
Don’t Tell Me What Is, Tell Me What Ought To Be!
Learning Effective Changes for Software Projects

Rahul Krishna
Comptuer Science, North Carolina State University, USA

i.m.ralk@gmail.com

Abstract—The primary motivation of much of software ana-
lytics is decision making. How to make these decisions? Should
one make decisions based on lessons that arise from within a
particular project? Or should one generate these decisions from
across multiple projects? This work is an attempt to answer these
questions. Our work was motivated by a realization that much
of the current generation software analytics tools focus primarily
on prediction. Indeed prediction is a useful task, but it is usually
followed by “planning” about what actions need to be taken. This
research seeks to address the planning task by seeking methods
that support actionable analytics that offer clear guidance on
what to do. Specifically, we propose XTREE and BELLTREE
algorithms for generating a set of actionable plans within and
across projects. Each of these plans, if followed will improve the
quality of the software project.

Keywords—Data mining, actionable analytics, bellwethers, de-
fect prediction.

I. INTRODUCTION

Over the past decade, advances in AI have enabled a
widespread use of data analytics in software engineering. For
example, we can now estimate how long it would take to
integrate the new code [1], where bugs are most likely to
occur [2], or amount of effort it will take to develop a software
package [3], etc. Despite these successes, there are two primary
operational shortcomings with many software analytic tools:
(a) conclusion instability as a result of constant influx of new
data; and (b) lack of insightful analytics.

In several applications where local data is scarce, re-
searchers use transfer learning. They report that the use of
data from other projects can yield comparable predictors to
just using local data [4]. However, new projects are constantly
being created. Rahman et al. [5] caution that if quality predic-
tors are always being updated based on the specifics of new
data, then those new predictors may suffer from over-fitting.
Such over-fitted models are “brittle” in the sense that they can
undergo constant changes whenever new data arrives and lead
to unstable conclusions. Conclusion instability is unsettling for
software project managers struggling to find general policies.
We require methods to support managers, who seek stability
in their conclusions, while also allowing new projects to take
full benefit from data arriving from all the other projects. Our
research [6] has offered strong evidence that organizations can
declare some prior project as the “bellwether”1 that can then
offer predictions that generalize across N other projects.

In addition to unstable conclusions, business users also
lament that most software analytics tools, “Tell us what is. But
they don’t tell us what to do”. A concern that was also raised
by several researchers at a recent workshop on “Actionable
Analytics” at 2015 IEEE conference on Automated Software

1According to the Oxford English Dictionary, the “bellwether” is the leading sheep of
a flock, with a bell on its neck.

Engineering [7]. For example, most software analytics tools
in the area of detecting software defects are mostly prediction
algorithms such as Support Vector Machines, Naive Bayes,
Logistic Regression, Decision Trees, etc [8]. These prediction
algorithms report what combinations of software project fea-
tures predict for the number of defects. But this is different task
to planning, which answers a more pressing question: what to
change in order to reduce these defects. Accordingly, in this
research, we seek tools that offer clear guidance on what to
do in a specific project.

The tool assessed in this paper is the XTREE planning
tool [9]. XTREE employs a cluster + contrast approach to
planning where it (a) Clusters different parts of the software
project based on a quality measure (e.g. the number of defects);
(b) Reports the contrast sets between neighboring clusters.
Each of these contrast sets represent the difference between
these clusters and they can be interpreted as plans, i.e.,

• If a current project falls into cluster C1,
• Some neighboring cluster C2 has better quality.
• Then the difference ∆ = C2 - C1 is a plan for changing a

project such that it might have higher quality.

XTREE uses data from within a software project to gen-
erate plans. But, in several cases local data may not readily
available. To overcome this limitation, we incorporate our find-
ings from bellwethers to extend XTREE to use the bellwether
projects. We call this tool BELLTREE and we show that it can
be used to generate stable plans for cross-company planning.

II. CONTRIBUTIONS OF THIS WORK

1. New kinds of software analytics techniques: This research
introduces the notion of planning in software engineering. In
addition to showing that planning in effective in a within-
project setting [9], we also show that with bellwethers [6],
plans can be generated for cross-project problems with en-
couraging results. This is a unique approach that combines
our efforts to address the problems highlighted in §I.
2. Compelling results of planning: Our results have established
that planning is quite successful in producing actions that can
reduce the number of defects. In Figure 2, we show that
planning can reduce defects by more than 40% in 3 out of
the 4 datasets studied here (>80% in the certain cases).
3. Evidence of generality of bellwethers: The more the bell-
wether effect is explored, the more we learn about its broad
applicability. Originally, we explored this just in the context
of defect prediction [6], it has now been shown to work also
in effort estimation, predicting when issues will close, and
detecting code smells [10]. Our preliminary results reported in
this work show that bellwethers can also be used for cross-
project planning with the use of BELLTREE. This is an
important result of much significance since, where bellwethers
occur, reasoning about multiple software projects becomes a
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simple matter of discovering bellwethers (see [6]).
4. Replication Package: For readers this work who wish to
replicate our findings, we have made available a replication
package at https://git.io/v7c9k.

III. RELATED WORK

Planning has been a subject of much research in artifi-
cial intelligence. Here, planning usually refers to generating
a sequence of actions that enables an agent to achieve a
specific goal [11]. This can be achieved by classical search-
based problem solving approaches or logical planning agents.
Such planning tasks now play a significant role in a variety
of demanding applications, ranging from controlling space
vehicles and robots to playing the game of bridge [12]. Some
of the most common planning paradigms include: (a) classical
planning [13]; (b) probabilistic planning [14], [15], [16]; and
(c) preference-based planning [17], [18].

Existence of a model precludes the use of each of these
planning approaches. This is a limitation of all these planning
approaches since not every domain has a reliable model.
In software engineering, the planning problem translates to
proposing changes to software artifacts. Solving this has
been undertaken via the use of some search-based software
engineering techniques [19]. Examples of algorithms include
SWAY, NSGA-II, MOEA/D, etc. [20], [21], [22].

These search-based software engineering techniques re-
quire access to some trustworthy models that can be used
to explore novel solutions. In some software engineering
domains there is ready access to such models which can offer
assessment of newly generated plans. Examples of such do-
mains within software engineering include automated program
repair [23], [24], software product line management [25], [26],
etc.

However, not all domains come with ready-to-use models.
For example, consider software defect prediction and all the
intricate issues that may lead to defects in a product. A model
that includes all those potential issues would be very large
and complex. Further, the empirical data required to validate
any/all parts of that model can be hard to find. Also, even
when there is an existing model, they can require constant
maintenance lest they become out-dated. These problems are
the key motivations for us to look for alternate methods for
planning that can be automatically updated with new data
without a need for comprehensive models.

In summary, for domains with readily accessible models,
we recommend the tools widely used in the search-based
software engineering community such as SWAY, NSGA-II,
MOEA/D, etc. In cases where this is not an option, we propose
the use of data mining approaches to create a quasi-model of
the domain and make of use observable states from this data
to generate an estimation of the model. Our preferred tools in
this paper XTREE and BELLTREE take this approach and as
presented elsewhere in this paper, these methodologies have
very encouraging results.

IV. PLANNING IN SOFTWARE ENGINEERING

A. What is planning?
We distinguish planning from prediction for software qual-

ity as follows: Quality prediction points to the likelihood of
defects. Predictors take the form:

out = f (in)

Fig. 1: Generating thresholds using XTREE.

where in contains many independent features and out contains
some measure of how many defects are present. For software
analytics, the function f is learned via data mining (with static
code attributes for instance). Contrary to this, quality planning
generates a concrete set of actions that can be taken (as
precautionary measures) to significantly reduce the likelihood
of defects occurring in the future. For a formal definition of
plans, consider a test example Z, planners proposes a plan D
to adjust attribute Z j as follows:

∀δ j ∈ ∆ : Z j =

{
Z j +δ j if Z j is numeric
δ j otherwise

With this, to (say) simplify a large bug-prone method, our
planners might suggest to a developer to reduce its size (i.e.
refactor that code by splitting it simpler functions).

B. XTREE
XTREE builds a supervised decision tree and then gener-

ates plans by contrasting the differences between two branches:
(1) branch where you are; (2) branch to where you want to be.

The specifics of the algorithm used to divide the data and
construct the decision tree were presented in greater detail in
our previous work [9]. Next, XTREE builds plans from the
branches of the decision tree by asking the following three
questions for each test case (the last of which returns the plan):

1) Which current branch does a test instance fall in?
2) Which desired branch would we want to move to?
3) What are the deltas between current and desired?

As a motivating example, consider Figure 1 with XTREE
constructed with training data consisting of OO code met-
rics [27] and associated defect counts. A defective test case
with the same code metrics is passed into the tree and evaluated
down the tree to a leaf node with a defect probability of 1.0
(see the orange line in Figure 1). XTREE then looks for a
nearby leaf node with a lower defect probability (see the green
line in Figure 1). XTREE then evaluates the differences (of
deltas) between green and orange. These deltas represent the
threshold ranges2 that represent the plans to reduce the defects.

2Thresholds are denoted by [low,high) ranges for each OO metric

https://git.io/v7c9k


C. BELLTREE
BELLTREE is structurally similar to XTREE. It differs in

the source of data used for analytics. While XTREE uses data
from within the project, BELLTREE first starts by looking
for the bellwether dataset. To do this, we employ the strategy
discussed in our previous work [6]. This helps in identifying
a bellwether dataset. Once the bellwethers are discovered, we
construct a supervised decision tree similar to XTREE. Plans
are generated by using the same procedure as §IV-B. Note that
the use of bellwethers enables BELLTREE to leverage data
from across different projects. This presents a novel extension
to XTREE.

V. RESEARCH QUESTIONS

RQ1. How prevalent are bellwethers? It is important to estab-
lish the prevalence of bellwethers first as this determines if it is
possible to learn plans from the bellwether data. If bellwethers
occur infrequently, we cannot rely on them for planning. We
have initially shown that bellwethers are prevalent in defect
prediction [6]. Further evidence was seen in [10], where
we explored three additional sub-domains within software
engineering namely, defect prediction, effort estimation, issue
lifetime estimation, and detection of code smells. In a result
consistent with bellwethers being very prevalent, we found that
all these domains have a bellwether dataset.
RQ2. Does within-project planning with XTREE offer signifi-
cant improvements in reducing defects? This research question
seeks to establish if our preferred planning tool (XTREE) is
effective in generating actionable plans in a within-project
setting. Our initial findings showed that XTREE was indeed an
effective planner that can generate plans that are also succinct
and stable. Further, these plans are not subject to conjunctive
fallacy [9].
RQ3. Does cross-project planning with BELLTREE offer sig-
nificant improvements in reducing defects? Having established
the prevalence of bellwether datasets and the efficacy of
planning with XTREE, here we ask if it is possible for us
to transfer plans across projects using the bellwether data and
XTREE (referred to as BELLTREE). Our preliminary results
are very encouraging. We show that BELLTREE can be a very
effective cross-project planner.
RQ4. Are cross-project plans any better than within project
plans? This research question assesses the quality of plans
obtained using XTREE and BELLTREE. This is important
because within-project data is not always available (especially
if a project is in it’s early stage of development) and it
may be useful to look to other similar projects for planning.
Our preliminary results have suggested that the effectiveness
of plans generated from within project data and XTREE is
statistically comparable to plans derived with cross-project
data and BELLTREE. Thus, when project specific data is not
available, one may use cross-project data to derive plans.

VI. EVALUATING PLANS

To evaluate plans, we propose the use of a verification
oracle [9]. Oracles have been commonly used by several SE
researchers such as Cheng et al [28], O’keefe et al. [29],
Mkaouer et al. [30]. They use an oracle that is learned
separately from the planner. The verification oracle assesses
how defective the code is before and after some code changes.
For their oracle, Cheng, O’Keefe, Moghadam and Mkaouer

Observed Improvements (from Equation 1)

Ant

Rank Treatment Median IQR

1 XTREE 44.0 6.0 s
2 BELLTREE 39.0 16.0 s

Poi

Rank Treatment Median IQR

1 XTREE 84.0 6.0 s
1 BELLTREE 83.0 3.0 s

Ivy

Rank Treatment Median IQR

1 BELLTREE 25.0 12.0 s
1 XTREE 24.0 12.0 s

Jedit

Rank Treatment Median IQR

1 XTREE 63.0 2.0 s
2 BELLTREE 60.0 9.0 s

Fig. 2: Results comparing XTREE trained on local datasets
and BELLTREE. Results from 30 repeats. Values come from
Eq. 1. Values near 0 imply no improvement, Larger median
values are better.

et al. use the QMOOD quality model [31]. A shortcoming of
QMOOD is that quality models learned from other projects
may perform poorly when applied to new projects [32].

Hence, for this study, we eschew older quality models
like QMOOD. Instead, we use Random Forests [33] to learn
defect predictors from OO code metrics. Unlike QMOOD, the
predictors are specific to the project. Additionally, classifiers
such as Random Forest have shown to be very efficient in
detecting bugs [34].

For planning and construction of a verification oracle, we
divide the project data into two parts the train set and the test
test. The train set could either be data that is available locally
within a project, or it could be data from the bellwether dataset.
We further partition the train set to build both a planner and
a verification oracle. It is important to note that:

The verification oracle should be built with com-
pletely different data to the planner.

After constructing the planner and verification oracle, we
(1) deploy the planner to recommend plans; (2) alter the test
data according to these plans; then (3) apply the verification
oracle to the altered data to estimate defects; then (3) Compute
the percent improvement, denoted by the following equation:

R = (1− after
before

)×100% (1)

The value of the measure R has the following properties:

• If R = 0%, this means “no change from baseline”;
• If R> 0%, this indicates “improvement over the baseline”;
• If R < 0%, this indicates “optimization failure”.

Ideally, an effective planner should have an improvement
of R > 0, where larger values indicate better performance.

VII. CURRENT STATE AND FUTURE WORK

As mentioned earlier in the paper, this work represents our
efforts to address to key issues in modern software analytics:
(a) conclusion instability; and (b) generating insightful analyt-
ics. To this end, we undertook two concurrent research efforts
to address each of these issues.



While attempting to stabilize the pace of conclusion
change, we discovered the bellwether effect [6]. Our results
provided evidence that it is possible to slow the pace of
conclusion change in software analytics (for defect prediction
models) using bellwethers. Further exploration demonstrated
that the so called bellwether effect is quite prevalent in several
sub-domains of software engineering such as code-smell detec-
tion, effort estimation, and estimation of issue lifetimes [10].

In order to generate actionable analytics for software
engineering, we developed the XTREE planner [9]. Initial
motivation for XTREE was to address the varied opinions in
literature on how best to undertake code reorganization so as
to reduce bad smells. We showed that by leveraging historical
logs of data, planners such as XTREE can offer actionable
recommendations on how to undertake code reorganization in
order to reduce defects in code. Further, we showed that in
addition to generating effective plans, XTREE recommends
of far fewer changes. Thus making it a better framework for
critiquing and rejecting many of the code reorganizations.

The initial version of XTREE was limited to using data
from within a project to generate plans. This paper represents
our initial attempts to transfer plans from across other projects
to a test project. For this purpose, we developed BELLTREE.
It uses the same framework as XTREE but uses bellwethers
as the source of data for planning. Our results comparing
BELLTREE with XTREE on a set of open source java projects
is shown in Figure 2. In two of the four datasets, we note
that BELLTREE performed just as well as XTREE and two
other cases XTREE outperformed BELLTREE (but not by a
significant amount). Our initial finding is that if within-project
data from previous releases are available, we may use XTREE.
If not, using bellwethers would be a reasonable alternative.

Our initial results of using BELLTREE are encouraging and
deserves much further exploration. Starting early this summer,
we have deployed an enhanced version of XTREE on-site in
conjunction with our industrial partners with the following
goals: (1) Qualitatively validate the usefulness of the plans;
(2) Establish the receptiveness of developers actively using
our tool; and (3) Solicit developers’ feedback on usefulness of
plans generated by XTREE.
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