1909.07331v1 [cs.PL] 16 Sep 2019

arxXiv

ReduKtor: How We Stopped Worrying About Bugs
in Kotlin Compiler

Daniil Stepanov, Marat Akhin, Mikhail Belyaev
Saint Petersburg Polytechnic University
JetBrains Research
Saint Petersburg, Russia
{stepanov, akhin,belyaev}@kspt.icc.spbstu.ru

Abstract—Bug localization is well-known to be a difficult
problem in software engineering, and specifically in compiler
development, where it is beneficial to reduce the input program
to a minimal reproducing example; this technique is more com-
monly known as delta debugging. What additionally contributes
to the problem is that every new programming language has
its own unique quirks and foibles, making it near impossible to
reuse existing tools and approaches with full efficiency. In this
experience paper we tackle the delta debugging problem w.r.t.
Kotlin, a relatively new programming language from JetBrains.
Our approach is based on a novel combination of program slicing,
hierarchical delta debugging and Kotlin-specific transformations,
which are synergistic to each other. We implemented it in
a prototype called ReduKtor and did extensive evaluation on
both synthetic and real Kotlin programs; we also compared
its performance with classic delta debugging techniques. The
evaluation results support the practical usability of our approach
to Kotlin delta debugging and also shows the importance of
using both language-agnostic and language-specific techniques
to achieve best reduction efficiency and performance.

Index Terms—program fuzzing, delta debugging, program
slicing, input reduction, compiler testing

I. INTRODUCTION

In the recent years software has been becoming more
and more complex, with the subsequent rise in difficulty of
debugging. Despite all the latest advances in the field of
software quality assurance, such as testing, static analysis and
verification, finding the root cause of a bug still takes a lot of
time and effort from a developer. One of the main reasons for
that is the inherent difficulty of bug localization — figuring out
which part of the program or program inputs causes the bug to
manifest itself. In compilers, for example, reducing the input
file to a minimal reproducing example is a very important step
in bug investigation, which is often done manually.

Automatic reduction of input files which cause a compiler
error greatly simplifies the debugging process, as it removes
irrelevant details, allowing the developer to better understand
and focus on what triggers the bug. Several techniques such
as delta debugging [1], program slicing [2] and their various
improvements [3]], [4], [S] attempt to deal with this problem.
These methods are language-agnostic, which is their clear-cut
advantage; however, in practice they often are hard to employ
efficiently for real-world cases, with complex language-specific
interdependencies and features. Using stand-alone language-

oriented transformations [6]] or incorporating them into other
reduction techniques [[7] has been shown to perform best.

This work aims at creating an automatic input reduction tool
for the Kotli compiler. Our approach is based on a novel
combination of program slicing, hierarchical delta debugging
and Kotlin-specific transformations, which help each other in
finding and pruning irrelevant parts of input Kotlin files. As
real-world Kotlin projects often consist of multiple files, we
also support simultaneous reduction of several input files.

We have implemented our approach in a prototype tool called
ReduKtor and tested it extensively on several types of input.
For the first part of the evaluation, we applied ReduKtor to a
number of input files generated by Kotlin compiler fuzzer [§].
For the second part of the evaluation, a number of real-
world projects were injected with various bugs, which trigger
Kotlin compiler errors, and processed with ReduKtor. We also
compared ReduKtor with classic input reduction techniques,
such as slicing and hierarchical delta debugging (HDD). Our
results show ReduKtor to outperform other approaches on the
size and complexity of the resulting inputs, and also support
the need for hybrid reduction approaches.

The rest of the paper is organized as follows. We introduce
the basics of various input reduction techniques and approaches
in section [[I} In section [III| we explain our approach in more
detail, how it relates to Kotlin features and what challenges we
had to tackle. We talk about the implementation in section [[V}
evaluation setup and results are discussed in section [V] We
overview related works in section make conclusion and
identify possible future work in section

II. INPUT REDUCTION 101

As we established earlier, input data triggering a program
error often contains a lot of irrelevant information; for example,
listing [T] shows an example Kotlin program, which crashes the
compiler. Despite the program being more than 50 lines, the
actual error is triggered by the single expression (when{}).
Of course, in this case the reduction could be done manually,
however, such an approach does not scale well for bigger and
more intricate inputs. That is why a lot of effort has been put
into automating the process of input reduction. Let us briefly
review the different techniques applicable to compiler input
reduction, i.e., reduction of program source code.

Uhttps://kotlinlang.org/

(©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or

reuse of any copyrighted component of this work in other works. DOI: TBD

https://kotlinlang.org/

fun box(): String {
return (when {
(if ("OK") == ("OK")) {}
// 50 more lines

})

Fig. 1: Compiler-crashing (when{}) example

Slicing was historically among the first techniques to attempt
simplification of a given program w.r.t. number of criteria,
which describe interesting program properties; it was coined
by Weiser in [2]]. A slicing criterion is often given as a pair
“program statement — set of variables” and is used to create a
program slice: a reduced program containing only elements
related to the criterion, e.g., elements which influence the
criterion variables at the given statement. By definition, for
slicing to be applicable to an input reduction problem, we must
have a sound slicing criterion, a setup we do not always have.

Delta debugging is an approach free from such limitation,
proposed by Zeller and Hildebrandt in [1]. It views an input
sample T of a program P as a combination of individual
components, which can be minimized to 7,;,, such that:

e Tp.in causes the same failure as T’
« if you remove any component of 7,;,, the error does not
reproduce on P

The minimization is done via a variation of binary search;
let program P and input T" be given, such that P(T') crashes
the program. We find 7,,;, = DD(T) using the following
procedure: the initial input sample 7' is divided into n parts
T =AUA>U...UA,, which are examined in order to
understand if they could be removed from the input. If needed,
we increase n and repeat the procedure. This delta debugging
algorithm from [1]] is shown in figure [2]

The principal input agnosticism of delta debugging is its
main pro and con; on one hand, it can be applied to any kind of
input data, on the other hand, it does not take into account the
inherent structure of the input and usually performs poorly on
complex data. In 2006, Mishergi and Su introduced hierarchical
delta debugging [3]], an extension of classic delta debugging,
which focuses on applying delta debugging to hierarchical
inputs (e.g., abstract syntax trees, XML documents, HTML

DD(T) = DDy(T,2)

DD (A, 2) if P(A;) fails
, 1 . N £
DDo(T,n) — DDQ(VZ,@aw(n ,2)) ?f P(V;) fails
DDy (T, min(|T|, 2n)) if n < |T|
T otherwise
V:=T-A;

T=A1UAU...UA,Vi#j:ANA =0
Fig. 2: Delta debugging algorithm

pages), representable as trees. Their algorithm works as shown
in figure [3} it independently analyzes every level of the input
tree in a top-down fashion. First, it collects all tree nodes at
the current level; second, these nodes are reduced using the
classic delta debugging, creating a minimal node configuration.
This configuration is then applied to the tree, following which
we proceed to the next tree level.

While HDD does work better than classic delta debugging
on structured data and can achieve good reduction on any input,
for many practical examples its performance is subpar, as it
has no knowledge about the finer structure of the input. For
programming languages, for example, it does not take into
account control or data dependencies, and has to deduce them
implicitly, via its level-by-level tree reduction. To speed up
this process and improve on its quality, many practical delta
debugging tools include custom language-specific transforma-
tions [6], [7], [9]. For example, C-Reduce attempts to replace
arbitrary function arguments with compatible constants and
performs inlining of small functions.

For Kotlin, we decided to combine these approaches in such
a way that individual techniques support each other. Let us
describe our approach in more detail.

III. REDUCTION FOR KOTLIN COMPILER

Our approach to input reduction for Kotlin compiler (see
figure [)), similarly to many other approaches, consists of a
number of independent steps, each taking a set of Kotlin files
as an input and reducing them via some kind of transformation.
Even before we discuss these steps in more detail, we need to
explore two things: transformation soundness and their order.

A. Transformation soundness

A transformation is sound w.r.t. input reduction problem, if
it preserves the original error; if a program P fails on input 7',
it should fail with the same error on the transformed input 7".
However, for compiler errors it is often very hard to define what
“same” means. For example, an error message may contain
parts of generated bytecode, which may be different for files
before and after transformation, but relate to the same cause.

There are 2 ways to solve this problem. The first one
assumes error messages have a specific format, which can
be automatically parsed and compared. A number of errors
from Kotlin compiler satisfy this condition; an example of such

INPUT: hierarchical input data ¢ree
RESULT: tree is reduced

1: level <=0

2: nodes < getNodes(tree, level)

3: while nodes # () do

4: minConfig < DD(nodes)

5 removeNodes(tree, level, minConfig)

6: level < level + 1

7 nodes < getNodes(tree, level)

Fig. 3: Hierarchical delta debugging

7
7
7/
//
Kotlin program / Transformations
4
4

Bug oracle < | ReduKtor Slicing
N
Reduced program ™\ HDD
\,

Fig. 4: Overview of our approach

error is shown in listing 5} As one can see from the example,
the type and location of error are easily identifiable. For such
errors we have developed a number of parsers, which extract
relevant information used for error comparison.

If error messages do not have a structure, we need to compare
them directly, i.e., find their differences. A classic approach
is to view this problem as a string difference one, solvable
via longest common subsequence (LCS) algorithm, such as
Myers’ [10]. To avoid reinventing the wheel, we use Diff Match
Patch [11]], a highly-optimized library from Google for text
synchronization. The Diff component compares two strings and
outputs a list of their differences, which we can use to estimate
the similarity of original strings as Y |diff|/ > |total|. The
closer this coefficient is to zero, the more similar the strings
are. To be considered the same, error messages should have
similarity lower than a set threshold, which is configurable.

Our approach first attempts to compare two error messages
using one of the template parsers; if they fail, it falls back
to a direct difference comparison. This allows our approach
to more aggressively reduce input for a large class of errors,
which have comprehensive error messages.

B. Transformation order

All input reduction steps are independent of each other,
however, even for a fixed set of transformations, the final result
may be affected by the order, in which these transformations
are applied. More so, the overall performance also depends
on the transformation order, as the individual performance of
many transformations is greatly related to the input size. For
this work, we decided to apply transformations in the order of
their “reductiveness” based on the preliminary evaluation, from
coarse-grained steps, which can remove whole input files, to
more fine-grained ones, which may work on a subexpression
level. It would be interesting to see, if it is possible to reliably
learn a quazi-optimal transformation order for a specific class
of inputs via machine learning or genetic engineering. We hope
to explore this opportunity in our future work.

The resulting pipeline is as follows.

o Project-level simplifications
« Slicing

Error:Kotlin: [Internal Error]
kotlin.codegen.CompilationException:
end (JVM) Internal error: wrong code
generated

org.Jjetbrains.kotlin.codegen.
CompilationException Back-end (JVM)
Internal error: Couldn’t transform method
node:

test ()V:

L0

LINENUMBER 2 LO
Ll

POP
L2

org.jetbrains.
Back-

Cause: AFTER mandatory stack transformations:
incorrect bytecode

Element is unknown The root cause was thrown
at: MethodVerifier.kt:28

File being compiled at position:
.kt

(1,1) in Main

Fig. 5: An example of a Kotlin compiler error message with
well-defined format

o Text based transformations
o Syntax tree based transformations
o Hierarchical delta debugging

Every transformation is applied in order until convergence, i.e.,
until its input stops decreasing in size. We also check if the
transformation preserves the error by comparing before and
after error messages. If the error stops reproducing, we rollback
the input and continue with the subsequent transformations.

C. Reduction criterion

As mentioned before, our approach takes as an input a set of
Kotlin files with its respective error, which allows to support
reduction of not only individual files, but also whole projects.
However, some transformations need a starting point, e.g.,
slicing needs a criterion from which to do its work. When the
error message contains information about the error location,
we extract it as described in [[II-A] and use from here on. If
the information is missing, we ask the developer to provide
a file, presumably containing the error. From here on out, we
will call this starting point a reduction criterion (RC).

Note: despite our fallback strategy appearing as unsound (re-
lying on manual developer input may seem quite unsound),
the approach established in section helps us to ensure
soundness. If the developer specifies an incorrect file for the RC,
they will get a suboptimal reduction, but the original error will
still be preserved. In case you are interested in how often the
fallback RC have been actually used, we kindly forward you
to the evaluation, specifically section

D. Project-level simplifications

The first transformation we use performs different project-
level simplifications. Their main purpose is to prune away parts

of the project which are irrelevant to the error. Modern programs
have complex internal dependencies, greatly complicating
reducing individual files. To solve this problem, we need to
remove these dependencies.

In Kotlin dependencies of a file are usually defined via
import lists: statements specifying which other parts of the
project are needed in the current file. Another way of specifying
dependencies is fully qualified names (FQN), when a program
component is referenced by its complete name. These elements
form the dependency tree, which may be used to guide the
simplification process.

Figure [6a] shows an example with import dependencies. In
order to reduce class A and leave only the relevant function
with the bug, we must reduce classes B, C and D in the correct
order. To do this we use the dependency tree, as in figure [6b]

To build this tree, we recursively collect the imports and
FQNs, starting from the reduction criterion. All files not in the
dependency tree are removed from the project. After that, we
traverse the dependency tree in the bottom up order, applying
to each file a subset of transformations, aimed specifically at
simplifying the project dependencies. As all files except one do
not contain the RC, all transformations must not depend on a
given starting point. The transformations used are listed below,
we describe them in more detail in their respective sections.

o All text based transformations

e Syntax tree based transformations related to pruning

unused program parts
— Removing of unused components
— Simplifying interdependent components

E. Slicing

As mentioned in section [[l] slicing is one of the most basic
input reduction techniques. It creates a program slice, free
of unneeded parts w.r.t. slicing criterion; in our case, we use
the RC as the slicing criterion. There are several different
types of slicing varying in their performance and complexity.
For our purposes we decided to implement a static backward
slicing [12] over the syntax trees, which is applied on the
following levels in their respective order.

o Intraprocedural level

o Function level

e Class level

The algorithm for intraprocedural slicing is presented in
figure [/| The algorithm analyzes the function in the reverse
order. All lines after the slicing criterion are removed using the
deleteLinelfSound function, which checks for transformation
soundness, as described in sections and After that
we collect the interesting variables (aka dependencies) from
the slicing criterion and continue processing the function; if
a line depends on these variables, we keep it and extend the
dependencies, otherwise it can be removed. The dependsOn
and getDeps functions can handle different Kotlin language
statements and expressions (such as if statements, loops, etc.).
In case the RC does not contain an exact line, we perform
redundant slicing w.r.t. every line as the possible slicing
criterion and pick the best (shortest) resulting file.

(a) Example of import dependencies

// File A.kt
class A() {
fun funWithBug () {
//

}

fun £ () {

/ /

// File D.kt
class D() {
val b =

fun f() = b.f()

(b) Built dependency tree

Fig. 6: Example of project dependencies problem

Slicing at the function level works similarly to the depen-
dency tree pruning. Starting from the slicing criterion, we
collect the function call graph tree, marking all functions called
as used. Afterwards all unused functions are removed from the
file, if their deletion is sound w.r.t. RC (see figure . Class
level slicing is performed in a parallel fashion.

An example of how our slicing algorithm works is shown
in figure [0} in the example, we attempt slicing w.r.t. line [T5]

F. Text based transformations

Direct transformations over the program text representation,
despite their simplicity, are often the most efficient way
of reducing the program. Examples of such transformations
include removing some or all text in a string literal, changing

INPUT: slicing criterion targetLine
INPUT: function fun
OUTPUT: reduced function fun

curLine < getLastLine(fun)

while curLine # targetLine do
deleteLinelfSound(fun, curLine)
curLine < getPrevLine(fun, curLine)

deps «+ getDeps(curLine)

while curLine > getFirstLine(fun) do
if dependsOn(curLine, deps) then

deps < deps + getDeps(curLine)

else

10: deleteLineIfSound(fun, curLine)

11: curLine < getPrevLine(fun, curLine)

R A ol

12: return fun

Fig. 7: Intraprocedural slicing algorithm

INPUT: slicing criterion targetFun
INPUT: file file
OUTPUT: reduced file file

callTree < buildCallTree(file)

callees < collectCalleesFor(targetFun, callTree)

funsToRemove < getAllFuns(file) — callees

topologicalSort(funsToRemove)

for fun € funsToRemove do
removeFunIfSound(file, fun)

return file

D A R o e

function COLLECTCALLEESFOR(fun, callTree)

10: directCallees < getDirectCallees(fun, callTree)
res < directCallees

12: for direct € directCallees do

13: res < res + collectCalleesFor(direct, callTree)

—
—_

14: return res
15: end function

Fig. 8: Function-level slicing algorithm

code based on a pattern, etc. We selected about 30 of various
text transformations to be used based on the following.

o Our Kotlin programming experience

o Transformations used in other reduction tools ([[7]], [[13])

o Transformations used in the Kotlin IntelliJ IDEA plugin

for code simplificatiorf’]

As most of them are pretty straightforward to invent and
implement, we skip on describing them for brevity. Below is
an incomplete list of text based transformations included in
our approach.

« Removal of text inside a balanced pair of parentheses

« Pattern-based removal or substitution of text

Zhttps://www.jetbrains.com/idea/

(a) Original example

class Square (private val a: Double) ({
fun getPerimeter () : Double = a * 4
fun getSquare(): Double = a * a

}

class Triangle (private val a: Double,
private val b: Double,
private val c: Double) ({

fun getPerimeter(): Double = a + b + c
fun getSquare(): Double ({

var square = 0.0

if (a » a + b *x b==c x c) {

square = a * b / 2
} else {
val p = getPerimeter() / 2
square = Math.sqrt(p * (p - a) =
(p —b) » (p - ¢c))

}

return square

(b) Example after slicing

class Triangle (private val a: Double,
private val b: Double,
private val c: Double) {

fun getSquare(): Double {
var square = 0.0
if (a xr a + b x b ===c x c) {
square = a * b / 2
} else { }

return square

Fig. 9: Slicing algorithm: before and after example

« Replacement of string literals with empty strings
o Replacement of integer constants with 0

An example of these transformations is shown in figure [I0}

G. Syntax tree based transformations

Another group of ad hoc transformations, which perform well
for source code reduction, are syntax tree based transformations.
There are two main approaches to them: language-agnostic and
language-specific. Language-agnostic transformations assume
only the basic tree structure and are defined in terms of
generic node transformations; this allows them to successfully
reduce any input representable as a tree. On the other hand,
language-specific transformations usually depend on particular
tree properties for a given programming language; this limits
their generality, but improves the reduction efficiency.

Similarly to text-based transformations (section [[II-F), we
decided to use a number of Kotlin-specific transformations,
derived from our Kotlin programming experience and from

O 01NN B W~

O 001NN KW —

—
N = O

https://www.jetbrains.com/idea/

(a) Original example

fun £ () {
var a = 815162342
val b = a + 1
val ¢ = 1.1
var d: Double
while (a.toDouble() != c) {
d=a* b *x c
a += 1
}
println("a = $a")
}
(b) Example after text based transformations
fun f () {
var a = 0
val b = a + 1
val ¢ = 0.0
var d: Double
if (a.toDouble() !'= c) {
d=a * c
a++
}
println("")

Fig. 10: Text based transformations: before and after example

which transformations are used in other tools. They can be
divided into the following groups.

o Expression simplification (if statements, loops, elvis
operator, etc.)

« Removal of unneeded components (function and construc-
tor parameters, imports, etc.)

« Simplification of interdependencies (removal of inherited
properties and functions, replacement of function bodies
with TODO (), etc.)

o Miscellaneous (comment deletion, replacement of function
return value, etc.)

Such transformations are implemented as syntax tree based ones
instead of text based, because they either cannot be expressed
or would create too many syntactically incorrect programs if
done over text. The latter may greatly influence the overall
reduction performance, as every incorrect transformation causes
a rollback to the previous reduction state.

Our approach currently includes 27 Kotlin-specific syntax
tree-based transformations; as describing each and every of
these transformation would have taken up most of the paper,
we decided to describe in detail only the most interesting ones.

1) Simplifying elvis operator: Kotlin has an elvis operator,
a succinct way of checking value for null and providing a
sensible default option; val a = b ?: c means “if b is not
null, assign the non-null value b to a, else assign the default
value c to a”. This operator can be reduced as val a = c,i.e,
we can drop its left-hand side. As the type of c is guaranteed
to be a subtype of b 2: c, this substitution is safe.

2) Deleting function parameters: Function parameters often
become unused as a result of other reduction steps. To delete
them efficiently, you have to perform a bona fide refactoring:
modify the function itself, find all calls to the function and
delete the corresponding argument. At the same time, you have
to consider function overloading and inheritance, making this
transformation quite sophisticated to implement.

3) Topo () simplification: Kotlin has a special ToDO func-
tion, which throws a Not ImplementedError exception when
called and has a special Nothing return type. Nothing is
a uninhabited subtype of all Kotlin types, i.e., can be used
in place of any other Kotlin expression. The corresponding
transformation attempts to replace arbitrary expressions, such
as function bodies or variable initializers, with the call to ToDO.

4) Inlining: In case of small functions it makes sense to
inline their bodies in place of their calls, to improve readability
and give other transformations additional opportunities for
reduction. The inlining threshold is configurable by the user,
by default we attempt inlining for functions less than 10 lines.

5) Simplifying if statements: This transformation attempts
to replace the if statement with its true or false branch. If the
condition contains a type check, Kotlin performs a smart casﬂ
a variation of flow-based typing, aimed at reducing the code
boilerplate by automatically changing the compile-time type of
a variable after type checks and type-check-like constructions.
For our transformation, we create a corresponding type cast (v

as T) for every type check from the condition (v is T),
taking into account their negation for the false branch.

H. Hierarchical delta debugging

The last step in input reduction is hierarchical delta debug-
ging [3]. HDD is used as a finishing tool to remove redundant
constructions not considered by the previous steps. After other
transformations have done their job, the input file is already
significantly reduced compared to the starting point; this means
HDD can be performed much faster, if we were to compare it
to an HDD-only approach.

IV. IMPLEMENTATION

We implemented a prototype tool for Kotlin file reduction
based on our approach, called ReduKtor. In this section we
would like to discuss some of the more interesting ReduKtor
implementation details.

A. Working with Kotlin

Many of our reduction steps require quite an advanced
understanding of the Kotlin source code, e.g., building and
manipulating its abstract syntax trees (AST). We also need
to be able to efficiently recompile the source code after each
change, so that we can check if the target error is preserved,
as described in section

To achieve these goals, we made a well-considered decision
to build ReduKtor on top of the Kotlin compiler using it as
a library. This allows us to use its robust source code parser,

3https://kotlinlang.org/docs/reference/typecasts.html

which produces Program Structure Interface (PSI) treesﬂ Jet-
Brains’ traditional concrete syntax tree (CST) implementation,
supporting both text- and tree-based transformations. By using
the compiler as a library, we significantly reduced the time
needed to check the error reproducibility, as Kotlin compiler
has quite a long startup time, if used externally.

Unfortunately, this decision has a serious drawback: by being
dependent on the very thing we are trying to debug, we may be
reducing the space of supported Kotlin inputs; if the parser itself
fails, ReduKtor also cannot work. That said, in our experience
we have never encountered such a situation.

The Kotlin compiler is used in a two-stage process. First, we
use only the parser to create the PSI, which is much quicker
than invoking the full compilation; if the PSI contains error
nodes, the input file is syntactically incorrect and should be
rejected. Second, we perform the full compilation and analyze
the error message. This scheme also helps to save time checking
for transformation soundness.

B. Parallel processing

The first step of the transformations (project-level simplifi-
cations) is performed in parallel on every project file, to better
utilize the modern hardware. As described in section [[II-D} we
process the project dependency tree in the bottom up order,
and do so in parallel for independent files, i.e., viewing the
dependency tree as a parallel task graph. Additionally, we also
considered running the separate reduction steps in parallel, but
decided against it in the prototype, due to the complexity of
how to merge the possibly interdependent results together.

C. Caching

Another optimization employed in ReduKtor is the caching
of intermediate results. During transformations we may en-
counter source code configurations, which have been already
explored; this is most often encountered during HDD. To avoid
rechecking, we cache previously checked AST configurations
as their hashes together with the result. If the current hash
has already been seen, we reuse the cached result to guide the
subsequent transformations. In our experience, this significantly
improves the HDD performance.

V. EVALUATION

For the evaluation, we run ReduKtor for Kotlin compiler
version 1.3.10 on two types of input. For the first part, we used
the results of Kotlin compiler fuzzer [8]: single files, which
cause compiler crashes, — together with the code samples from
various compiler bugs, collected from the Kotlin compiler bug
trackeﬂ For the second part, a number of real-world projects
were injected with invalid code, to test the relevance and
performance of project-level simplifications. We did attempt
to find project-level inputs with compiler-crashing bugs to no
avail, which is why we opted to create such inputs artificially.
The brief description of selected projects is shown in table [I]

4https://www.jetbrains.org/intellij/sdk/docs/basics/architectural_overview/
psi.html
Shttps://youtrack.jetbrains.com/issues/K T

We collected the following statistics: reduction effi-
ciency (i.e., the decrease in file size) and performance (i.e., the
wall-clock time for reduction). For every test project, we ran
input reduction in the following configurations.

« Slicing only (S)

¢ Kotlin-specific transformations (KST) only (T)

« HDD only (D)

o Pardis only (P)

e ReduKtor without transformations (S + D)

o ReduKtor without slicing (T + D)

e ReduKtor without HDD (S + T)

e ReduKtor (S + T + D)

o ReduKtor with Pardis instead of HDD (S + T + P)

Pardis [14] is the latest addition to the family of language-
agnostic input reduction algorithms, considered to be state-of-
the-art and outperform C-Reduce by a factor of 2 in reduction
performance. For the purposes of evaluation, we implemented
Pardis as an optional step in ReduKtor, to see how it performs
within a complex input reduction tool.

For the test bench, we used a machine with Intel Core i7-
4790 3.6 GHz processor, 32 GB of memory and Intel 535 SSD
storage. The evaluation results are shown in tables [[I] and
An example of how different modes of ReduKtor perform on
an example from Kotlin fuzzer tests is shown in figure [T1]

A. Reduction soundness

In section [[TI-A] we discussed two ways of ensuring reduction
soundness: one based on parsing error messages in a specific
format and another based on generic string comparison. In
our evaluation we did not encounter a single crash, for which
our error parsers failed to extract the error type and location;
this fact speaks highly of Kotlin compiler team and their error
handling discipline. This also means our evaluation compares
and talks about sound reduction results.

In a scenario when ReduKtor has to fallback to generic
string comparison, one has a possible problem with reduction
soundness only in a large-scale evaluation, when it is not
feasible to manually manage the similarity threshold. If we
are to talk about using ReduKtor in practice, there should be
a human developer in the reduction feedback loop, who can
check and tweak the similarity threshold as needed.

B. Lessons learned

There are several interesting insights we can extract from the
evaluation results. First, slicing impact on the input reduction
is negligible: if we remove slicing from the pipeline, the
reduction efficiency is almost unchanged, and the performance
is decreased by 6 percent at most. In our opinion, this means
slicing is better used for subsequent bug localization, a step
performed after the input reduction has been done.

Second, custom language-specific transformations outper-
form even the state-of-the-art language-agnostic technique (Par-
dis) in both performance and efficiency. They are better in
reduction efficiency by up to 1.64x for 4 out of 6 project (fuz-
zTests, bugsTests, mapdb, koin), and faster by up to 2.0x for

https://www.jetbrains.org/intellij/sdk/docs/basics/architectural_overview/psi.html
https://www.jetbrains.org/intellij/sdk/docs/basics/architectural_overview/psi.html
https://youtrack.jetbrains.com/issues/KT

Name Lines x10° | Tokens x10° Description
fuzzTests 8 128.8 Kotlin fuzzer tests (446 files)
bugsTests 1.3 11 | Code samples from the bug tracker (93 files)
kotlinpoet 10 52.4 Library for Kotlin source code generation
kfg 35 66 CFG builder for JVM bytecode
mapdb 2 14.8 Embeddable database
koin 8 17.8 Library for dependency injection
TABLE I: Description of the test projects
. R#)

Project | O S T D P S+D [T+D [S+T [S+T+D [S+T+P
fuzzTests 128,843 | 97,269 | 39,547 | 39,546 | 43,614 | 39,587 | 22,497 | 34,181 22,682 22,623
bugsTests 11,080 | 10,881 8,006 8,364 8,290 8,364 7,145 7,683 7,145 7,088
kotlinpoet 8,251 6,595 605 462 525 462 32 644 32 32

kfg 6,762 6,490 327 327 199 327 136 438 136 136
mapdb 4,120 3,543 561 574 574 574 305 478 303 305
koin 1,080 639 281 466 466 466 79 281 79 79
Column O shows the number of original tokens, column R — number of tokens after reduction
TABLE II: Reduction efficiency
Project T(s)

S T D P S+D[T+D|[S+T|[S+T+D [S+T+P

fuzzTests | 512 | 2,023 | 4,869 | 2,009 4,554 3,215 1,704 3,018 2,251

bugsTests 47 186 770 225 765 624 220 661 401

kotlinpoet | 155 | 1,814 | 4,810 | 2,769 4,800 1,280 1,362 1,270 1,205

kfg 329 | 1,159 | 3,386 | 1,269 3,299 1,306 1,195 1,297 1,196

mapdb 83 166 | 1,282 335 758 431 169 428 267

koin 49 382 619 188 456 466 384 484 419

Column T shows the reduction wall-clock time in seconds

TABLE III: Reduction performance

4 out of 6 projects (bugsTests, kotlinpoet, kfg, mapdb). This
proves their importance for reduction in real-world applications.

Third, despite their standalone efficiency, the results of
language-specific transformations can be significantly improved
by applying language-agnostic techniques (such as HDD or
Pardis) to their results. Adding either HDD or Pardis, together
with slicing, improves the results by 1.1x to 18.9x times. Of
course, adding additional reduction steps causes a subsequent
reduction in performance, by up to 3.5x times. Besides that,
from a practical standpoint, aggressive caching of intermediate
results together with using compiler in a two-stage process (see
section [[V-A] for further details) greatly improves performance.
For example, disabling these features slows down the reduction
process for bugsTests by 12.0x times.

We believe the second and third insights to strongly support
the need for hybrid input reduction approaches, to utilize
the synergy between language-agnostic and language-specific
techniques. They also show we need a better strategy for
comparing different input reduction tools; for example, Pardis
is said to be 4 times faster than C-Reduce, however, it is a
consequence of C-Reduce using HDD as its final step.

We also performed a manual overview of the reduction
results and identified some inefficiencies. In several cases,
ReduKtor failed to remove all information irrelevant to the
error from the target file in a multi-file project. This happened
because the project-level simplifications failed to remove all
unneeded dependencies inside the project. In our future work
we plan to explore how one may better perform project-level

reduction, by either extending the number of transformations
used or selecting better project-level transformations.

As mentioned in section [[II-B] the reduction process consists
of many stages, the order of which can affect both the reduction
time and its result. We conducted additional experiments (not
presented here for the sake of brevity), which have shown the
selected order to outperform alternative orders. For example,
if you implement the same transformations in reverse order,
the reduction slows down by as much as 40% on fuzzTests,
and by 20% on average.

C. Real-world adoption

Unfortunately, ReduKtor is only a research prototype, and
we do not have any solid practical adoption yet; besides the
evaluation, we only used it internally (in our research group)
for several quirky bugs triggered by our code in the Kotlin
compiler. One of the main reasons for that is, as discussed in
section to speed up reduction we use the compiler as
a library, via a non-stable internal API. As this API changes
between versions, one cannot currently use ReduKtor as an off-
the-shelf solution for their particular compiler version and/or
development environment.

We recently contacted the Kotlin compiler team and proposed
them to incorporate ReduKtor in their workflow. Their feedback
was positive; with their cooperation we should be able to
migrate ReduKtor to a new stable API, to better support
different compiler versions. We also further confirmed the need
for project-level simplification in real use cases, as currently

(a) Original test case

class A() {
fun String.test (OK: String) {}
}

fun box () :
val clazz =
val method =

"

String {
(A) ?::class. java
clazz.getDeclaredMethod ("test

4
String::class.java, String::class.java
)
val parameters = method.getParameters ()
if (!method[0].isImplicit () ||
parameters[0] .isSynthetic()) {
return "wrong modifier"
}

return parameters[l].name

(b) Test case after slicing

class A() {}

fun box () :
val clazz = (A)7?::class.java
val method = clazz.getDeclaredMethod ("test",
String::class.java, String::class.java)
val parameters = method.getParameters ()
return parameters|[1l].name

String {

}

(c) Test case after HDD

fun box () :
val clazz = (A)?::class.java
val method = clazz.getDeclaredMethod
val parameters = method.getParameters
return parameters.name

String {

}

(d) Test case after full ReduKtor mode

fun box () {
val clazz = (A)?::class. java

}

Fig. 11: Example of different reduction modes

developers spend a lot of their time manually reducing complex
project setups to create minimal reproducing examples. We
hope to explore how we can improve on reduction for multi-file
projects in our future work.

VI. RELATED WORK

As mentioned before, input reduction is a popular research
area with a lot of practically applicable tools. At the moment,
the most developed tool for delta debugging is C-Reduce [7],
initially created for reduction of C/C++ compiler tests, gener-
ated by Csmith [15]]. These tests, being randomly generated,
usually contain a lot of irrelevant information. Over the years, C-
Reduce has evolved into a sophisticated hybrid input reduction
tool, utilizing the following transformations.

o Delta debugging using topformflat [16]]

e Various text- and tree-based transformations over the
source code, for example: function inlining, removal of
unused functions and variables, etc.

o Source code pretty printing

C-Reduce has a proven track record of being able to han-
dle even complex C/C++ programs [17]. ReduKtor may
be considered an adaptation of the C-Reduce approach to
the Kotlin programming language; however, it also supports
simultaneous reduction of several Kotlin files, i.e., project-level
input reduction, and uses slicing to improve performance.

Other tools for input reduction of Java or C++ programming
languages include JSlice [13]], Indus [18], JavaBST [19]] and
CodeSurfer [20]. They implement a variety of techniques, in
a way more or less similar to C-Reduce. An example of an
approach, similar to ours, combining delta debugging and static
slicing would be the one by Leitner et al. [21], targeted at
minimizing randomly generated tests for Eiffel.

Some approaches use dynamic slicing instead of static, which
helps with the related activity of program understanding, e.g.,
Gupta et al. [22]. This approach takes a forward dynamic slice
from the delta debugged input and intersects it with a backward
dynamic slice of the erroneous output, creating what is called a
failure-inducing chop. It is used to better guide the bug-finding
activities; we did not have the opportunity to focus on this
problem in our work, and hope to explore it in the future.

A number of tools attempt to perform language-agnostic
input reduction. The classic example of this is Picireny [23], an
implementation of HDD. It performs HDD over the parse trees
produced from an input ANTLR [24] grammar; if your input
can be described with ANTLR, Picireny can try to reduce it.
The advantages and disadvantages of this tool mirror the ones
of HDD: it is universal, but often takes very long to reduce
complex inputs. Other tools based on HDD include [25], [26].

Herfert in [4] presents a language-independent algorithm,
named Generalized Tree Reduction (GTR). It extends HDD,
in an attempt to improve its performance, combining HDD
with a greedy backtracking-based search over a set of generic
tree transformations. These transformations improve the HDD
performance and efficiency, by limiting the number of tree
configurations considered on every level and also allowing to
reduce the tree on several levels simultaneously.

Sun et al. [27] tackle the same problem (HDD performance)
from another angle in their Perses framework. Perses is also
language-agnostic and accepts input grammar in Backus-Naur
form, which is then transformed into an internal grammar
representation. Tree nodes are classified into four classes
(regular, Kleene-Plus, Kleene-Star and Optional); regular
node is replaced with its minimal compatible descendant,
other types of nodes are reduced using a variation of delta
debugging. Evaluation shows Perses produces much smaller
results compared to most other input reduction tools (55-98%
smaller) except for C-Reduce. At the same time, it performs on
average two times faster than C-Reduce. Gharachorlu et al. [14]]
present a new technique called Pardis, which improves Perses
by prioritizing reduction of larger subtrees first. It is shown

to work 1.3x to 7.8x faster than Perses, with less reduction
soundness checks and same overall reduction quality.

VII. CONCLUSION

Despite all the latest advances in software engineering, input
reduction is still a very hard problem, in a lot of cases solved
by tedious manual efforts. The more complex an input structure
is, the more time it takes to reduce the input manually; this is
especially true for compilers, as reducing code requires deep
understanding of the said code.

In this experience paper we present an approach to automatic
input reduction for the Kotlin programming language. The
approach is based on a combination of Kotlin-specific trans-
formations, program slicing, and hierarchical delta debugging,
which are highly synergistic. It also accounts for multi-file
projects by supporting simultaneous reduction of several files.

We have implemented a prototype tool called ReduKtor
based on our approach, and performed its thorough evaluation.
The results show that, to achieve high reduction quality, one
must still employ language-specific transformations together
with general approaches, such as HDD; language-agnostic
techniques, despite their recent advances, still fail to achieve
the efficiency of custom transformations when used standalone.

As for our future work, we hope to explore both theoretical
and practical improvements. The input reduction pipeline
consists of multiple steps, and the order of these steps may
influence the performance; it would be interesting to see if
machine learning could be used to find a quazi-optimal ordering,
depending on the input properties. From the practical side, we
plan to better parallelize the pipeline, allowing to perform
transformations simultaneously, and improve the integration
with Kotlin compiler, to speed up the soundness checks. We
also hope to collaborate with the Kotlin compiler team on
incorporating ReduKtor into their workflow, to further the
understanding of how input reduction performs in practice.

ACKNOWLEDGEMENT

We would like to express our gratitude to the Kotlin compiler
team for their support and feedback, to all the reviewers for
their questions and comments, and to our shepherd for their
help in improving the final version of the paper.

REFERENCES

[1] A. Zeller and R. Hildebrandt, “Simplifying and isolating failure-inducing
input,” IEEE Transactions on Software Engineering, vol. 28, no. 2, pp.
183-200, 2002.

[2] M. Weiser, “Program slicing,” in International Conference on Software
Engineering. 1EEE Press, 1981, pp. 439-449.

[3] G. Misherghi and Z. Su, “HDD: Hierarchical delta debugging,” in
International Conference on Software Engineering. ACM, 2006, pp.
142-151.

[4] S. Herfert, J. Patra, and M. Pradel, “Automatically reducing tree-
structured test inputs,” in International Conference on Automated Software
Engineering. 1EEE, 2017, pp. 861-871.
D. Binkley, N. Gold, M. Harman, S. Islam, J. Krinke, and S. Yoo, “ORBS:
Language-independent program slicing,” in International Symposium on
Foundations of Software Engineering. ACM, 2014, pp. 109-120.
[6] C. D. Sterling and R. A. Olsson, “Automated bug isolation via program
chipping,” Software: Practice and Experience, vol. 37, no. 10, pp. 1061—
1086, 2007.
J. Regehr, Y. Chen, P. Cuoq, E. Eide, C. Ellison, and X. Yang, “Test-
case reduction for C compiler bugs,” in ACM SIGPLAN Conference
on Programming Language Design and Implementation, vol. 47, no. 6.
ACM, 2012, pp. 335-346.

[8] M. Koltsov, “Kotlin fuzzer,” https://github.com/ItsLastDay/KotlinFuzzer,

2017, accessed: 01.05.2019.

[9] “JS Delta,” https://github.com/wala/jsdelta, 2019, accessed: 01.05.2019.
[10] E. W. Myers, “An O(ND) difference algorithm and its variations,”
Algorithmica, vol. 1, no. 1-4, pp. 251-266, 1986.

“Diff match patch library,” https://github.com/google/diff-match-patch,
2019, accessed: 01.05.2019.

V. Kasyanov and I. Mirzuitova, “Slicing: Program slices and their
applications,” p. 116, 2002.

T. Wang and A. Roychoudhury, “Using compressed bytecode traces
for slicing Java programs,” in International Conference on Software
Engineering, 2004, pp. 512-521.

G. Gharachorlu and N. Sumner, “Pardis: Priority aware test case
reduction,” in International Conference on Fundamental Approaches
to Software Engineering. Springer, 2019, pp. 409-426.

X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and understanding
bugs in C compilers,” in ACM SIGPLAN Conference on Programming
Language Design and Implementation, vol. 46, no. 6. ACM, 2011, pp.
283-294.

S. McPeak and D. S. Wilkerson, “Delta debugging implementation,”
http://delta.tigris.org/, accessed: 01.05.2019.

A. Groce, M. A. Alipour, C. Zhang, Y. Chen, and J. Regehr, “Cause
reduction: Delta debugging, even without bugs,” Software Testing,
Verification and Reliability, vol. 26, no. 1, pp. 40-68, 2016.

G. Jayaraman, V. P. Ranganath, and J. Hatcliff, “Kaveri: Delivering the
Indus Java program slicer to Eclipse,” in International Conference on
Fundamental Approaches to Software Engineering. Springer, 2005, pp.
269-272.

M. Abdallah, B. Alokush, M. Alrefaee, M. Salah, R. Bader, and K. Awad,
“JavaBST: Java backward slicing tool,” in International Conference on
Information Technology. IEEE, 2017, pp. 614-618.

P. Anderson, “CodeSurfer/Path inspector,” in International Conference
on Software Maintenance. 1EEE, 2004, p. 508.

A. Leitner, M. Oriol, A. Zeller, I. Ciupa, and B. Meyer, “Efficient unit test
case minimization,” in International Conference on Automated Software
Engineering. ACM, 2007, pp. 417-420.

N. Gupta, H. He, X. Zhang, and R. Gupta, “Locating faulty code
using failure-inducing chops,” in International Conference on Automated
Software Engineering. ACM, 2005, pp. 263-272.

R. Hodovdn, A. Kiss, and T. Gyiméthy, “Tree preprocessing and
test outcome caching for efficient hierarchical delta debugging,” in
International Workshop on Automation of Software Testing. 1EEE,
2017, pp. 23-29.

T. Parr, The definitive ANTLR 4 reference. Pragmatic Bookshelf, 2013.
Y. Lei and J. H. Andrews, “Minimization of randomized unit test cases,”
in International Symposium on Software Reliability Engineering. 1EEE,
2005, pp. 267-276.

A. Orso, S. Joshi, M. Burger, and A. Zeller, “Isolating relevant component
interactions with JINSL,” in International Workshop on Dynamic Systems
Analysis. ACM, 2006, pp. 3-10.

C. Sun, Y. Li, Q. Zhang, T. Gu, and Z. Su, “Perses: Syntax-guided
program reduction,” in International Conference on Software Engineering.
ACM, 2018, pp. 361-371.

[5

[ty

[7

—

(11]
[12]

[13]

[14]

[15]

(16]

(17]

(18]

[19

[20]

[21]

(22]

(23]

[24]
[25]

[26]

(27]

https://github.com/ItsLastDay/KotlinFuzzer
https://github.com/wala/jsdelta
https://github.com/google/diff-match-patch
 http://delta.tigris.org/

	I Introduction
	II Input reduction 101
	III Reduction for Kotlin compiler
	III-A Transformation soundness
	III-B Transformation order
	III-C Reduction criterion
	III-D Project-level simplifications
	III-E Slicing
	III-F Text based transformations
	III-G Syntax tree based transformations
	III-G1 Simplifying elvis operator
	III-G2 Deleting function parameters
	III-G3 TODO() simplification
	III-G4 Inlining
	III-G5 Simplifying if statements

	III-H Hierarchical delta debugging

	IV Implementation
	IV-A Working with Kotlin
	IV-B Parallel processing
	IV-C Caching

	V Evaluation
	V-A Reduction soundness
	V-B Lessons learned
	V-C Real-world adoption

	VI Related work
	VII Conclusion
	References

