
Feature-Interaction Aware Configuration
Prioritization for Configurable Code

Son Nguyen∗, Hoan Nguyen†, Ngoc Tran∗, Hieu Tran∗, and Tien N. Nguyen∗
∗Computer Science Department, The University of Texas at Dallas, USA,
∗Email: {sonnguyen,nmt140230,trunghieu.tran,tien.n.nguyen}@utdallas.edu

†Amazon Corporation, USA, Email: nguyenanhhoan@gmail.com

Abstract—Unexpected interactions among features induce most
bugs in a configurable software system. Exhaustively analyzing all
the exponential number of possible configurations is prohibitively
costly. Thus, various sampling techniques have been proposed
to systematically narrow down the exponential number of le-
gal configurations to be analyzed. Since analyzing all selected
configurations can require a huge amount of effort, fault-based
configuration prioritization, that helps detect faults earlier, can
yield practical benefits in quality assurance. In this paper, we
propose COPRO, a novel formulation of feature-interaction bugs
via common program entities enabled/disabled by the features.
Leveraging from that, we develop an efficient feature-interaction-
aware configuration prioritization technique for a configurable
system by ranking the configurations according to their total
number of potential bugs. We conducted several experiments
to evaluate COPRO on the ability to detect configuration-related
bugs in a public benchmark. We found that COPRO outperforms
the state-of-the-art configuration prioritization techniques when
we add them on advanced sampling algorithms. In 78% of
the cases, COPRO ranks the buggy configurations at the top
3 positions in the resulting list. Interestingly, COPRO is able to
detect 17 not-yet-discovered feature-interaction bugs.

Keywords-Configurable Code, Feature Interaction; Configura-
tion Prioritization; Software Product Lines;

I. INTRODUCTION

Several software systems enable developers to configure
to different environments and requirements. In practice, a
highly-configurable system can tailor its functional and non-
functional properties to the needs and requirements of users. It
does so via a very large number of configuration options [9],
[10] that are used to control different features [5], [29]. For
example, Linux Kernel supports more than 12,000 compile-
time configuration options, that can be configured to generate
specific kernel variants for billions of scenarios.

In a configurable system, features can interact with one an-
other in a non-trivial manner. As a consequence, such interac-
tion could inadvertently modify or influence the functionality
of one another [59]. Unexpected interactions might induce
bugs. In fact, most configuration-related bugs are caused by
interactions among features [2], [25], [42], [46], [56]. Unfortu-
nately, traditional methods cannot be directly applied to work
on configurable code since they focus on detecting bugs in
a particular variant. Furthermore, exhaustively analyzing the
systems is infeasible due to the exponential number of all pos-
sible configurations. In practice, configuration testing is often

performed in a manual and ad-hoc manner by unsystematically
selecting common variants for analysis [26], [39].

To systematically perform quality assurance (QA) for a
highly-configurable system (Figure 1), researchers have pro-
posed several techniques to narrow the configuration space
by eliminating invalid configurations that violate the feature
model of the system, which defines the feasible configurations
via the constraints among the features [17], [18], [27], [30],
[29], [50]. However, the number of configurations that need
to be tested is still exponential. To address this explosion
problem, researchers introduce various configuration selec-
tion strategies. The popular strategies include the sampling
algorithms which achieve feature interaction coverage such as
combinatorial interaction testing [48], [47], [28], [40], one-
enabled [42], one-disabled [2], most-enabled-disabled [52],
statement-coverage [53], to reduce the number of configu-
rations to be analyzed. Still, those algorithms assume the
chances of detecting interaction bugs are the same for all those
combinations. Thus, interaction faults might be discovered
only after the last variants in such samples is tested. Thus,
after configuration selection, the selected set of configurations
need to be prioritized for QA activities [3]. Note that config-
uration prioritization is different from test case prioritization
because after configuration prioritization, any QA activities
can be applied on the ranked list of prioritized configurations,
including test generation and testing, static bug detection, or
manual code review (Figure 1).

To motivate configuration prioritization, let us take an
example of Linux Kernel. In Linux, the number of differ-
ent configuration options is over 12,000, leading to +212K

different configurations. After applying all the constraints on
various combinations of options, the number of valid config-
urations for QA is an exponential number. For configuration
selection, by using six-wise sampling algorithm, the number
is still extremely large, up to +500K configurations [42].
Hence, without configuration prioritization, many bugs that
are dependent on configurations might still be hidden due to
this large configuration space, especially when the resources
for QA (e.g., time and developers’ efforts) are limited.

In practice, developers even do not perform QA activities
on a particular configuration until it was reported to have
defects by the users. In this case, users have already suffered
the consequences of those defects. Due to the large number
of configurations after selection for QA, even compile-time

ar
X

iv
:1

91
1.

07
77

9v
1

 [
cs

.S
E

]
 1

8
N

ov
 2

01
9

Figure 1. The QA Process of Configurable System

errors and flaws cannot be quickly detected by a compiler or
a bug detection in the appropriate configuration. Indeed, in
the Variability Bugs Database (VBDb) [2], a public database
of real-world configuration-related bugs reported for the Linux
kernel, there are 42 out of 98 bugs and flaws that are compile-
time: 25 declaration errors, 10 type errors, and 7 cases of
dead code.

Despite the importance of configuration prioritization, the
state-of-the-art methods for such prioritization are still lim-
ited in detecting feature-interaction bugs. The similarity-based
prioritization method (SP) [3] is based on the idea that dis-
similar test sets are likely to detect more defects than similar
ones [3]. In SP , the configuration with the maximum number
of features is selected to be the first one under test. The
next configuration under test is the configuration with the
lowest feature similarity compared to the previously chosen
one. Despite its success, there are two key problems with SP .
First, SP aims to cover as many features different from the
previous ones. The different features to be considered next
might not be the ones that potentially causes violations. SP
does not examine the interaction between features, which is
the key aspect causing interaction bugs in a variant. Second,
in SP , the quality of the resulted prioritization order strongly
depends on the selection of the first configuration.

In this paper, we propose COPRO, a novel configuration
prioritization approach for configurable systems by analyzing
their code to detect feature-interaction bugs. Our key idea in
COPRO is as follows. In a configurable system, features are
implemented as blocks of code, which are expressed via the
program instructions/operations (e.g., declarations, references,
assignments, etc.) on the data structures/program entities (e.g.,
variables, functions, etc.). Features interaction occurs when the
operations on the program entities shared between the features
have impacts on each other.

Those operations, when the features are enabled or dis-
abled, potentially create a violation(s) that makes the pro-
gram not-compilable or having a run-time error. Detecting
feature interactions via operations would help identify po-
tential feature-interaction bugs. An example of a violation is
that a feature disables the only initialization of a variable
while another enables one of its dereferences (the violation
of “dereferencing an un-initialized variable”). This violation
could lead to a NULL pointer exception. It is clear that the
configuration in which the former feature is disabled and the
latter is enabled, is more suspicious than the one where both
of them are either enabled or disabled. The suspiciousness of a
configuration is indicated via the potential feature-interaction
violations. Hence, a higher number of potential violations
makes the configuration more suspicious. The suspiciousness

Figure 2. A Simplified Bug in Linux Kernel

levels are used to rank the configurations, which helps testing,
bug detection, or other QA activities more efficient.

We conducted several experiments to evaluate COPRO in
two complementary settings. First, in a benchmark setting, we
ran COPRO on the Variability Bugs Database (VBDb) [2].
We compared COPRO with the two state-of-the-art approaches
in random prioritization and similarity-based prioritization
(SP) [3], when we added each of the compared techniques
on top of several state-of-the-art sampling algorithms [42].
We found that COPRO significantly outperforms the other
techniques. In 78.0% of the cases, COPRO ranks the buggy
configurations at the top-3 positions in the list, while the SP
and Random approaches rank them at the top-3 positions for
only 41.3% and 26.1% of the cases. Interestingly, COPRO was
able to detect 17 feature-interaction bugs that were not yet
discovered in VBDb including high-degree interaction bugs,
memory leaking bugs, etc. In the second setting, we connect
COPRO with a compiler to run on large, open-source config-
urable systems, and COPRO can detect 4 newly discovered
bugs and programming flaws.

In summary, in this paper, our main contributions include:
• A formulation of feature-interaction bugs using common

program entities enabled/disabled by the features;
• COPRO: an efficient feature-interaction-aware configura-

tion prioritization technique for configurable systems;
• An extensive experimental evaluation showing the effec-

tiveness of COPRO over the state-of-the-art approaches.

II. MOTIVATING EXAMPLE

In this section, we illustrate the challenges of configuration
prioritization and motivate our solution via an example.

A. Examples of Bugs in Configurable Code

Let us consider the simplified version of the real buggy code
in the Linux kernel [2] at the commit 40410715715 of Linux-
stable at https://git.kernel.org (shown in Figure 2). This version
has more than 5,200 compile-time configuration options and
about 30,000 files. The code in Figure 2 contains two feature-
interaction bugs that were discovered in certain configurations:
• A compile-time error occurs (use the undeclared func-

tion of_platform_populate on line 24) in the vari-
ants where CONFIG_TWL4030_CORE, CONFIG_OF_DEVICE,

and CONFIG_SPARC are enabled.
• A run-time error occurs (dereferencing the NULL pointer ops

on line 12) in the configurations where CONFIG_TWL4030-
_CORE, CONFIG_OF_DEVICE are enabled, and CONFIG_SPARC

and CONFIG_OF_IRQ are disabled.
For this example in Linux kernel, brute-force testing of

all possible variants to discover these interaction bugs faces
the problem of combinatorial explosion in the exponential
configuration space (up to 25,200 possible configurations). With
a huge number of configurations and without an assessment
of the potential buggy level of those configurations, the QA
process (e.g., debugging) will require a great deal of effort
from developers. To deal with such large number of configu-
rations, first, one will eliminate the invalid configurations that
violate the constraints among the features in the system [17],
[18], [27], [29], [30], [50]. However, the number of configu-
rations after this step is still exponential. To balance between
bug detection rate and the number of configurations to be
examined, the configuration selection process is applied. An
example of selection algorithms is the k-way combinatorial
approach [28], [40], [47], [48], which considers the system
under test as a blackbox and selects a subset with at most k
features. However, even with a small value of k, e.g., k = 6,
inspecting a very large number of selected configurations
without prioritizing the variants most likely having defects
is still inefficient. Therefore, one would need a prioritization
strategy to rank the configurations to be examined.

The current state-of-the-art configuration prioritization al-
gorithm is the similarity-based configuration prioritization
(SP) [3]. Unfortunately, SP is still ineffective in detecting
feature-interaction bugs. Let us illustrate this via our example.
Table I shows the partial set of configurations chosen by 4-
wise sampling algorithm and prioritized by SP [3]. The variant,
where TWL4030_CORE, IRQ_DOMAIN, OF_IRQ, and OF_DEVICE

are enabled, and SPARC is disabled, with the maximum num-
ber of features is selected to be examined first by the SP
algorithm. For the next configuration, the configuration that
has the minimum number of similar features compared to
the previously selected configuration is picked (i.e., the one
in which TWL4030_CORE, IRQ_DOMAIN, OF_IRQ, and OF_DEVICE

are disabled, and SPARC is enabled). Although this second
configuration is most dissimilar to the first one, it does
not contain the features whose interactions cause violations,
and there is no bug revealed by the second configuration.
As a result, by SP’s strategy, the result is not an efficient

Table I
THE CONFIGURATIONS ORDERED BY SP ALGORITHM [3] FOR FIGURE 2

OF_IRQ IRQ_DOMAIN OF_DEVICE
TWL4030
_CORE

SPARC

1 T T T T F
2 F F F F T
3 F T F F T
4 F T T T F
5 T T F T T
6 T T T T T
7 F T T T T

order for inspection because the aforementioned compile-time
and run-time errors are not detected until the 4th and 6th

configurations are inspected respectively. The configuration
with both interaction bugs would only be discovered via the
7th configuration. In our experiment (will be presented in
Section V), 36.2% of the feature-interaction bugs in the public
benchmark, the Variability Bugs Database (VBDb) [2], cannot
be revealed until at least 10 configurations are inspected in the
resulting list ranked by the SP approach.

B. Observations

Let us consider the code in Figure 2 with the two fol-
lowing feature interactions that can cause the violations
of program semantics: 1) the declaration of the function
of_platform_populate in feature L (line 5) and its use in
Z (line 24), and 2) the assignment of ops in feature Y (line 19)
and its reference in K (line 22). There are two potential bugs:
1) the use of the function of_platform_populate without
its declaration; and 2) the reference to the variable ops

without its initiation. The configuration that enables Z and dis-
ables L (CONFIG_OF_DEVICE=T, CONFIG_SPARC=T) and enables
K and disables Y (CONFIG_TWL4030_CORE=T, CONFIG_OF_IRQ=F)
should be inspected earlier to detect the two bugs. Based on
this observation, those interactions between features should
be comprehended to quickly discover these above interaction
bugs. That motivates us to propose an approach that first
analyzes the source code to more precisely detect the potential
interactions among features, and then assesses the probabilities
to be faulty of the configurations to prioritize to inspect/test
them in a more efficient order.

C. COPRO Overview

Detecting all interactions among features in a sound and
complete manner requires an analysis on all combinations
of configuration options. That is prohibitively expensive and
impractical. To deal with this problem, we statically analyze
the source code to locally and heuristically identify the inter-
actions between features via the shared program entities and
the operations on them. For example, L shares the function
of_platform_populate with Z (which is declared on line 5
and used on line 24) and K interacts with Y via the variable
ops (which is assigned on line 19 and referred to on line 22).
Importantly, the operations such as declaration, assignment,
or references on the shared entities could become invalid

when certain features (via configuration options) are enabled
or disabled. As a consequence, that could lead to a violation.
For instance, a violation occurs when CONFIG_TWL4030_CORE,
CONFIG_OF_DEVICE, and CONFIG_SPARC are enabled because
the function of_platform_populate would be used (K and Z

are enabled) while its declaration is turned off (L is disabled).
The other violation occurs in the case that CONFIG_TWL4030_-
CORE is true, that enables K, while Y is disabled as
CONFIG_OF_IRQ is disabled. This would induce the bug of
dereferencing the NULL pointer on variable ops (line 12). With
our strategy, the 7th variant in Table I is more suspicious than
the 4th, 6th, and any other ones. Generally, the suspiciousness
of a variant is determined by the number of violations that it
might induce. Finally, a configuration can be ranked according
to its suspiciousness score, thus, we could create a prioritiza-
tion order of variants that maximizes fault detection rate.

III. FORMULATION

Let us formulate the problem of feature-interaction-aware
configuration prioritization.

A. Program Entities and Operations

In a program, we are interested in the program entities and
the operations performed on them.

Definition 1. (Program Entity). A program entity is a pro-
gram element that is uniquely identified with a name and a
scope. The scope and the name of an entity are used together
as the identity of the entity.

In our formulation, we are interested in two types of pro-
gram entities: variable and function. An entity is represented
in the form of [scope.ent_name], where scope and ent_name

are the scope and the name of the program entity respectively.
For example, the code in Figure 2 contains the variables
GLOBAL.irq_domain_simple_ops, twl_probe.ops, the func-
tion GLOBAL.twl_probe, etc.

We define 4 types of operations on variables and functions.

Definition 2. (Program Operation). We define four types of
operations on variables and functions: declare, assign, use
and destruct. Let OP be the set of program operations, OP =
{declare, assign, use, destruct}. All of those four operations
are applicable to variables, while declare and use are only
applicable on functions.

For variables, the assign operation is used to assign a non-
null value to a variable. A NULL assignment to a variable is
treated as a special case of an assignment. In Figure 2, function
GLOBAL.of_platform_populate_probe is declared at line 5,
and used at line 24. twl_probe.ops is declared (line 17),
assigned a value (line 19), and then used/referred to (line 22).

B. Configurations and Features

A configurable system contains several segments of code
that are present in any variant that implements its basic
functionality. Those segment form the core of the system.

In practice, a configurable system usually provides a large
number of configuration options to configure several optional

segments of code to be present or absent, in addition to the
core of the system. Those optional segments of code are aimed
to realize the optional features of the system. For example, in
the Linux Kernel, the configuration options have the prefix of
CONFIG_, and they can have different values. Without loss of
generality, we assume that the value of a configuration option
is either true(T) or false(F) (We can consider the entire
conditional expressions of non-boolean options as boolean
ones, e.g., CONFIG_A>10 as CONFIG_A>10=T/F).

Definition 3. (Configuration Option). A configuration option
(option for short) is an element that is used to configure the
source code of a configurable system, such that the option’s
value determines the presence or absence of one or more
segments of code.

In a configurable system, the presence or absence of code
segments is dependent on the values of multiple options. In
Figure 2, the lines 19 and 20 are presented only when both
CONFIG_TWL4030_CORE and CONFIG_OF_IRQ are T. Thus, at line
19, irq_domain_simple_ops is potentially used to assign as a
value to the variable ops when both of those options are T.

Definition 4. (Selection Functions). In a configurable system,
we define selection functions as the functions from O × V to
2P , where O is the set of configuration options, V = {T, F},
and P is the set of program entities used in the code of the
configurable system. We define four selection functions:
• α : O × V → 2P , α(o, v) = D, where o ∈ O, v ∈ {T, F},

and D is the set of entities potentially declared if o = v.
• β : O × V → 2P , β(o, v) = D, where o ∈ O, v ∈ {T, F},

and D is the set of entities potentially assigned if o = v.
• γ : O × V → 2P , γ(o, v) = D, where o ∈ O, v ∈ {T, F},

and D is the set of entities potentially used if o = v.
• δ : O × V → 2P , δ(o, v) = D, where o ∈ O, v ∈ {T, F},

and D is the set of entities potentially destructed if o = v.

For example, in Figure 2:
• α(CONFIG_SPARC, F)={GLOBAL.of_platform_populate,
of_platform_populate.node}

• β(CONFIG_OF_IRQ, T)={twl_probe.ops}
• γ(CONFIG_OF_IRQ, T)={GLOBAL.irq_domain_simple_
ops}

Definition 5. (Configuration). Given a configurable system,
a configuration is a specific selection of configuration options,
which defines a variant of the system.

Configuration options are used to control the features that
are represented by certain segments of code. For example, in
Figure 2, the feature represented by the segment of code X

(feature X) is enabled if the value of the configuration option
CONFIG_IRQ_DOMAIN is true, whereas feature Y is enabled if
both CONFIG_OF_IRQ and CONFIG_TWL4030_CORE are true.

Definition 6. (Feature). In a configurable system, a feature f
is implemented by applying program operations on a set of
program entities, whose presence/absence is controlled by
certain configuration options. We denote it by f ∼ OP × ρ

Table II
DIFFERENT KINDS OF FEATURE INTERACTIONS

Kind of Interaction Condition
1 declare-declare ∃e ∈ ρ1 ∩ ρ2, e is declared in both f1 and f2
2 declare-assign ∃e ∈ ρ1 ∩ ρ2, e is declared in f1 and then assigned in f2
3 declare-use ∃e ∈ ρ1 ∩ ρ2, e is declared in f1 and used in f2
4 declare-destruct ∃e ∈ ρ1 ∩ ρ2, e is declared in f1, and destructed in f2
5 assign-assign ∃e ∈ ρ1 ∩ ρ2, e is assigned in both f1 and f2
6 assign-use ∃e ∈ ρ1 ∩ ρ2, e is assigned in f1 and used in f2
7 assign-destruct ∃e ∈ ρ1 ∩ ρ2, e is assign in f1 and destructed in f2
8 use-destruct ∃e ∈ ρ1 ∩ ρ2, e is used in f1 and destructed in f2
9 destruct-destruct ∃e ∈ ρ1 ∩ ρ2, the entity is destructed in both f1 and f2

where OP is the set of program operations and ρ is the set
of program entities.

A special case of features is that f is the core feature (F),
A∪B ∪Γ∪∆ = ρ, where A,B,Γ,∆ are the sets of program
entities that are declared, assigned, used and destructed in the
core system. F is not controlled by any configuration option.

C. Feature Interactions

In a configurable system, a feature may influence or mod-
ify (often called interact with) the functions offered by
other features through shared program entities that are
used to implement the features. For example, features X,
K and Z interact with one another via the variables GLO-

BAL.irq_domain_simple_ops and twl_probe.temp. The man-
ners the features interacting with each other depend on how
the shared entities are operated. For example, feature Y assigns
&irq_domain_simple_ops to ops and feature K uses that vari-
able (line 22). If no assignment was done in Y, dereferencing
in K would be invalid, causing a NULL pointer exception.

Multi-way feature-interaction. We present only on the in-
teractions between pairs of features because the interactions
between more than two features can be modeled as the opera-
tions on the shared variables between pairs of features. Let us
provide a sketch of the proof for this statement. We assume
that there exists an interaction among m features (m > 2). For
simplicity, we consider the case of m = 3, and the interaction
among f1 ∼ OP × ρ1, f2 ∼ OP × ρ2 and f3 ∼ OP × ρ3.
There are two cases of this interaction. First, there exists an
entity that shared by all 3 features, ρ1∩ρ2∩ρ3 = ω 6= ∅. Since
ρ1∩ρ2 ⊃ ω and ρ2∩ρ3 ⊃ ω, identifying interactions between
pairs directly captures the interaction among 3 features. The
second case is that ρ1∩ρ2 = ω1, ρ2∩ρ3 = ω2 and ω1∩ω2 = ∅.
Meanwhile, f3 is influenced by f1 (because the roles of f1 and
f3 features in this case are equal). This leads to that there exist
entities: e1 ∈ ω1, e2 ∈ ω2, such that e2 = p(e1), where p is
a value propagation function. This means the value of e1 is
propagated to e2, and that influences f3. Hence, the interaction
among 3 features is still captured by determining interactions
between pairs of features.

For instance, the interaction among features X, K and Z can
be broken down into the shared program entities between
two pairs of features as follows: (X, K) via the variable
GLOBAL.irq_domain_simple_ops, and (K, Z) via the variable

twl_probe.temp. Thus, our solution can still model the inter-
actions with more than two features via the operations on their
shared program entities. From now on, we refer to a feature
interaction as an interaction determined via the shared program
entities between a pair of features.

In COPRO, we focus on the feature interaction through the
shared program entities. The feature interactions when the
variables are associated with the external data such as when
they interfere with each other’s behaviors on files or databases
are beyond the scope of our static analysis-based solution.
Similarly, we will not detect the interactions through pointers
or arrays in this work. As a consequence, if both features use
(refer to) a program entity, they will not change the program’s
state. Thus, there is no interaction between two features if they
only use shared functions and variables.

With the above design focuses, in COPRO, the interactions
between two features f1 ∼ OP × ρ1, and f2 ∼ OP × ρ2 with
ρ1∩ρ2 6= ∅, can be categorized into nine kinds of interactions
that are displayed in Table II (the use-use case is eliminated
as explained).

D. Feature Interaction Detection

In a configurable system, the features (except the core
features of the system) are controlled by certain configuration
options. Thus, if there exists an interaction among the features,
the interaction will be one of the following:
• declare-declare, there exist two option o1, o2 and their

selected values v1, v2, such that α(o1, v1)∩α(o2, v2) 6= ∅
• declare-assign, there exist two option o1, o2 and their

selected values v1, v2, such that α(o1, v1)∩β(o2, v2) 6= ∅
• declare-use, there exist two option o1, o2 and their se-

lected values v1, v2, such that α(o1, v1) ∩ γ(o2, v2) 6= ∅
• declare-destruct, there exist two option o1, o2 and their

selected values v1, v2, such that α(o1, v1)∩δ(o2, v2) 6= ∅
• assign-assign, there exist two option o1, o2 and their

selected values v1, v2, such that β(o1, v1)∩β(o2, v2) 6= ∅
• assign-use, there exist two option o1, o2 and their selected

values v1, v2, such that β(o1, v1) ∩ γ(o2, v2) 6= ∅
• assign-destruct, there exist two option o1, o2 and their

selected values v1, v2, such that β(o1, v1)∩δ(o2, v2) 6= ∅
• use-destruct, there exist two option o1, o2 and their se-

lected values v1, v2, such that γ(o1, v1) ∩ δ(o2, v2) 6= ∅
• destruct-destruct, there exist two option o1, o2 and their

selected values v1, v2, such that δ(o1, v1)∩ δ(o2, v2) 6= ∅

Based on the above rules, our feature-interaction detection
algorithm statically analyzes the source code and configuration
options, and then computes the sets α, β, γ, and δ for
any two options o1 and o2. For example, we can detect a
declare-declare interaction between 2 features if there exists
2 options o1 and o2, such that α(o1, v1) ∩ α(o2, v2) 6= ∅,
where v1, v2 are their selected values. Other detection rules are
similarly derived. For example, because β(CONFIG_OF_IRQ,
T)∩γ(CONFIG_TWL4030_CORE, T) = {ops}, there is a potential
assign-use interaction among features. Thus, in this case, the
actual assign-use interaction among Y and K exists.

For the core feature, if F and other features interact
with one another, depending on the kinds of the interac-
tion, there exists a selection v of an option o, such that
α(o, v), β(o, v), γ(o, v), δ(o, v) intersect with A,B,Γ,∆, i.e.,
intersecting with the entities in the core. Interactions among
core features and others are similarly identified.

In this version of COPRO, we formulate feature interaction
statically through the completed set of operations on the
entities that are shared between features. More sophisticated
interactions relevant to pointers and external data such as files
or databases can be detected by using different data structures
in the same principle and using other types of analysis.

IV. CONFIGURATION PRIORITIZATION

A. Overview

In general, to prioritize a given set of configurations under
test, our algorithm assigns a suspiciousness score to each
configuration. The suspiciousness score is determined via the
number of the potential feature-interaction bugs in different
kinds that the variant corresponding to that configuration might
potentially have.

Feature-interaction bugs can be induced by any kinds of
interaction. Table III shows 10 different kinds of feature-
interaction bugs that are potentially caused by the respec-
tive kinds of interactions listed in Table II of Section III.
The interactions in Table III are called sensitive interactions
with their suspicious selection of options. A configuration
containing a suspicious selection potentially has the corre-
sponding violation. For example, at line 6, if β(o1, v1) ∩
γ(o2, v2) 6= ∅, there is an assignment-use potential interac-
tion between f1 and f2. When o1 = v′1, o2 = v2, where
v′1 6= v1, f1 might be disabled while f2 is enabled, which
poses a violation of use without assignment. In Figure 2,
because α(CONFIG_SPARC, F) ∩ γ(CONFIG_OF_DEVICE,T) =
{GLOBAL.of_platform_populate}, the program might not be
compiled if CONFIG_SPARC = T and CONFIG_OF _DEVICE = T

(use without declaration).

B. Detailed Algorithm

The listing 1 shows the pseudo-code of COPRO, our feature-
interaction aware configuration prioritization algorithm. Given
a configurable system, we first extract the set of options used
in the system. Then, for each selection v of each option o, the
sets α(o, v), β(o, v), γ(o, v), and δ(o, v) are computed via the
function CollectProgramEntities (lines 4–5). After that, for

Algorithm 1 COPRO: Feature-Interaction aware Configuration
Prioritization Algorithm

1: procedure DETECTSUSPICIOUSSELECTIONS(Code)
2: Options = ExtractOptions(Code)
3: for all o ∈ Options do
4: TSelc = CollectProgramEntities(o, T, Code)
5: FSelc = CollectProgramEntities(o, F, Code)
6: Selections.add(TSelc)
7: Selections.add(FSelc)

8: for all selc ∈ Selections do
9: for all other ∈ Selections do

10: if ExistInteraction(selc, other) then
11: if IsSensitiveInteraction(selc, other) then
12: ss = ExtractSuspSelection(selc, other)
13: SuspiciousSelections.add(ss)

14: procedure PRIORITIZE(Configurations, SuspSelections)
15: for all c ∈ Configurations do
16: SScore = CaculateSuspScore(c, SuspSelections)
17: SetScore(c, SScore)

18: OrderBySuspiciousnessScoreDesc(Configurations)

each pair of option selections, it detects the potential interac-
tions among the features and checks whether the interactions
are sensitive as described in Table III. Sensitive interactions are
used to specify suspicious selections. This information is used
to compute the suspiciousness score for each configuration
after configuration selection (line 16). This score is the number
of suspicious selections contained by a configuration, and
equal to the number of potential bugs that the corresponding
variant might have. Finally, the configurations are ranked
descendingly by their suspiciousness scores.

C. Static Analysis

In this version of COPRO, to compute α, β, γ, and δ for
the value v of an option o in CollectProgramEntities,
COPRO analyzes the code by using TypeChef, a variability-
aware parser [33]. For a given configurable code, TypeChef
is used to analyze and generate the corresponding variability-
aware control-flow graph. In a variability-aware control-flow
graph, the nodes refer to statements and the edges, which
are annotated with the corresponding presence conditions,
refer to the possible successor statements (conditional state-
ments). For the example in Figure 2, the successor of the
statement at line 22 is the conditional statement at line 24
if CONFIG_OF_DEVICE is on, otherwise the statement at line
26 is the direct successor of the statement at line 22. After
that, COPRO analyzes every conditional statements in the
generated control-flow graph to identify the entities that are
either declared, defined, used, or destructed in the statement
and compute α, β, γ, and δ for the options and its values in the
corresponding presence conditions. For the statement at line
24 in Figure 2, if the value of CONFIG_OF_DEVICE is T, the
variable status is defined by using of_platform_populate

and n. This leads to that the variable status is in
β(CONFIG_OF_DEVICE,T), and γ(CONFIG_OF_DEVICE,T) con-
tains the function of_platform_populate and the variable n.

Table III
DIFFERENT KINDS OF FEATURE-INTERACTION DEFECTS

Kind of interaction Detection condition Suspicious selection Potential violation
1 declare-declare α(o1, v1) ∩ α(o2, v2) 6= ∅ o1 = v1, o2 = v2 Declaration duplication
2 declare-use α(o1, v1) ∩ γ(o2, v2) 6= ∅ o1 = v′1, o2 = v2 Use without declaration
3 declare-use α(o1, v1) ∩ γ(o2, v2) 6= ∅ o1 = v1, o2 = v′2 Unused variables/functions
4 declare-destruct α(o1, v1) ∩ δ(o2, v2) 6= ∅ o1 = v′1, o2 = v2 Destruction without declaration
5 declare-assign β(o1, v1) ∩ β(o2, v2) 6= ∅ o1 = v1, o2 = v2 Assignment without declaration
6 assign-use β(o1, v1) ∩ γ(o2, v2) 6= ∅ o1 = v′1, o2 = v2 Use without assignment
7 assign-destruct β(o1, v1) ∩ δ(o2, v2) 6= ∅ o1 = v′1, o2 = v2 Destruction without definition
8 assign-destruct β(o1, v1) ∩ δ(o2, v2) 6= ∅ o1 = v1, o2 = v′2 Memory leak
9 destruct-destruct δ(o1, v1) ∩ δ(o2, v2) 6= ∅ o1 = v1, o2 = v2 Destruction duplication
10 destruct-use δ(o1, v1) ∩ γ(o2, v2) 6= ∅ o1 = v1, o2 = v2 Use after destruction

Table IV
CONFIGURATION OPTIONS AND THE VALUES OF 4 SELECTION FUNCTIONS α, β , γ , AND δ FOR THE EXAMPLE IN FIGURE 2

Option Value α β γ δ
OF_IRQ T twl_probe.ops GLOBAL.irq_domain_simple_ops

IRQ_DOMAIN T GLOBAL.irq_domain_simple_ops,
GLOBAL.irq_domain_add,
irq_domain_add.irq,
irq_domain_add.ops

irq_domain_add.irq irq_domain_add.ops

OF_DEVICE T GLOBAL.of_platform_populate

SPARC F GLOBAL.of_platform_populate,
of_platform_populate.node,
of_platform_populate.t

TWL4030_CORE T GLOBAL.twl_probe, twl_probe.n,
twl_probe.status, twl_probe.temp,
twl_probe.ops

twl_probe.node,
twl_probe.temp,
twl_probe.status,
twl_probe.ops

GLOBAL.irq_domain_simple_ops,
GLOBAL.of_platform_populate,
GLOBAL.irq_domain_add,
twl_probe.node, twl_probe.temp,
twl_probe.status, twl_probe.ops

Table V
TOP-3 CONFIGURATIONS RANKED BY COPRO FOR FIGURE 2

Rank by Rank OF_ IRQ_ OF_x SPARC TWL4030_ Score
COPRO by SP IRQ DOMAIN DEVICE CORE
1 7 F T T T T 3
2 6 T T T T T 2
3 4 T F T T F 2

D. Running Example

Let us illustrate our algorithm via the example shown in
Figure 2. COPRO computes the sets of the selection functions
for each option, and the result is shown in Table IV. Based on
the description on Table III, the suspicious selections include:
• CONFIG_OF_IRQ=F, CONFIG_TWL4030_CORE = T

• CONFIG_SPARC=T, CONFIG_TWL4030_CORE = T

• CONFIG_SPARC=T, CONFIG_OF_DEVICE = T

• CONFIG_IRQ_DOMAIN=F, CONFIG_OF_IRQ = T

• CONFIG_IRQ_DOMAIN=F, CONFIG_TWL4030_CORE = T

Based on the suspicious selections, COPRO assigns the sus-
piciousness scores and ranks all the configurations accordingly.
Table V shows the ranked configurations for our example with
their corresponding scores. The top-ranked configuration by
COPRO is the 7th configuration in the order generated by
the ACTS tool [58], a combinatorial test generation tool (see
Table I). The configuration covers both interaction bugs. Thus,
after inspecting/testing the first configuration, those two bugs
will be detected. In other words, COPRO effectively ranks
higher the potential buggy variant than the SP algorithm.

V. EMPIRICAL EVALUATION

To evaluate our configuration prioritization approach, we
sought to answer the following:

RQ1 [Performance against a benchmark]. How does COPRO
perform on Variability Bugs Database (VBDb) [2], a
public dataset of bugs in configurable code?

RQ2 [Comparison]. How does COPRO improve over the base-
line random prioritization and similarity-based prioritiza-
tion [3] approaches when we add each of them on top of
advanced sampling configuration selection algorithms?

RQ3 [Performance in the wild]. How does it perform on not-
yet discovered interaction bugs in configurable systems?

RQ4 [Time Complexity] What is COPRO’s running time?
To answer RQ1 and RQ2, we conducted an experiment to

evaluate COPRO in a controlled environment with the VBDb
public benchmark of configuration-related bugs [2]. Answer-
ing RQ2 helps evaluate how much improvement COPRO
gains over the random prioritization and the state-of-the-art
similarity-based prioritization [3], when adding COPRO on
top of the advanced configuration selection techniques [42].
We answer RQ3 to evaluate COPRO in the real-world set-
ting. While the bug detection tools cannot directly work on
configurable code, with COPRO, we run them on the list of
suspicious configurations ranked by COPRO.

A. Subject Systems

To evaluate COPRO, we used two datasets in two dif-
ferent experiments. To answer RQ1 and RQ2, we used the

Table VI
SUBJECT SYSTEMS IN VARIABILITY BUGS DATABASE

Systems MinOpt MaxOpt MinFile MaxFile #Bugs
Linux 3463 5504 18886 34012 43
Busybox 349 1449 236 799 18
HTTPD 602 791 264 426 23
Marlin 243 715 38 135 14

Variability Bugs Database (VBDb) [2] as a benchmark. This
publicly available bug database has 98 manually verified
configuration-related bugs in different versions of highly-
configurable systems: the Linux kernel [38], BusyBox [13],
Marlin [41], and Apache HTTPD [4]. Because the VBDb con-
tains configuration-related bugs other than feature-interaction
ones, we kept only 46 feature-interaction bugs in those sys-
tems. Table VI shows their information including the minimum
and maximum numbers of configuration options (MinOpt, Max-
Opt), the minimum and maximum numbers of files (MinFile,
MaxFile), and the number of feature-interaction bugs (Bugs).

For the second experiment of RQ3, we selected an open-
source configurable system with a long history: libpng [36]
v0.89 with 40KLOC in 19 files and 80 options, and xterm [57]
v2.24 with 50KLOC in 50 files, and 501 configuration options.

B. Experimental Procedure

For each known buggy version of a subject system, we
chose to include the maximum number of files of 100 and the
maximum number of inclusion level of 3 (due to the limitation
of the TypeChef tool [32] that we used for variability-aware
parsing). We first applied a configuration selection process.
That is, to produce the sampled sets of configurations for
each buggy version, we ran sampling algorithms to select a
subset of configurations. For each buggy system version and
a particular sampling algorithm, we ran COPRO on the set
of configurations selected by a sampling algorithm. For com-
parison, we ran the random prioritization and similarity-based
prioritization techniques [3] on the same configurations.

To evaluate COPRO on detecting not-yet reported interaction
bugs in VBDb, we first ran it on a subject system to achieve
the ranked list of the configurations. We also collected and
analyzed the sensitive interactions and potential suspicious
selections reported by our tool to detect unknown bugs. For the
top-ranked configurations in the list with the reported potential
suspicious interactions, we used a compiler to detect bugs.

C. Evaluation Metric

For evaluation, we adopted the Average Percentage Faults
Detected (APFD) [51], a widely-used metric in evaluating
test prioritization techniques. APFD is originally applied for
evaluating the average percentage bugs detected by a test suite.
In this work, since we used COPRO with a bug detection tool,
we used APFD to measure prioritization effectiveness in term
of the rate of bug detection of a configuration set, which is
defined by the following formula:

APFD = 1−
∑m

i=1 CFi

n×m
+

1

2× n

Table VII
AVERAGE APFD FOR COPRO VERSUS SP AND Random PRIORITIZATION

(ADDED ON TOP OF ADVANCED SAMPLING ALGORITHMS)

APFD AVG Rank
Random SP COPRO Random SP COPRO

Pairwise 0.68 0.75 0.93 5.12 4.11 1.55
Three-wise 0.83 0.89 0.96 7.80 4.79 2.39
Four-wise 0.88 0.94 0.97 11.57 6.26 3.77
Five-wise 0.89 0.93 0.97 11.03 6.74 3.49
One-enabled 0.64 0.69 0.91 36.87 30.55 13.19
One-disabled 0.60 0.56 0.88 37.34 38.21 14.76
Most-enabled
-disabled 0.52 0.55 0.57 1.70 1.43 1.43

Statement
-coverage 0.61 0.57 0.88 37.30 38.25 17.80

where n and m denote the number of configurations and
the number of bugs, respectively. CFi is the smallest number
of configurations in the list, which is needed to be inspected
to detect the ith bug. The APFD score is from 0 to 1. For the
fixed numbers of faults and configurations, the higher APFD,
the higher fault-detection rate and the better ranking order.

D. Effectiveness and Comparison (RQ1 and RQ2)

1) Comparative Results: Table VII shows the comparative
results in term of the average APFD and average rank (AVG
Rank) between COPRO and the state-of-the-art prioritization
methods, when we ran all of them on the results of the ad-
vanced sampling techniques [42]. As seen, COPRO achieves
2–32% higher APFD (14.9% on average) compared to
SP and 5–28% higher (17.8% on average) compared to
Random approach. COPRO also achieves much better ranking
compared to SP and Random. For example, using COPRO
with One-disabled, which is recommended by the authors of
VBDb [2], the interaction bugs are revealed after no more than
15 configurations on average in the resulting ranked list by
COPRO are inspected, instead of more than 37 configurations
in the lists prioritized by SP and Random. Especially, in 78.0%
of the cases, COPRO ranks the buggy configurations at
the top-3 positions in the list, while the SP and Random
approaches rank them at the top-3 positions for only 41.3%
and 26.1% of the cases.

We can also see that COPRO outperforms the SP and Ran-
dom prioritization techniques consistently on the resulting con-
figurations selected by various advanced sampling algorithms.
That is, if one uses COPRO to rank the configurations selected
by advanced algorithms, the inspection order by COPRO is
better than those of the SP and Random prioritization. Note
that in the case of Most-enabled-disabled [42], for each buggy
system, there are only two configurations selected by the
sampling algorithm, and 23 out of 46 bugs cannot be revealed
by the selected set of configurations. That makes all three
prioritization approaches do not perform well in this case
and achieve nearly equal average APFDs and ranks. In brief,
COPRO is able to rank the buggy configuration in a much
higher rank than SP and Random approaches. In other words,
if we add COPRO as the prioritization technique on top of the
most advanced sampling algorithms, we would achieve a more

effective solution than adding other prioritization approaches
upon the selection algorithms.

2) Further Analysis: We further studied the cases in which
COPRO correctly ranks the buggy configurations at the top
positions. For the cases with correct ranking (1–3), we found
that in 77% (30 out of 39) of these bugs, the features interact
with one another via shared program entities. Thus, our rules
in Section III are applicable to detect the majority of feature-
interaction bugs in the public VBDb benchmark.

We also found an interesting scenario of indirect feature-
interactions that COPRO detected. In some of those 30
cases, COPRO identifies sensitive interactions among features
indirectly via entities. For example, variable x is initialized in
the feature controlled by option A with A=T. x is assigned to y in
the feature enabled if the option B is on. Then, y is referred to
in another place that controlled by option C, C=T. In this case, if
A=F, B=T, and C=T, a null pointer exception might be induced.
In this case, since of the propagation of variables’ values,
the interaction between two features controlled by A and C

can be captured by COPRO via the feature controlled by B.
Thus, the buggy configurations are ranked on the top. This
also indicates COPRO’s capability in detecting configurations
containing bugs relevant to more than two features.

3) Examples on Feature-Interaction Bugs: Let us present
the configuration-related bugs involving high-degree feature
interactions and the cases that COPRO detected the feature-
interaction bugs not-yet-discovered in the VBDb benchmark.

A bug involving 6 configuration options. Figure 3 shows a
bug in Apache HTTPD at commit 2124ff4. The bug is in the
file mod_cgid.c. In this example, the bug is observed when
RLIMIT_CPU, RLMIT_NPROC, RLIMIT_DATA, RLIMIT_VMEM, and
RLIMIT_AS are disabled, while RLIMIT_NPROC is enabled. With
the selections of the combinations of those options, the field
limits of any variable of the type cgid_red_t (e.g. req) used
in any features is not declared (line 3). Meanwhile, the filed
limits is used in req.limits on line 12 when RLIMIT_NPROC

is enabled. By identifying the suspicious interactions between
the features controlled by the pairs of RLIMIT_NPROC and each
of these 5 other options via the field req.limits, COPRO
specifies that the selection that RLIMIT_NPROC = T, RLIMIT_CPU
= F, RLMIT_NPROC = F, RLIMIT_DATA = F, RLIMIT_VMEM = F,
and RLIMIT_AS = F is more suspicious than all other selections
containing those six configuration options.

Not-yet discovered feature-interaction bugs in VBDb
benchmark. Interestingly, while using VBDb, we were able
to use COPRO detect the interaction bugs that were neither
discovered and reported in those systems nor in VBDb. In
total, we found 17 such feature-interaction bugs including
12 using-without-declaration bugs, 2 memory-leak bugs, 2
declaration duplication bugs, and 1 dead code issue.

Figure 4 shows 2 not-yet-discovered bugs: a memory leak
issue and an assignment without declaration bug at commit
fac312d78bf (which also has use without declaration bug and
destruction without declaration bug). The assignment without
declaration bug occurs only if BB_FEATURE_LS_SORTFILES = F

1 typedef struct {
2 #if defined (RLIMIT_CPU) || defined (RLMIT_NPROC) ||

defined (RLIMIT_DATA) || defined(RLIMIT_VMEM) ||
defined(RLIMIT_AS)

3 cgid_rlimit_t limits;
4 #endif
5 } cgid_req_t;
6 static apr_status_t send_req(){
7 cgid_req_t req = {0};
8 #if defined(RLIMIT_DATA) || defined(RLIMIT_VMEM) ||

defined(RLIMIT_AS)
9 req.limits.limit_mem_set = 1;

10 #endif
11 #ifdef RLIMIT_NPROC
12 req.limits.limit_nproc = 0;
13 #endif
14 }

Figure 3. A 6-way Feature-Interaction Bug in Apache Httpd

1 void showdirs(struct dnode **dn, int ndirs){
2 #ifdef BB_FEATURE_LS_SORTFILES
3 int dndirs;
4 struct dnode **dnd;
5 #endif
6 subdnp = list_dir(dn[i]->fullname);
7 #ifdef CONFIG_FEATURE_LS_RECURSIVE
8 dnd = splitdnarray(subdnp, nfiles);
9 dndirs = countsubdirs(subdnp, nfiles);

10 #ifdef CONFIG_FEATURE_LS_SORTFILES
11 shellsort(dnd, dndirs);
12 #endif
13 showdirs(dnd, dndirs);
14 free(dnd);
15 free(subdnp);
16 #endif
17 }

Figure 4. Two Not-yet-discovered Bugs in Busybox

and CONFIG_FEATURE_LS_RECURSIVE = T. In this case, dndirs
and dnd are not declared since lines 3–4 are not included, but
they are used at lines 11 and 13. Moreover, dnd is destructed
on line 15. This bug was fixed at commit ea224be6aa8 (in
almost 6 years later). 3 years after that, a memory leak
issue was reported and fixed at commit ffd4774ad25: as
CONFIG_FEATURE_LS_RECURSIVE is disabled, the memory con-
trolled by subdnp is initialized at line 9 and not released. With
COPRO, it would have been fixed earlier.

A run-time feature-interaction Bug in Busybox COPRO is
also able to detect run-time errors caused by feature in-
teractions. Figure 5 shows a simplified bug in Busybox
extracted from http://vbdb.itu.dk/#bug/busybox/061fd0a. In
this case, a bug occurs when CONFIG_FEATURE_HDPARM_-

HDIO_UNREGISTER_HWIF = T if c=‘U’ and p = NULL. The ex-
ecution goes to expected_hwif_error. However, this label is
visible only when CONFIG_FEATURE_HDPARM_HDIO_SCAN_HWIF

= T. Otherwise, we would have a run-time error.

1 int main(int argc, char** argv){
2 int r = rand() % 2;
3 char *p;
4 char c;
5 scanf("%c", &c);
6 switch (c){
7 case ’W’:
8 if (r)
9 p = *argv++, --argc;

10 break;
11 #ifdef CONFIG_FEATURE_HDPARM_HDIO_UNREGISTER_HWIF
12 case ’U’:
13 if(!p)
14 goto expected_hwif_error; //ERROR
15 break;
16 #endif /*CONFIG_FEATURE_HDPARM_HDIO_UNREGISTER_HWIF*/
17 #ifdef CONFIG_FEATURE_HDPARM_HDIO_SCAN_HWIF
18 case ’R’:
19 if(!p)
20 goto expected_hwif_error;
21 expected_hwif_error:
22 printf("expected hwif value");
23

24 #endif /* CONFIG_FEATURE_HDPARM_HDIO_SCAN_HWIF */
25 }
26 return 0;
27}

Figure 5. A Run-time Feature-Interaction Bug in Busybox

E. Effectiveness in Detecting Bugs in the Wild (RQ3)

To evaluate the effectiveness of COPRO on the real-world,
open-source projects, we ran it on the configurable systems
libpng v0.89 and xterm v2.24 to detect interaction bugs. Inter-
estingly, with COPRO, we were able to detect 4 interaction
bugs that have not been reported/discovered before. They
have the same nature of using variables/functions without
declarations. Let us discuss two of them in details. The other
one can be found on our website [1].

In Figure 6, the code contains 2 bugs. The first one is
observed when the option PNG_READ_INTERLACING_SUPPORTED

or PNG_WRITE_INTERLACING_SUPPORTED is enabled (line 4)
and PNG_INTERNAL is disabled (line 1). In this case, the
function png_set_interlace_handling is declared (line 5),
and PNG_INTERLACE (line 6) is used inside this function.
Meanwhile, the constant PNG_INTERLACE (line 2) is declared
only if PNG_INTERNAL is enabled. Thus, if PNG_INTERNAL

is disabled, and either PNG_READ_INTERLACING_SUPPORTED

or PNG_WRITE_INTERLACING_SUPPORTED is enabled, we will
have a compiling error at line 6. The second bug
occurs when both PNG_READ_INTERLACING_SUPPORTED and
PNG_WRITE_INTERLACING_SUPPORTED are F. In this case, png_-
read_image use an undeclared function (line 10).

F. Time Complexity (RQ4)

We run our experiments on a computer with Intel Core i5
2.7GHz processor, 8GB RAM. The running time to analyze
the most complex case that contains 43KLOC and 194 con-
figuration options and rank 156 configurations is 211,020ms.

1 #if defined(PNG_INTERNAL)
2 #define PNG_INTERLACE 0x0002
3 #endif /* PNG_INTERNAL */
4 #if defined(PNG_READ_INTERLACING_SUPPORTED) ||

defined(PNG_WRITE_INTERLACING_SUPPORTED)
5 int png_set_interlace_handling(png_structp png_ptr){
6 png_ptr->transformations |= PNG_INTERLACE;
7 }
8 #endif
9 void png_read_image(png_structp png_ptr){

10 int pass = png_set_interlace_handling(png_ptr);
11 }

Figure 6. Two Not-yet-discovered Bugs in libpng

G. Limitations and Potential Solutions

For the cases that COPRO did not rank well the buggy
configurations, we found that the majority of them are not
in the kinds of interaction-related defects listed in Section III.
For example, a variable x is assigned a value v if option A

is enabled, otherwise x=v’. Then, x is referred to in a feature
controlled by option B. In this case, COPRO detects the inter-
actions between those features. However, as a static technique,
COPRO could not conclude which option selections are more
suspicious. To overcome such limitation, one could use a
dynamic analysis approach for configurable code [45].

Figure 7 shows a simplified bug in HTTPD (commit
9327311d30f) that COPRO did not rank well the buggy con-
figurations. In Figure 7, a use without assignment is exposed
when APU_HAS_LDAP and APU_HAS_SHARED_MEMORY are on. CO-
PRO did not work since there is no feature where rmm_lock

is assigned. Consequently, no assign-use interaction exists.

H. Extension to COPRO

Generally, to detect more kinds of bug such as in the
above example, one can extend our set of conditions with
the corresponding violations in Table III. One can de-
fine a new condition to detect this bug as follows: i)
α(APU_HAS_LDAP,T) ∩ γ(APU_HAS_SHARED_MEMORY,T) 6= ∅ =
{util_ldap_cache_init.rmm_lock} and ii) there is no def-
inition of rmm_lock in its scope, which is the function
util_ldap_cache_init.

Interestingly, note that for this buggy system, CO-
PRO ranked the configuration to reveal another flaw of
unused variable (rmm_lock) when APU_HAS_LDAP=T and
APU_HAS_SHARED_MEMORY=F.

In 14 cases out of 368 cases, the interactions that cause
the interaction bugs are really detected, but the configurations
that reveal the bugs are still ranked lower than others. The
reason for these cases is that other configurations containing
more suspicious selections that actually do not cause the bugs.
To faster detect the bug in these situations, one can apply
the Additional Priortization strategy [22] to rank the set of
configurations according to their numbers of potential bugs in
an incremental manner. By this strategy, the next configuration
to be selected is the one containing the largest number of

1 void apr_rmm_init(char* rmm_lock){
2 printf("%s\n", rmm_lock);
3 }
4 #ifdef APU_HAS_LDAP
5 void util_ldap_cache_init(){
6 char* rmm_lock;
7 #ifdef APR_HAS_SHARED_MEMORY
8 apr_rmm_init(rmm_lock); // ERROR: rmm_lock

uninitialized
9 #endif

10 }
11 #endif

Figure 7. COPRO did not rank well buggy configurations

potential bugs that have not been contained by the previous
selected configurations in the previous steps. Moreover, for the
interaction bugs relevant to pointers and external data files, one
can define new rules to add to our framework.

VI. RELATED WORK

COPRO is most closely related to the work by Al-Hajjaji
et al. [3] on similarity-based Prioritization (SP). The key
idea of SP approach dissimilar test sets are likely to detect
more defects than similar ones [3]. In SP, the configuration
with the maximum number of features is selected to be the
first one under test and the next configuration must have the
minimum number of similar features as the previously selected
configuration. In comparison, SP does not analyze the nature
of feature interactions, while COPRO does. This avoids the
problem in SP that the different features to be considered next
might not be the ones that potentially causes violations.

COPRO is also related to the work on configuration se-
lection approaches to reduce the number of configurations to
be tested [42]. They focus on the step before configuration
prioritization, therefore the resulting set of configurations is
not ranked as in COPRO. The t-wise (i.e., k-way) sampling
algorithm covers all combinations of t options [28], [35], [46],
[48], while pair-wise checks all pairs of configuration op-
tions [40], [47]. Recent study by Medeiros et al. [42] showed
that realistic constraints among options, global analysis, header
files, and build-system information influence the performance
of most sampling algorithms substantially; and several algo-
rithms are no longer feasible in practice. Importantly, they lack
configuration prioritization, thus, developers need to spend
efforts to perform QA on all the variants.

COPRO is also related to Variability-aware (VA) analy-
sis [37]. VA analysis is a variation of a traditional analysis
that considers the variability in the configurable code. The
variability-aware analysis techniques have been proposed for
type checking [16], [31], [37], [54], model checking [19], [34],
data-flow analysis [11], [12], [37], and other analyses [21] on
multiple compile-time configurations of a system at a time.
The main drawback of this approach is that it cannot reuse
existing static analysis tools, and each type of analysis must
be rewritten in a variability-aware fashion. For example, to

detect NULL exception, one must rewrite such an analysis to
consider all different configurations in a configurable code.
In our experiment, we connect COPRO with an existing bug
detection tool to work on configurable code. Variability-aware
execution [45], [43] explores multiple paths of execution at
the same time to detect feature-interaction bugs. However, it
suffers scalability issue.

Several approaches were proposed to detect feature inter-
actions [6], [25]. Verification [7] is also used to detect feature-
interaction bugs. Other prioritization approaches aim for state-
ment coverage [52], [53] via static checkers. The issue is that
computing an optimal solution for the coverage problem is NP-
hard, and including each block of optional code at least once
does not guarantee that all possible combinations of individual
blocks of optional code are considered [42]. To avoid finding
optimal coverage solution, the most-enabled-disabled [52]
algorithm checks two samples independently of the number
of configuration options. When there are no constraints among
configuration options, it enables all options and then it disables
all configuration options. One-(enabled/disabled) algorithm [2]
enables/disables one configuration option at a time. Despite
different levels of heuristics, they do not analyze the entities
in source code.

Several pproaches are aimed for testing for configurable
systems [14], [20], [26], [39]. In product-line testing [49] and
framework testing [15] it is a common strategy to unit test
components or plug-ins in isolation, while integration tests are
often neglected or performed only for specific configurations.
Greiler et al. suggest shipping test cases with plug-ins and
running them in client systems [26]. In essence, this postpones
tests of configurations until the configuration is actually used.

Other approaches have been proposed for static analysis
of product lines [11], [12], [16], [19], [21], [31], [54], [55].
Researchers explore to represent and reason about partial
but finite configuration spaces compactly with BDDs or SAT
solvers (as used in our variability contexts) [8], [31], [44],
choices of structures [23] and complex structures [24], [37].

VII. CONCLUSION

We propose COPRO, a novel formulation of feature-
interaction bugs via common program entities enabled/dis-
abled by the features. Leveraging from that, we develop
efficient feature-interaction-aware configuration prioritization
technique for a configurable system by ranking the configu-
rations according to their total number of potential bugs. We
evaluated COPRO in two complementary settings: detecting
configuration-related bugs in a benchmark and a real-world
open-source systems. COPRO outperforms the other tech-
niques in which in 78% of the cases, it ranks the buggy config-
urations at the top 3 positions. Interestingly, it is able to detect
17 not-yet-discovered, high-degree, feature-interaction bugs.

ACKNOWLEDGMENT

This work was supported in part by the US National Science
Foundation (NSF) grants CCF-1723215, CCF-1723432, TWC-
1723198, CCF-1518897, and CNS-1513263.

REFERENCES

[1] . https://doubledoubleblind.github.io/copro/.
[2] Iago Abal, Claus Brabrand, and Andrzej Wasowski. 42 Variability

Bugs in the Linux Kernel: A Qualitative Analysis. In Proceedings of
the 29th ACM/IEEE International Conference on Automated Software
Engineering, ASE ’14, pages 421–432, New York, NY, USA, 2014.
ACM.

[3] Mustafa Al-Hajjaji, Thomas Thüm, Jens Meinicke, Malte Lochau, and
Gunter Saake. Similarity-based prioritization in software product-line
testing. In Proceedings of the 18th International Software Product Line
Conference - Volume 1, SPLC ’14, pages 197–206, New York, NY, USA,
2014. ACM.

[4] Apache Httpd. http://httpd.apache.org/.
[5] Sven Apel and Christian Kästner. An overview of feature-oriented

software development. JOURNAL OF OBJECT TECHNOLOGY, 8(5).
[6] Sven Apel, Sergiy Kolesnikov, Norbert Siegmund, Christian Kästner,

and Brady Garvin. Exploring feature interactions in the wild: The new
feature-interaction challenge. In Proceedings of the 5th International
Workshop on Feature-Oriented Software Development, FOSD ’13, pages
1–8, New York, NY, USA, 2013. ACM.

[7] Sven Apel, Hendrik Speidel, Philipp Wendler, Alexander von Rhein,
and Dirk Beyer. Detection of Feature Interactions Using Feature-
aware Verification. In Proceedings of the 26th IEEE/ACM International
Conference on Automated Software Engineering, ASE ’11, pages 372–
375, Washington, DC, USA, 2011. IEEE Computer Society.

[8] Don Batory. Feature models, grammars, and propositional formulas.
In Proc. Int’l Software Product Line Conference (SPLC), volume 3714
of Lecture Notes in Computer Science, pages 7–20, Berlin/Heidelberg,
2005. Springer-Verlag.

[9] T. Berger, S. She, R. Lotufo, A. Wasowski, and K. Czarnecki. A study of
variability models and languages in the systems software domain. IEEE
Transactions on Software Engineering, 39(12):1611–1640, Dec 2013.

[10] Thorsten Berger, Ralf Rublack, Divya Nair, Joanne M. Atlee, Martin
Becker, Krzysztof Czarnecki, and Andrzej Wkasowski. A survey of
variability modeling in industrial practice. In Proceedings of the Seventh
International Workshop on Variability Modelling of Software-intensive
Systems, VaMoS ’13, pages 7:1–7:8, New York, NY, USA, 2013. ACM.

[11] Eric Bodden, Társis Tolêdo, Márcio Ribeiro, Claus Brabrand, Paulo
Borba, and Mira Mezini. Spllift: Statically analyzing software product
lines in minutes instead of years. In Proc. Conf. Programming Language
Design and Implementation (PLDI), pages 355–364, New York, 2013.
ACM Press.

[12] Claus Brabrand, Márcio Ribeiro, Társis Tolêdo, and Paulo Borba.
Intraprocedural dataflow analysis for software product lines. In Proc.
Int’l Conf. Aspect-Oriented Software Development (AOSD), pages 13–
24, New York, 2012. ACM Press.

[13] Busy Box. https://busybox.net/.
[14] Isis Cabral, Myra B. Cohen, and Gregg Rothermel. Improving the testing

and testability of software product lines. In Proceedings of the 14th
International Conference on Software Product Lines: Going Beyond,
SPLC’10, pages 241–255, Berlin, Heidelberg, 2010. Springer-Verlag.

[15] Sheng Chen, Martin Erwig, and Eric Walkingshaw. Extending type
inference to variational programs. Technical report (draft), School of
EECS, Oregon State University, 2012.

[16] Sheng Chen, Martin Erwig, and Eric Walkingshaw. Extending type
inference to variational programs. ACM Trans. Program. Lang. Syst.
(TOPLAS), 2013.

[17] Andreas Classen, Patrick Heymans, Pierre-Yves Schobbens, and Axel
Legay. Symbolic model checking of software product lines. In Pro-
ceedings of the 33rd International Conference on Software Engineering,
ICSE ’11, pages 321–330, New York, NY, USA, 2011. ACM.

[18] Andreas Classen, Patrick Heymans, Pierre-Yves Schobbens, Axel Legay,
and Jean-François Raskin. Model checking lots of systems: Efficient
verification of temporal properties in software product lines. In Pro-
ceedings of the 32nd ACM/IEEE International Conference on Software
Engineering - Volume 1, ICSE ’10, pages 335–344, New York, NY,
USA, 2010. ACM.

[19] Andreas Classen, Patrick Heymans, Pierre-Yves Schobbens, Axel Legay,
and Jean-Francois Raskin. Model checking lots of systems: Efficient
verification of temporal properties in software product lines. In Proc.
Int’l Conf. Software Engineering (ICSE), pages 335–344, New York,
2010. ACM Press.

[20] Myra B. Cohen, Matthew B. Dwyer, and Jiangfan Shi. Interaction
testing of highly-configurable systems in the presence of constraints. In
Proceedings of the 2007 International Symposium on Software Testing
and Analysis, ISSTA ’07, pages 129–139, New York, NY, USA, 2007.
ACM.

[21] Krzysztof Czarnecki and Krzysztof Pietroszek. Verifying feature-based
model templates against well-formedness OCL constraints. In Proc. Int’l
Conf. Generative Programming and Component Engineering (GPCE),
pages 211–220, New York, 2006. ACM.

[22] S. Elbaum, A. G. Malishevsky, and G. Rothermel. Test case prioriti-
zation: a family of empirical studies. IEEE Transactions on Software
Engineering, 28(2):159–182, Feb 2002.

[23] Martin Erwig and Eric Walkingshaw. The choice calculus: A representa-
tion for software variation. ACM Trans. Softw. Eng. Methodol. (TOSEM),
21(1):6:1–6:27, 2011.

[24] Martin Erwig and Eric Walkingshaw. Variation programming with the
choice calculus. In Generative and Transformational Techniques in
Software Engineering IV, pages 55–100. Springer Berlin Heidelberg,
2013.

[25] Brady J. Garvin and Myra B. Cohen. Feature interaction faults
revisited: An exploratory study. In Proceedings of the 2011 IEEE 22nd
International Symposium on Software Reliability Engineering, ISSRE
’11, pages 90–99, Washington, DC, USA, 2011. IEEE Computer Society.

[26] Michaela Greiler, Arie van Deursen, and Margaret-Anne Storey. Test
confessions: A study of testing practices for plug-in systems. In Pro-
ceedings of the 34th International Conference on Software Engineering,
ICSE ’12, pages 244–254, Piscataway, NJ, USA, 2012. IEEE Press.

[27] Alexander Gruler, Martin Leucker, and Kathrin Scheidemann. Modeling
and model checking software product lines. In Proceedings of the
10th IFIP WG 6.1 International Conference on Formal Methods for
Open Object-Based Distributed Systems, FMOODS ’08, pages 113–131,
Berlin, Heidelberg, 2008. Springer-Verlag.

[28] Martin Fagereng Johansen, Oystein Haugen, and Franck Fleurey. An
algorithm for generating t-wise covering arrays from large feature
models. In Proceedings of the 16th International Software Product Line
Conference - Volume 1, SPLC ’12, pages 46–55, New York, NY, USA,
2012. ACM.

[29] Kyo C Kang, Sholom G Cohen, James A Hess, William E Novak, and
A Spencer Peterson. Feature-oriented domain analysis (foda) feasibility
study. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Software
Engineering Inst, 1990.

[30] Christian Kästner. Virtual separation of concerns: toward preprocessors
2.0. it-Information Technology Methoden und innovative Anwendungen
der Informatik und Informationstechnik, 54(1):42–46, 2012.

[31] Christian Kästner, Sven Apel, Thomas Thüm, and Gunter Saake. Type
checking annotation-based product lines. ACM Trans. Softw. Eng.
Methodol. (TOSEM), 21(3):14:1–14:39, 2012.

[32] Christian Kästner, Paolo G. Giarrusso, Tillmann Rendel, Sebastian
Erdweg, Klaus Ostermann, and Thorsten Berger. Variability-aware
parsing in the presence of lexical macros and conditional compilation.
In Proceedings of the 2011 ACM International Conference on Object
Oriented Programming Systems Languages and Applications, OOPSLA
’11, pages 805–824, New York, NY, USA, 2011. ACM.

[33] Andy Kenner, Christian Kästner, Steffen Haase, and Thomas Leich.
TypeChef: Toward Type Checking #Ifdef Variability in C. In Proceed-
ings of the 2nd International Workshop on Feature-Oriented Software
Development, FOSD ’10, pages 25–32, New York, NY, USA, 2010.
ACM.

[34] Kim Lauenroth, Klaus Pohl, and Simon Toehning. Model checking
of domain artifacts in product line engineering. In Proc. Int’l Conf.
Automated Software Engineering (ASE), pages 269–280, Los Alamitos,
CA, 2009. IEEE Computer Society.

[35] Yu Lei, Raghu Kacker, D. Richard Kuhn, Vadim Okun, and James
Lawrence. Ipog-ipog-d: Efficient test generation for multi-way com-
binatorial testing. Softw. Test. Verif. Reliab., 18(3):125–148, September
2008.

[36] libpng. http://www.libpng.org/.
[37] Jörg Liebig, Alexander von Rhein, Christian Kästner, Sven Apel, Jens

Dörre, and Christian Lengauer. Scalable analysis of variable software. In
Proceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering, ESEC/FSE 2013, pages 81–91, New York, NY, USA, 2013.
ACM.

[38] Linux Kernel. https://www.kernel.org/.

[39] Ivan Do Carmo Machado, John D. Mcgregor, Yguaratã Cerqueira
Cavalcanti, and Eduardo Santana De Almeida. On strategies for testing
software product lines: A systematic literature review. Inf. Softw.
Technol., 56(10):1183–1199, October 2014.

[40] Dusica Marijan, Arnaud Gotlieb, Sagar Sen, and Aymeric Hervieu.
Practical pairwise testing for software product lines. In Proceedings
of the 17th International Software Product Line Conference, SPLC ’13,
pages 227–235, New York, NY, USA, 2013. ACM.

[41] Marlin. http://marlinfw.org/.
[42] Flávio Medeiros, Christian Kästner, Márcio Ribeiro, Rohit Gheyi, and

Sven Apel. A comparison of 10 sampling algorithms for configurable
systems. In Proceedings of the 38th International Conference on
Software Engineering, ICSE ’16, pages 643–654, New York, NY, USA,
2016. ACM.

[43] Jens Meinicke, Chu-Pan Wong, Christian Kästner, Thomas Thüm, and
Gunter Saake. On essential configuration complexity: Measuring in-
teractions in highly-configurable systems. In Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engineer-
ing, ASE 2016, pages 483–494, New York, NY, USA, 2016. ACM.

[44] Marcílio Mendonça, Andrzej Wkasowski, and Krzysztof Czarnecki.
SAT-based analysis of feature models is easy. In Proc. Int’l Software
Product Line Conference (SPLC), pages 231–240, New York, 2009.
ACM Press.

[45] Hung Viet Nguyen, Christian Kästner, and Tien N. Nguyen. Exploring
variability-aware execution for testing plugin-based web applications. In
Proceedings of the 36th International Conference on Software Engineer-
ing, ICSE 2014, pages 907–918, New York, NY, USA, 2014. ACM.

[46] Changhai Nie and Hareton Leung. A survey of combinatorial testing.
ACM Comput. Surv., 43(2):11:1–11:29, February 2011.

[47] Sebastian Oster, Florian Markert, and Philipp Ritter. Automated incre-
mental pairwise testing of software product lines. In Proceedings of
the 14th International Conference on Software Product Lines: Going
Beyond, SPLC’10, pages 196–210, Berlin, Heidelberg, 2010. Springer-
Verlag.

[48] Gilles Perrouin, Sagar Sen, Jacques Klein, Benoit Baudry, and Yves le
Traon. Automated and scalable t-wise test case generation strategies for
software product lines. In Proceedings of the 2010 Third International

Conference on Software Testing, Verification and Validation, ICST ’10,
pages 459–468, Washington, DC, USA, 2010. IEEE Computer Society.

[49] Klaus Pohl, Günter Böckle, and Frank J. van der Linden. Software
Product Line Engineering: Foundations, Principles and Techniques.
Springer-Verlag, Berlin/Heidelberg, 2005.

[50] H. Post and C. Sinz. Configuration lifting: Verification meets software
configuration. In Proceedings of the 2008 23rd IEEE/ACM International
Conference on Automated Software Engineering, ASE ’08, pages 347–
350, Washington, DC, USA, 2008. IEEE Computer Society.

[51] G. Rothermel, R. H. Untch, Chengyun Chu, and M. J. Harrold. Priori-
tizing test cases for regression testing. IEEE Transactions on Software
Engineering, 27(10):929–948, Oct 2001.

[52] Reinhard Tartler, Christian Dietrich, Julio Sincero, Wolfgang Schröder-
Preikschat, and Daniel Lohmann. Static analysis of variability in system
software: The 90,000# ifdefs issue.

[53] Reinhard Tartler, Daniel Lohmann, Christian Dietrich, Christoph Egger,
and Julio Sincero. Configuration coverage in the analysis of large-scale
system software. SIGOPS Oper. Syst. Rev., 45(3):10–14, January 2012.

[54] Sahil Thaker, Don Batory, David Kitchin, and William Cook. Safe com-
position of product lines. In Proc. Int’l Conf. Generative Programming
and Component Engineering (GPCE), pages 95–104, New York, 2007.
ACM Press.

[55] Thomas Thüm, Sven Apel, Christian Kästner, Martin Kuhlemann, Ina
Schaefer, and Gunter Saake. Analysis strategies for software product
lines. Technical Report FIN-004-2012, School of Computer Science,
University of Magdeburg, April 2012.

[56] Thomas Thüm, Sven Apel, Christian Kästner, Ina Schaefer, and Gunter
Saake. A classification and survey of analysis strategies for software
product lines. ACM Comput. Surv., 47(1):6:1–6:45, June 2014.

[57] xterm. https://invisible-island.net/xterm/.
[58] Linbin Yu, Yu Lei, Raghu N Kacker, and D Richard Kuhn. Acts: A

combinatorial test generation tool. In 2013 IEEE Sixth International
Conference on Software Testing, Verification and Validation, pages 370–
375. IEEE, 2013.

[59] Pamela Zave. Programming methodology. chapter An Experiment in
Feature Engineering, pages 353–377. Springer-Verlag New York, Inc.,
New York, NY, USA, 2003.

	I Introduction
	II Motivating Example
	II-A Examples of Bugs in Configurable Code
	II-B Observations
	II-C CoPro Overview

	III Formulation
	III-A Program Entities and Operations
	III-B Configurations and Features
	III-C Feature Interactions
	III-D Feature Interaction Detection

	IV Configuration Prioritization
	IV-A Overview
	IV-B Detailed Algorithm
	IV-C Static Analysis
	IV-D Running Example

	V Empirical Evaluation
	V-A Subject Systems
	V-B Experimental Procedure
	V-C Evaluation Metric
	V-D Effectiveness and Comparison (RQ1 and RQ2)
	V-D1 Comparative Results
	V-D2 Further Analysis
	V-D3 Examples on Feature-Interaction Bugs

	V-E Effectiveness in Detecting Bugs in the Wild (RQ3)
	V-F Time Complexity (RQ4)
	V-G Limitations and Potential Solutions
	V-H Extension to CoPro

	VI Related Work
	VII Conclusion
	References

