepts “hydraulic area” and “fuel tank” are disjoint.
Similarly, the axiom obtained for the sentence r2 refines the
axiom obtained for r4 because the ontology specifies that
“Bracket” is a sub concept of “Adhesive bonded bracket”. In
Fig. 3, Table I is represented as a digraph model in which
the nodes represent trace-locations, i.e. SIDP rules listed in
the table and edges represents traces. A red edge specifically
corresponds to the trace inferred using semantic parsing and
DL theorem proving. The black one is an example trace,
refines(r3, r6) created by the user manually.
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Fig. 3. Inferred Traces (red traces indicate reasoning using DL, blue indicates
reasoning using RL, the black one indicates a manual trace)

Later, additional trace links are inferred using Relational
Model Finding (RL lines in the Table I and dashed blue edges
on Fig. 3). For instance, as part of the trace semantics of
this use case, according to the axiom schema (3) formalized
in Section III-C where a, b and c are artifact elements, if a
refines, requires or contains b, while b conflicts with c, then a
also conflicts with c. In this way, ModelWriter generates CON-
FLICTS traces such that combination of conflicts(r5, r6) and
requires(r4, r5) makes conflicts(r6, r4); on the other hand,
according to axiom schema (1) described in Section III-C, the
combination of refines(r2, r4) and requires(r4, r5) gener-
ates requires(r2, r5) corresponding to the patterns shown in
Fig. 4.
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Fig. 4. Inferring “requires” with “refines” and inferring “conflicts”

Finally, in this example, DL-based reasoning process in-
ferred only one CONFLICTS trace using the meaning of the sen-
tences, i.e. r5 conflicts with r6 whereas the ModelWriter de-
tects three more conflicts traces using the meaning of trace
types by means of RL-based reasoning on top of DL-based



reasoning. As a result, it can be seen that not only r5 and r6
but also r4, r1, and r2 are inconsistent.

III. OVERVIEW OF THE APPROACH

We now describe the four main modules making up the
ModelWriter platform. Section III-A introduces the semantic
parser, i.e., the module that converts text to Description Logic
formulae. Section III-B explains how the Hermit reasoner can
be used to detect REFINES, CONFLICTS and EQUALS trace
links between text fragments (here, SIDPs). Section III-C
shows how Alloy formalism [6] can be customized to axioma-
tize trace types and semantics. Finally, Section III-D explains
how the KodKod model finder [7] is used to infer new trace
links between SIDPs to detect the inconsistent SIDPs.

A. Mapping Text to Description Logic Formulae

The semantic parser used in ModelWriter to convert text to
DL formulae is described in details in [8]. In what follows,
we briefly summarize its working and some evaluation results
on a set of 960 SIDPs used for testing.

The ModelWriter semantic processing framework combines
an automatically derived lexicon, a small hand-written gram-
mar, a parsing algorithm to convert text to DL formulae and a
generation algorithm to generate text from DL formulae. This
framework is modular, robust and reversible. It is modular in
that, different lexicons or grammars may be plugged to meet
the requirements of the semantic application being considered.
For instance, the lexicon (which relates words and concepts)
could be built using a concept extraction tool, i.e. a text
mining tool that extracts concepts from text (e.g., [9]). And
the grammar could be replaced by a grammar describing the
syntax of other document styles such as cooking recipes. It is
robust in that, in the presence of unknown words, the parser
can skip words and deliver a connected (partial) parse. And,
it is reversible in that the same grammar and lexicon can be
used both for parsing and for generation. Fig. 5 outlines our
approach showing the interaction of various components.

Input
SIDPs Semantic Parser

Grammar (Manual)
Lexicon (Automatic)

O
W

L
Axiom

s

Surface RealiserGenerated
SIDPs

BLEU
Scoring

Full/Partial
Parse

Syntax
Validation

Fig. 5. Parsing and Generation of Airbus SIDPs.

The lexicon maps verbs and noun phrases to grammar rules
and to complex and simple concepts respectively. Fig. 6 shows
an illustrating example with a lexical entry on the left and
the corresponding grammar unit on the right. During genera-
tion/parsing, the semantic literals listed in the lexicon (here,
Use and useArg2inv) are used to instantiate the variables (here,
A2 and Rel) in the semantic schema (here, L0:subset(X,L1)
L2:exists(A2,L3) L3:Rel(Y)). Similarly, the Anchor value

(used) is used to label the terminal node marked with the
anchor sign (⋄) and each coanchor is used to label the terminal
node with corresponding name. Thus, the strings shall and
be will be used to label the terminal nodes V 1 and V 2
respectively. Importantly, this separation between grammar
and lexicon supports modularity in that e.g., different lexicons
and/or grammars could be plugged into the system. For the
work presented here, we built this lexicon by applying regular
expressions and a customised NP chunker (the NLTK regular
expression chunker) to extract verbal and nominal lexical
entries from SIDPs.

Fig. 6. Example Lexical Entry and Grammar Unit

The grammar provides a declarative specification of how
text relates to meaning (as represented by OWL DL [10]
formulae). We use a Feature-Based Lexicalised Tree Adjoining
Grammar (FB-LTAG) [11] augmented with a unification-based
flat semantics. Fig. 7 shows an example FB-LTAG for the
words “not”, “pipes” and “shall be used”. An FB-LTAG
tree is a set of initial and auxiliary trees which have been
lexicalised using the lexicon and can be combined using either
substitution or adjunction. Auxiliary trees are trees such as
the tree for “not” which contains a foot node (marked with
*) whose category (here AUX) matches that of the root node.
Initial trees are trees such as that of “pipes” and “shall be used”
whose terminal nodes may be substitution nodes (marked with
↓). Substitution inserts a tree with root category C into a
substitution node of the same category. For instance, the tree
for “pipes” may be substituted in the NPY

↓ node of th “shall
be used” tree. Adjunction inserts an auxiliary tree with foot
node category C into a tree at a node of category C. For
instance, the tree for “not” may be adjoined into the tree for
“shall be used” at the AUX node.

The parser and the generator exploit the grammar and
the lexicon to map natural language to OWL DL formulae
(semantic parsing) and OWL DL formulae to natural language
(generation) respectively. For instance, given the sentence
“Pipes shall not be used”, the parser will first select the
grammar trees associated with “Pipes”, “shall be used” and
“not” and then combines these trees using substitution and
adjunction. As shown in Fig. 8, the semantics derived for the
input sentence is then the union of the semantics of these trees
modulo unification. Conversely, given the flat semantics shown
in the figure the generator will generate the sentence “Pipes
shall not be used” by first, selecting grammar trees whose
semantics subsumes the input and then combining them using



Fig. 7. Example FB-LTAG with Unification-Based Semantics. The variables
decorating the tree nodes (e.g., X) abbreviate feature structures of the form
[idx : X] where X is a unification variable.

substitution and operation. The generated sentences are given
by the yield of the derived trees whose root is of category S
(sentence) and whose semantics is exactly the input semantics.

Fig. 8. Derived Tree. The flat semantics representation produced by the
grammar is equivalent to the Description Logic Formula shown.

While the grammar integrates a so-called flat semantics,
as shown in Fig. 9, there is a direct translation from this
semantics to OWL functional syntax. Further details about
Semantic Parser can be found at:

https://github.com/ModelWriter/Deliverables/tree/master/WP2

B. Inferring Traces using DL Theorem Proving

We use Hermit theorem prover to detect inconsistencies,
entailment and equivalence between two SIDPs s1 and s2.
Given the DL formulae ϕ1 and ϕ2 associated by the semantic
parsing process to s1 and s2, we determine these relations as
follows: (i) if ϕ1⊓ϕ2 is not satisfiable, we infer a CONFLICTS
trace between s1 and s2, (ii) if ¬ϕ1⊔ϕ2 is satisfiable, we infer
a REQUIRES trace between s1 and s2, and (iii) if ϕ1 ≡ ϕ2 is
satisfiable, we infer an EQUALS trace between s1 and s2.

C. Formal Semantics of Trace-types

Tarski is the module of ModelWriter approach for auto-
mated reasoning about traces based on configurable trace
semantics, recently described in [12]. The tool provides an
enhanced text editor to allow users to define new trace types
in a restricted form of Alloy [6], i.e., First-Order Relational
Logic.

In the following, we axiomatize trace semantics based on
the informal definition explained in Section II using First-
order Predicate Logic with the signature:

ΣT : {=,∈} ∪ Σ1
T ∪ Σ2

T

Σ1
T : {Artifact, Requirement, Specification}

Σ2
T : {requires, refines, contains, equals, conflicts}

Σ1
T is the set of unary predicate symbols and Σ2

T is the set
of binary predicate symbols. For simplicity, we assume that the
universe only consists of the type, Artifact which is partitioned
into disjoint subsets of Requirement and Specification. From
now on, A represents the set of Artifacts. = and ∈ symbols
are interpreted and represent equality and membership respec-
tively. In the following several axiom schemas are listed to
formalize Traceability Theory, that is used in the SIDP case.

Reasoning about REQUIRES traces is stated as follows:

⊢ ∀a, b, c ∈ A | (a, b) ∈ □∧ (b, c) ∈ require → (a, c) ∈ require (1)
⊢ ∀a, b, c ∈ A | (a, b) ∈ require∧ (b, c) ∈ □ → (a, c) ∈ require (2)

where □ ∈ {requires, refines, contains}

The following axiom schema is being used for generating
CONFLICTS traces.

⊢ ∀a, b, c ∈ A | (a, b) ∈ □ ∧ (b, c) ∈ △ → (a, c) ∈ △ (3)
⊢ ∀a ∈ A | (a, a) ∈ △ (4)

where □ ∈ {requires, refines, contains} and △ = conflicts

Reasoning about EQUALS traces:

⊢ ∀a, b, c ∈ A | (a, b) ∈ equals∧ (b, c) ∈ □ → (a, c) ∈ □ (5)
⊢ ∀a, b, c ∈ A | (a, b) ∈ equals∧ (c, b) ∈ □ → (c, a) ∈ □ (6)

⊢ ∀a ∈ A | (a, a) ∈ equals (7)
where □ ∈ {contains, requires, refines, conflicts}

In the following axiom schema, transitivity (8) is used
for reasoning new traces, whereas anti-symmetry (9) and
irreflexivity (10) are used to check consistency.

⊢ ∀a, b, c ∈ A | (a, b) ∈ □ ∧ (b, c) ∈ □ → (a, c) ∈ □, (8)
⊢ ∀a, b ∈ A | (a, b) ∈ □ ∧ (b, a) ∈ □ → a = b, (9)

⊢ ∀a ∈ A | (a, a) /∈ □, (10)
where □ ∈ {contains, requires, refines}

CONTAINS traces is left-unique (injective relation) in some
scenarios that induces an inconsistency when transitivity ax-
iom (8) for CONTAINS is instantiated in the specification.

⊢ ∀a, a′, b ∈ A | (a, b) ∈ □ ∧ (a′, b) ∈ □ → a = a′ (11)
where □ = contains

We encode above axioms in First-order Relational Logic
using the Tarski’s text editor to configure the Tarski module
(see Figure 10).

D. Inferring Trace Links using Model Finding

We employ Kodkod [7], [13], an efficient SAT-based con-
straint solver for FOL with relational algebra and partial
models, for automated trace reasoning using the trace se-
mantics that user provides. Once the user performs reasoning
operations about traces, the result is reported back to the user

https://github.com/ModelWriter/Deliverables/tree/master/WP2


τ(ϕ) =



ObjectSomeValuesFrom(:R τ(C)) if ϕ = li : exists(R, lj) lj : C

SubClassOf(τ(C1) τ(C2)) if ϕ = li : subset(lj , lk) lj : C1 lk : C2

ObjectIntersectionOf(τ(C1) τ(C2)) if ϕ = li : and(lj , lk) lj : C1 lk : C2

(τ(C1) ⊓ τ(C2)) if ϕ = li : and(lj , lk) lj : C1 lk : C2

(τ(C1) ⊔ τ(C2)) if ϕ = li : or(lj , lk) lj : C1 lk : C2

not(τ(C)) if ϕ = li : not(lj) lj : C

R− if ϕ = Rinv

C if ϕ = li : C(x)

Fig. 9. Mapping Flat Semantics to Owl Functional Syntax

Fig. 10. Some Example Trace Types and Trace Semantics in Tarski

by dashed traces as shown in Fig. 11. If there exists different
solutions, the user can traverse them back and forth. He can
also accept the inferred traces, and perform another analysis
operation including inferred traces. Further details about Tarski
can be found at:

https://modelwriter.github.io/Tarski/

IV. EVALUATION

We evaluate Semantic Parsing approach of ModelWriter on
a dataset of 960 SIDPs provided by Airbus which demonstrate
(i) that the approach is robust (97.50% of the SIDPs can
be parsed) and (ii) that DL axioms assigned to full parses
are very likely to be correct in 96% of the cases. Regarding
inference phase, since we observed that DL-based reasoning
is relatively faster than the SAT-based reasoning in the context
of SIDP case, we only focus on the Tarski module to evaluate
the performance of ModelWriter approach. Table II shows
the solving results of three configurations of the formal trace
specification running with Alloy Analyzer [6], KodKod [7]
and Z3 [14]. Minisat [15] SAT Solver is chosen for both Alloy
(alloy4.2-2015-02-22.jar) and KodKod (Kodkod 2.1) solvers.

Fig. 11. Inferred Relations based on the current snapshot

From Alloy to SMT solver translation for these cases, we
employ the translation method proposed by El Ghazi et.al.
[16] and the problems are encoded in SMT-LIB [17] syntax
which is fed into Z3 solver. Transitive closure and integer
arithmetic are not used in these use cases to fairly benchmark
the results with the SMT solver. In SMT-LIB, the logic is set
for Equality Logic with Uninterpreted Functions (UF).

TABLE II
COMPARISONS OF SEVERAL USE CASES FOR TRACE INFERRING

Artifacts Traces Inferred Alloy KodKod Z3

#1 123 102 89 67922 25668 40900
#2 56 27 25 4428 84 480
#3 42 103 75 724 1 1460

Evaluation results are obtained on a machine, that runs 64
bit debian linux operating system with 8 GB of memory and
2.90GHz Intel i7-3520M CPU. Solving times are indicated in
milliseconds. The best results are obtained by the direct use of
KodKod API since to find satisfiable models, KodKod allows
us to configure lower and upper bounds for the solution space
employing different pre-processing techniques such as slicing,
incremental upper bounds and unrolling transitive closures.
The evaluation shows that our tool is practical and beneficial
in industrial settings to specify trace semantics for automated

https://modelwriter.github.io/Tarski/


trace reasoning. We plan to conduct more case studies to better
evaluate the practical utility and usability of the platform.

V. RELATED WORK

Many existing works on semantic parsing describe the task
of obtaining axiomatic representation of natural language sen-
tences. However, they suffer from two main limitations: (i) use
of controlled languages such as Attempto Controlled English
[18] (e.g. [19], [20]) and/or (ii) inability to deduce complex
axioms involving logical connectives, role restrictions and
other expressive features of OWL (e.g. [21], [22]), as noted in
[23]. In contrast, we work on human authored real-world text
(Airbus SIDPs) and produce complex OWL axioms involving
the following DL constructs: ⊤ (the most general concept),
disjunction, conjunction, negation, role inverse, universal and
existential restrictions. Moreover, we extended the scope of
our application by deducing traces among the semantic parse
outputs. Such traces were then used as baseline input to
Tarski platform which could infer additional traces propagating
over the whole system.

Similarly, several approaches and tools have been proposed
for automated trace reasoning using the trace semantics [24]–
[31]. These approaches employ a predefined set of trace types
and their corresponding semantics. For instance, Goknil et
al. [29] provide a tool for inferencing and consistency checking
of traces between requirements using a set of trace types and
their formal semantics. Similarly, Egyed and Grünbacher [25]
propose a trace generation approach. They do not allow the
user to introduce new trace types and their semantics for
automated reasoning. In the development of complex sys-
tems, it is required to enable the adoption of various trace
types, and herewith automated reasoning using their semantics.
Tarski module of ModelWriter allows the user to interactively
define new trace types with their semantics to be used in
automated reasoning about traces.

VI. CONCLUSION

We presented an integrated platform for automatically map-
ping natural language text to trace types and performing
further inferencing on those traces. Starting with the semantic
parser module, we showed how complex axioms could be
derived to represent text coming from real world use case.
We identified the traces among the parse outputs and fed it
to the Tarski tool. The Tarski tool, in turn, allowed users
to specify configurable trace semantics for various forms of
automated trace reasoning such as inferencing and consistency
checking. The key characteristics of our tool are (1) automatic
identification of traces existing in texts using semantic parsing
(2) allowing user to define new trace types and their semantics
which can be later configured, (3) deducing new traces based
on the traces which the user has already specified, and (4)
identifying traces whose existence causes a contradiction.

ACKNOWLEDGMENT

This work is conducted within ModelWriter project [32]
labeled by the European Union’s EUREKA Cluster pro-
gramme ITEA and partially supported by the Scientific and

Technological Research Council of Turkey under project
#9140014, #9150181 and Industry and Digital Affairs of
France, Directorate-General for Enterprise under contract
#142930204. The authors would like to acknowledge net-
working support by European Cooperation in Science and
Technology Action IC1404 ”Multi-Paradigm Modelling for
Cyber-Physical Systems”.

REFERENCES

[1] B. Ramesh and M. Jarke, “Toward reference models for requirements
traceability,” IEEE Transactions on Software Engineering, vol. 27, no. 1,
pp. 58–93, 2001.

[2] I. C. Society, P. Bourque, and R. E. Fairley, Guide to the Software
Engineering Body of Knowledge (SWEBOK(R)): Version 3.0, 3rd ed.
Los Alamitos, CA, USA: IEEE Computer Society Press, 2014.

[3] RTCA and EUROCAE, “DO-178C: Software considerations in airborne
systems and equipment certification,” 2017.

[4] ISO, “ISO-26262: Road vehicles – functional safety,” 2017.
[5] R. Shearer, B. Motik, and I. Horrocks, “Hermit: A highly-efficient owl

reasoner.” in 5th OWL Experienced and Directions Workshop, vol. 432,
2008, p. 91.

[6] D. Jackson, Software Abstractions: Logic, Language, and Analysis. MIT
press, 2012.

[7] E. Torlak, “A constraint solver for software engineering: Finding models
and cores of large relational specifications,” Ph.D. dissertation, Mas-
sachusetts Institute of Technology, 2008.

[8] B. Gyawali, A. Shimorina, C. Gardent, S. Cruz-Lara, and M. Mahfoudh,
“Mapping natural language to description logic,” in The Semantic
Web: 14th International Conference, ESWC 2017, Portorož, Slovenia,
May 28 – June 1, 2017, Proceedings, Part I, E. Blomqvist,
D. Maynard, A. Gangemi, R. Hoekstra, P. Hitzler, and O. Hartig, Eds.
Cham: Springer International Publishing, 2017, pp. 273–288. [Online].
Available: http://dx.doi.org/10.1007/978-3-319-58068-5 17

[9] E. Bozsak, M. Ehrig, S. Handschuh, A. Hotho, A. Maedche, B. Motik,
D. Oberle, C. Schmitz, S. Staab, L. Stojanovic et al., “KAON – towards
a large scale Semantic Web,” in E-Commerce and Web Technologies.
Springer, 2002, pp. 304–313.

[10] D. L. McGuinness, F. Van Harmelen et al., “OWL web ontology
language overview,” W3C recommendation, vol. 10, no. 10, p. 2004,
2004.

[11] C. Gardent and L. Kallmeyer, “Semantic construction in feature-based
TAG,” in Proceedings of EACL. Association for Computational
Linguistics, 2003, pp. 123–130.

[12] F. Erata, M. Challenger, B. Tekinerdogan, A. Monceaux, E. Tüzün, and
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APPENDIX A
AVAILABILITY & OPEN SOURCE LICENSE

This work is being developed under technical Work Package
2 (Semantic Parser - Text Part), Work Package 3 (Tarski
- Model Part), and Work Package 4 (Federated Knowledge
Base) within ModelWriter project, labeled by the European
Union’s EUREKA Cluster programme ITEA (Information
Technology for European Advancement). Further details about
the project can be found at:

https://itea3.org/project/modelwriter.html

A video demonstration of ModelWriter is available shows the
use of ModelWriter in the context of the industrial use case
SIDP presented in the paper. The video is available at:

https://youtu.be/TcVCosW8HkU

The source codes files and datasets of ModelWriter are pub-
licly available for download and use at the project reposi-
tory. Tarski and SemanticParser are components of Model-
Writer platform. Source codes, screencast and datasets regard-
ing the project are also available and can be found at:

https://github.com/ModelWriter/Deliverables/tree/master/WP2

https://modelwriter.github.io/Tarski/

https://github.com/ModelWriter/Source/

https://github.com/ModelWriter/Demonstration/

ModelWriter is distributed with an open source software
license, namely Eclipse Public License v1. This commercially
friendly copyleft license provides the ability to commercially
license binaries; a modern royalty-free patent license grant;
and the ability for linked works to use other licenses, including
commercial ones.

https://github.com/ModelWriter/Source/blob/master/LICENSE

APPENDIX B
TOOL DEMONSTRATION PLAN

There will be four parts to our presentation: (1) motivation
and industrial use cases, (2) overview of the approach and tool
architecture, (3) demonstration walktrough, and (4) evaluation.
Parts 1, 2 and 4 are presented using slides while Part 3 is
presented as a demo using the industrial use case scenario
described in Section II. To present these parts, we use a
combination of slides, animations, and a live demo. In the
following subsections, we provide further details about our
presentation plan.

A. Motivation & Challenges

1) Motivation: We will emphasize the importance of trace-
ability by introducing ”DO-178C Software Considerations
in Airborne Systems and Equipment Certification” [3] from
aviation industry.

2) Industrial Use Cases: We will briefly describe the
challenges of Traceability Analysis Activities faced in industry
by introducing industrial use cases from Airbus. We will ex-
plain the importance of semantically meaningful traceability,
traceability configuration and automated traceability analysis
in industry.

B. Tool Overview

1) Overview of the Solution.: We will explain the approach
and the user workflow of ModelWriter by following the steps
of Section III.

2) ModelWriter Features: We will briefly explain tool
features such as semantic parser and its reasoning engine
and configurable automated traceability analysis using ani-
mated slides by giving concrete examples from the indus-
trial use case, namely System Installation Design Principles
(SIDP) presented in the paper.

C. Walk-trough of the Tool Demonstration

In this section, we will perform a live demonstration aligns
with the industrial use case SIDP, which is illustrated in
Section II.

D. Evaluation and Lessons Learned

We conclude with a summary that presents the evaluation
results and the lessons learned.

https://itea3.org/project/modelwriter.html
https://itea3.org/project/modelwriter.html
https://youtu.be/TcVCosW8HkU
https://github.com/ModelWriter/Deliverables/tree/master/WP2
https://modelwriter.github.io/Tarski/
https://github.com/ModelWriter/Source/
https://github.com/ModelWriter/Demonstration/
https://github.com/ModelWriter/Source/blob/master/LICENSE
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