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Abstract—Automatic code completion helps improve develop-
ers’ productivity in their programming tasks. A program contains
instructions expressed via code statements, which are considered
as the basic units of program execution. In this paper, we
introduce AUTOSC, which combines program analysis and the
principle of software naturalness to fill in a partially completed
statement. AUTOSC benefits from the strengths of both direc-
tions, in which the completed code statement is both frequent and
valid. AUTOSC is first trained on a large code corpus to derive
the templates of candidate statements. Then, it uses program
analysis to validate and concretize the templates into syntactically
and type-valid candidate statements. Finally, these candidates
are ranked by using a language model trained on the lexical
form of the source code in the code corpus. Our empirical
evaluation on the large datasets of real-world projects shows that
AUTOSC achieves 38.9–41.3% top-1 accuracy and 48.2–50.1%
top-5 accuracy in statement completion. It also outperforms a
state-of-the-art approach from 9X–69X in top-1 accuracy.

Keywords-Code Completion; Statement Completion; Statistical
Language Model; Program Analysis;

I. INTRODUCTION

Code completion tool helps improve developers’ productiv-
ity by filling in the code during their editing. A program con-
tains instructions in source code to perform certain tasks.
The procedure to achieve a task is expressed via program
statements, each of which is considered as the basic unit of
execution in a program. A statement can declare a variable,
define an expression, perform a simple action by calling a
method, control the execution flow of other statements, create
an object, or assign a value to a variable, attribute, or field [4].
Thus, in this work, we aim to support automated code comple-
tion to help developers fill in their current statements. During
writing the body of a method, if a developer finishes one or
more tokens of the current statement, the tool as requested will
fill in the remaining tokens of that statement. If (s)he finishes a
statement, the tool will suggest the entire next statement (next-
statement completion). Let us call it a statement completion
(SC) tool. SC encompasses next-statement completion.

To build an effective and efficient SC tool, one would face
the following key challenges. First, the tool must predict the
statement that a developer intends to type next to perform
the programming task at hand. Second, the resulting code
after completion must conform to the syntactic and semantic
constraints defined by the programming language in use.

To address the first challenge, one can rely on the principle
of software naturalness [9]. Source code is naturally written
with certain regularity, i.e., it is repetitive and does not occur
randomly. The code elements appear together because they
are intended by developers to achieve a programming task(s).
Hindle et al. [9] showed that such regularity in source code
can be captured by statistical language models (LMs), e.g., n-
gram model [16] can be leveraged to support code completion
for the next token. Thus, one could train an LM with a large
code corpus and use it to predict each token at a time until a
complete statement is suggested. However, the frequent code
fragments learned from different contexts might make the code
after completion syntactically or semantically incorrect. For
example, after “i =”, if the most frequent variable in a corpus is
i, the resulting code is “i = i;”, which is invalid. A naive solution
that uses program analysis (PA) to enforce the constraints in
such output with multiple tokens would face combinatorial
explosion. For example, assume that at each step, a model
predicts and maintains n most likely valid tokens, the number
of statements with m code tokens is nm.

To address the second challenge, an SC tool can apply
PA with program constraints on the candidate statements to
eliminate the invalid ones, the number of the remaining, valid
candidates is still large. The accuracy of such a naive solution
is very low due to the confounding effect of the accuracy of
a prediction model for each token (see Section VIII). Another
solution to this issue is to search for an entire code statement.
However, it is ineffective since statements are project-specific
and do not repeat often across different methods or projects
as reported in PCC [27]. In fact, learning to suggest entire
statements is less effective than an SC tool that is capable of
filling the remaining token(s) of the current statement.

This paper proposes AUTOSC, which combines program
analysis and statistical LM in the process of statement com-
pletion. We aim to benefit from the strengths of both directions
in which LM produces natural code sequences and PA enforces
syntactic and type constraints. AUTOSC works in three phases.

First, it uses the n-gram LM on an abstraction level higher
than lexical code to learn to derive the most likely candidate
templates for the current statement. A candidate statement is
modeled by a sequence of special annotations called extended
code tokens (excode for short). An excode for a token is
an annotation representing the token type and/or data type,
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if available. The token type encodes whether the token is a
variable, a field access, a method call, a type (class), etc. Such
information in a template helps a LM predict better the next
token, e.g., a variable cannot be next to another. Data types
help distinguish the code fragments having the same meaning
but with different variables’ names, e.g., “int len = s.length();”
and “int l = str.length();” have the same meaning of “Retrieving
the length of a String and assign it to an int variable”. With
the types instead of the variables’ names, the two fragments
have the same template. Thus, AUTOSC can learn templates
from one place to suggest for the other. Data types also help
distinguish the cases in which two fragments with the same
lexical tokens having different meaning. For example, x.next
means a variable x of a Scanner accessing the field next, while
in another place, it means a variable x of a LinkedList calling
the method next. Data types thus help determine the accessible
method calls or field accesses for a variable.

At the second step, the candidate templates are syntactically
and type validated. Then, the valid templates are concretized
into code sequences. Finally, all valid suggested code se-
quences are ranked based on their occurrence likelihoods given
the partial code. To do this, we train another n-gram model
on the lexical form of the source code in a code corpus.

We conducted several experiments to evaluate AUTOSC
in statement completion on a dataset used in the existing
approaches [9], [20], [17] with +460K statements with a total
of +1M suggestion points. Our results show that AUTOSC is
very effective with top-1 accuracy of 40% and top-5 accuracy
of 49.4% on average. That is, in 4 out of 10 cases, when a user
requests to complete his/her currently-written statement, (s)he
can find the remaining of the desired statement in the top of the
suggestion list. Importantly, AUTOSC significantly improves
over the baseline model using only n-gram on lexical code
(up to 142X in top-1 accuracy) and the model using lexical
n-gram+PA (up to 117X in top-1 accuracy). It also improves
over the state-of-the-art tool PCC [27] with 69X higher in
top-1 accuracy. In brief, our contributions include

1. A model with PA+LM to complete the current statement,
2. An empirical evaluation showing our model’s effective-

ness and much better accuracy than the state-of-the-art tool.

II. MOTIVATING EXAMPLE

Figure 1 partially shows a method in Apache Ant [2]. As-
sume that the cursor is at line 5, right after the “=” sign. If a user
requests a statement completion (SC) tool, it will complete the
current statement, i.e., the assignment to the variable len. A
SC tool would predict the intention of the user and complete
that assignment with the method call children.getLength(). The
tool suggests a ranked list of candidate statements such as in
Figure 1. If the cursor is at the beginning of a statement, e.g.,
at the beginning of the line 5, the SC tool would suggest the
entire assignment statement, e.g.,int len = children.getLength()
(next-statement suggestion). That is, SC includes the function-
ality of next-statement suggestion (e.g., PCC [27]). Note that,
the SC tool is automatically invoked as the user finishes typing
a token in the middle of a statement, e.g., after int, len, “=”, etc.

1 NodeList listChildNodes(Node parent,NodeFilter f){
2 NodeListImpl matches = new NodeListImpl();
3 NodeList children = parent.getChildNodes();
4 if (children != null) {
5 int len = children.getLength();
6 children.getLength();
7 parent.numChildren();
8 0;

Figure 1: A partial method in class DOMUtil of Apache Ant

To support statement completion, a model needs to consider
the nature of source code. Source code is strictly defined by
the syntax and semantics of the programming language. Source
code is also repetitive [9]. Thus, the methods for SC can be re-
alized in the following: information retrieval (IR) and pattern
mining, program analysis, and statistical language model.

For IR and pattern mining, a model suggests to complete
the current statement by searching for the same/similar state-
ment(s) that have been seen in a corpus. When the retrieved
statements have occurred frequently, they can be viewed as
code patterns. Such a pattern or a retrieved statement can be
used as the candidate for completion. However, the tokens
need to be filled for the current statement might not be a
pattern, leading to ineffectiveness of such approach. Moreover,
while as single tokens, code is repetitive; as entire statements,
they are quite unique for specific projects. This phenomenon
was reported by Yang et al. [27]. Indeed, in our experiment
(Section IX), the portion of repeated statements in our dataset
is 25.9%. That is, 3 out of 4 cases on average cannot be
correctly suggested by searching for the same statements in
the corpus of the previously-seen statements. As an example,
the statement int len = children.getLength(); is not used in any
other project in our dataset. As an implication, to suggest or
complete a statement, a model cannot rely solely on searching
for the repeated statements as a whole.

For the program analysis (PA) direction, although the num-
ber of valid candidates for the next token is limited, the number
of possible valid (complete) statements at the suggestion point
might be combinatorially explosive or even infinite. For the
right side of the assignment at line 5, the valid next-token
candidates include the appropriate prefix operators (e.g.,“++”
and “−−”), the open parenthesis, field access, method call,
and local variable (e.g.,children, f, etc.). However, there is
an infinite number of valid statements at that point. In brief,
program analysis direction could produce a large number of
candidates with equal occurrence likelihoods, despite that the
candidates are syntactically or semantically valid.

The statistical language models (LM) leverage the fact that
code is highly repetitive and predictable [9]. The next tokens
to be filled are based on the frequent sequences of tokens and
the partial code. Solely relying on those to fill in a statement, a
model could face the following issues. The first issue is caused
by the fact that the code in different places with the same
lexical code sequence have different meaning. For example,
in one place, x.next means the variable x of a Scanner in



JDK accessing the field next, while in another place, it means
the variable x of a LinkedList calling the method next. In this
case, a LM can mistakenly use one to suggest for another,
e.g., it could recommend “()” after x.next for the field access
of a Scanner, which results in a semantic error. Second, in
contrast, to represent the same meaning in different places in
the same or different projects, one could use different names
of the variables. For example, the statement at line 5 is a
code fragment that performs the task of “retrieving the size
(length) of a list of nodes”. In other places, we might see int
size = children.getLength(). Those two code fragments might
be deemed as not performing the same task if only the lexical
tokens are considered. Thus, an LM cannot learn from one
place to complete the statement in the other place.

Third, the names of method calls and field accesses might
not appear in the training data, leading to the out-of-vocabulary
(OOV) issue. This also applies to local variables due to
their method-specific nature. In natural language, human can
understand a sentence even an OOV word is missing. However,
OOV could cause the code un-compilable. Finally, even OOV
does not occur, the completed code by a LM could violate syn-
tactic and semantic constraints. At line 5, the most likely next
sequences of tokens include i;, (, or ), which are frequent in a
corpus. That would induce an “undeclared variable” error.

From the above discussion, it is natural to combine PA and
LM to benefit from the strengths of both directions in com-
pleting the current statement. For example, PA can be used to
derive/select the syntactically and type-valid candidate state-
ments from the list produced by statistical LM, while the latter
can apply the principle of code repetition [9] to rank the valid
and most likely statements higher in the candidate list.

A naive LM+PA solution would use a statistical LM to pre-
dict the next token one by one, and then use PA to filter out
the invalid ones and rank the remaining ones according to
their occurrence likelihoods. However, doing so, the number of
valid statements is still large. Our experiment (Section IX)
showed that among those valid ones, the correct one is rarely
in the top 5 most likely candidates: top-5 accuracy is ≈ 0.83%.

III. KEY IDEAS AND APPROACH OVERVIEW

We develop AUTOSC, which combines program syntax
and type constraints and the naturalness principle of source
code [9] in the process of code statement completion. First, we
use an LM on an abstraction level higher than lexical source
code to learn to derive the most likely candidate templates
for the current statement. Second, the candidate templates
are syntactically and type validated, and concretized into one
or more code sequence candidates. After all, we rank the
candidate code statements accordingly to their occurrence
likelihoods by another LM trained on lexical source code.

To overcome the issues of a LM on OOV and capturing
high-level abstraction of source code, we design a template
as a sequence of extended annotation code tokens (excode for
short). An excode for a token is an annotation representing the
token type and/or data type, if available (details in Section IV).
For an identifier, its excode captures its token type, i.e., a

variable, a field access, a method call, a type (class), etc. Token
types in a template helps a LM predict better the next token,
e.g., an ’(’ is needed after a method call. excode also captures
the data type if available. For example, children is of the type
NodeList at line 5. The data type facilitates a model to restrict
possible method calls or field accesses. However, the variable
names are not kept in an excode because we want to capture
the code pattern at a higher level. In contrast, excode keeps the
name of the class that is declared (e.g.,NodeList in NodeList
children), the method that is called (e.g.,getLength), the field
that is accessed (e.g.,next). The rationale is that those elements
are designed to be (re)used in different classes, methods in the
same or different projects (e.g., libraries/frameworks). Such
reused names would be useful for a model to learn to apply
in different places. The literals are not kept because they tend
to be project-specific except if they are special literals, such
as null or 0. The other kinds of tokens are kept intact.

These treatments help AUTOSC learn better the candidate
templates. At line 5, the template has the left-hand side of
TYPE(int) VAR(int), OP(ASSIGN), and the right-hand side of
VAR(NodeList) OP(ACC) CALL (NodeList, getLength, 0,int) LP
RP. By raising the abstraction from the code, we aim to
increase the regularity/repetition to help a LM learn from other
places to better find the statement templates. For example,
while the fragment len = children.getLength() has never ap-
peared in the project, the above template occurs 6 times.

Our process of learning templates and concretizing into code
helps our model overcome OOV and the nature of locally-used
variable names. The templates at higher level are learned from
one place and applied to another, and PA is used to concretize
them with concrete accessible variables at the new place. The
step of learning at template level helps AUTOSC cover more
candidates (improving recall), while the use of PA helps retain
more valid ones (improving precision).

To enforce syntax and type constraints, we train an LM
with the sequences of excode to learn the statement templates,
and use that LM to suggest each excode by excode to form the
candidate templates. During that, syntactical and type rules are
applied to those candidate templates to enforce their validity.

The second LM on lexical source code at the last step
helps select the variable names when there still exist multiple
candidates of code sequences. When several valid variables are
valid, the lexical LM selects the names that come naturally and
frequently at the place. For example, the tokens children, node,
parent, etc. often go together. Thus, at line 5, the variable name
children likely occur than student, network, etc.

IV. EXTENDED CODE ANNOTATION

A. Design Strategies

We present extended code annotation (excode), a code rep-
resentation designed for SC. Let us explain what information
needs to be encoded. We first aim to encode token type of a
code token. That is, we need to encode whether a code token
is a keyword, separator, operator, method call, field access,
variable, etc. This enables AUTOSC to learn program syntaxes
on the validity of a next code token, e.g., “A left parenthesis



Table I: Excode Annotation Rules for Code Tokens

Token Role Construction Rule Example code→excode
Keyword To corresponding reserved token if→IF, for→FOR
Operator o OP(name(o)) .→OP(ACC), =→OP(ASSIGN)
Separator To corresponding reserved token (→LP, )→RP
Data type T TYPE(T ) int→TYPE(int), String→TYPE(String)
Variable v VAR(type(v)) len (int)→VAR(int), parent (Unknown)→VAR(Unk)
Literal l LIT(littype(l)) ”hello”→LIT(String), 123→LIT(int)
Method call m CALL(Type(m),name(m),argcount(m),rt(m)) subString(1)→CALL(String,subString,1,String) LP LIT(int) RP
Field access f FIELD(Type(f), name(f), type(f)) node.name→VAR(Node) OP(ACC) FIELD(Node,parent,String)
Special literal To corresponding reserved token null→NULL, 0→ZERO, ””→EMPTY

must appear after the method call next, not after the field
next”. Additionally, for the validation of the type constraints,
the data type of code tokens, especially of method call, field
access, and variable, also needs to be encoded. For example,
the RHS expression of the assignment at line 5 must be of the
type int or Integer because the LHS variable is of the type int.

Because local variables are used locally, their names and
meaning might be different in different methods. Thus, they
can not be learned by a LM in a method to apply to the local
variables but with different variable names in other methods.
Thus, the names of local variables should be abstracted in the
representation to better capture code regularity. Meanwhile, the
names of data types, methods, and fields are kept since those
elements are designed to be reused in other places. Thus, those
names can be learned from one place and be applied to others.

B. Extended Code Tokens Annotation and Concretization

Definition 1 (Token Type). The token types in a program with
regard to a programming language include keyword, operator,
separator, data type, method call, field, variable, and literal.

For children.getLength(), the token types of children and
getLength are variable and method call, respectively, while
. (access) is an operator, and ( and ) are separators LP and RP.

Definition 2 (Excode Token). An excode token is an annotation
corresponding to a code token, that represents its syntactic and
type information, including its token type and data type.

Table I shows the rules to construct excode tokens for pop-
ular kinds of code tokens. For children in children.getLength(),
which has the role of a variable, its corresponding excode
token consists of the annotations “VAR”, “(”, its data type
NodeList, and ”)”. For method calls and field accesses, the
information including the enclosing type name, return type,
and the arguments, are additionally incorporated in the ex-
code tokens. For example, the excode of getLength in chil-
dren.getLength() is CALL(NodeList,getLength,0,int).

Definition 3 (Excode annotation function α). The annotation
function α(C) on a code sequence C = c1c2...cn, defines the
corresponding excode sequence E = e1e2...en, such that ei is
the corresponding excode token of ci defined in Table I.

Since C is the current partial code, to realize α, we perform
partial program analysis using PPA [5] to get token types and
data types in a best-effort fashion.

Definition 4 (Excode token concretization function). The con-
cretization function π(e, V ) on an excode token e and the set
V of the accessible variables and fields of the current class of
the method, defines the set of code tokens as follows:

π(e, V ) =

{
{v : v ∈ V, type(v) = type(e)} if e is a variable
{c} otherwise

where, c is the respective non-variable token listed in Table I.

In Figure 1, π(′VAR(NodeList)′, V ) = {children}, where V
contains the set of accessible (global/local) variables of the
method listChildNodes. Note that, literals will not be con-
cretized except if they are special literals, such as null or 0.

Definition 5 (Excode sequence concretization function). The
sequence concretization function Π(E, V ) on an excode se-
quence of length n, En = e1e2...en, in a method and the set
of the method’s accessible variables and fields V , defines a set
of code sequences of length n, in which each code sequence
Cn = c1c2...cn, ci ∈ π(ei, V ), for ∀i ∈ [1, n].

Definition 6 (Excode expression). In a method having the set
of accessible variables V , an excode expression expr is an
excode sequence with one or more excode tokens, such that
there is at least one code sequence C in Π(expr, V ) that is a
valid code expression according to the programming language.

In our example, the excode sequence VAR(NodeList)
OP(notEquals) NULL is an excode expression since there exists
a concretization to obtain a valid expression children != null.

Definition 7 (Excode statement). In a method having the set of
accessible variables V , an excode statement stm is an excode
sequence with one or more excodes, such that there is at least
one code sequence C in Π(stm, V ) that is a valid statement.

We use excodes to represent a statement template. For exam-
ple, TYPE(int) VAR(int) OP(ASSIGN) VAR(NodeList) OP(ACC)
CALL(NodeList,getLength,0,int) LP RP is a template.

V. IDENTIFYING CANDIDATE TEMPLATES

Given the partial code P , AUTOSC first parses P to build
the excode sequence E = e1e2...en. It uses the n-gram
model [16] that is trained on the excode sequences built from a
code corpus to predict each excode one by one that most likely
follows E. It also uses rules for program constraints to derive
the valid candidates of excode tokens and sequences. The re-
sulting excode sequences represent templates. Let us detail it.



Algorithm 1 Identifying Candidate Templates

1: function IDENTIFYTEMPLATES(partialCode, project)
2: E = α(partialCode) . Def. 3
3: genSeqs = expandExcodeSeq(E, project)
4: templs = extractRemainingParts(genSeqs,E)
5: return templs

6: function EXPANDEXCODESEQ(exSeq, proj)
7: if isEnded(exSeq) ∨ reachMaxLen(exSeq) then
8: return {exSeq}
9: C = getV alidNextToken(exSeq, proj) . Def. 10

10: if C = ∅ then return ∅
11: topCands = rank(C, exSeq, φexcode,K) . Form. 1
12: exSequences = ∅
13: for all cand ∈ topCands do
14: newSeq = concat(exSeq, cand)
15: newTempls = expandExcodeSeq(newSeq, proj)
16: exSequences.addsAll(newTempls)

17: return exSequences

A. Training n-gram LM with excodes to predict next excode

To predict the next excode, any statistical LM is applica-
ble [26], [17], [6], [25]. Without loss of generality, we use n-
gram LM [16]. The model is trained on the excode sequences
built from a corpus. For prediction, given E and an excode
candidate ε, the likelihood, that ε is the next excode token fol-
lowing E, is estimated using the trained n-gram LM, φexcode:

P (ε|E) = φexcode(e1e2...enε) (1)

B. Deriving the next excode sequence for statement template

Next, using φexcode, AUTOSC identifies the most likely
valid excode one at a time, and then composes them to
obtain the candidates for statement template. Specifically, Al-
gorithm 1 shows how AUTOSC identifies candidate templates.
In this algorithm, the partial code is first parsed into the cor-
responding excode sequence (line 2). The next sequences are
suggested by expanding the excode sequence token-by-token
until encountering the end-statement token “;” or the length
of the expanded sequence reaches the pre-defined maximum
length of code statements (lines 3, 7–9). For each expansion
step, AUTOSC applies the syntax rules and accessibility rules
(will be explained later) to enforce program constraints. The
set of valid candidates of the next excode token is stored in C.
Then, it selects the top K (predefined value) most likely tokens
(line 11). These excodes are concatenated with E to form new
candidates that are recursively expanded (lines 13–16).

C. Enforcing syntax rules and accessibility rules to decide the
candidates for the next excode token

A vocabulary V is a set of all distinct excode tokens. Since
code has strict syntax and semantics, for excode sequence
E, the valid next excode token following E is restricted by
program constraints/rules: Syntax rules and Accessibility rules.

Definition 8 (Program syntax rule). Given the excode se-
quence E = e1e2...en, the vocabulary V of all excode tokens, a
program syntax rule rsyntax when applying on E will return
a set S of excode tokens in the vocabulary such that the
resulting excode sequence E′ = e1e2...enε does not violate
a syntax rule of a programming language. Mathematically, a
program syntax rule rsyntax is a relation r : (V )∗ → 2V ,
rsyntax(E) = S , where S ⊆ V is the set of tokens, such that
∀ε ∈ S , E′ = e1e2...enε does not violate a syntax rule.

For example, the code int len = has the excode se-
quence of TYPE(int) VAR(int) OP(ASSIGN). The excode tokens
OP(ASSIGN) and OP(ACC) are excluded from rsyntax(E)
because an “=” or “.” cannot occur after the “=” sign. In this
example, rsyntax(E) includes literal, variable, method call
field access, data type, prefix operators, or open parenthesis.
Note that to check for ε, instead of checking all syntax rules
on E′ = e1e2...enε at each expansion step, for efficiency, we
could check the validity of ε based on the last token en, and
finally, check on the syntactic validity of entire sequence at
the last step when the end of statement is reached.

Definition 9 (Accessibility rule). Given the excode sequence
E = e1e2...en, the vocabulary V of all excode tokens, an
accessibility rule raccess when applying on E will return a
set A ⊆ V of the excode tokens in the vocabulary that are
accessible at the current state of E. That is, raccess is a relation
raccess : (V )∗ → 2V , raccess(E) = A such that A includes
the excode tokens which correspond to the following cases:

1) All declared local variables within the current scope are
valid. In Figure 1, accessible local variables are VAR(Node),
VAR(NodeFilter), VAR(NodeListImpl) and VAR(NodeList).

2) All the accesses to the fields and the calls to the methods
in the enclosing class are accessible.

3) The accessible field accesses and method calls of
a variable. For example, for a sequence E ending with
VAR(NodeList) OP(ACC), all accessible field accesses and
method calls in NodeList are included in raccess(E).

4) All data types and literals are valid.
5) All keywords, separators, and operators are valid.

Definition 10 (Valid next excode token). For a sequence, a
excode token is considered as valid if it satisfies all Syntax
rules and Accessibility rules. That is, given an excode sequence
E = e1e2...en, the set of valid candidates C is rsyntax(E) ∩
raccess(E) for all syntax rules and accessibility rules.

VI. VALIDATING CANDIDATE TEMPLATES

Fully semantic checking with respect to the current pro-
gramming language (e.g., Java) is always desired. However, it
is impossible to do so for the candidate templates, which are
expressed as the sequences of excode tokens and do not contain
concrete lexemes of variables. Because our design is to have
excodes contain data type information, we focus on performing
type checking. With type checking, we can eliminate a large
number of templates with incorrect and inconsistent types.

In general, one could use a type checker for the current pro-
gramming language, e.g., Java type checker. However, we are



Table II: Key Type Check Rules for Excode Sequences
Syntax Type Type Check (e: T)
Excode Seqs of E

Literal
E ::= LIT(T) T e.g.,LIT(String): String
Variable
E ::= VAR(T) T e.g.,VAR(int): int or VAR(Unk): Unk
Assignment e1:T1, e2:T2
E ::= e1 OP(=) e2 T1 T2 ⊆ T1 if (T1 ! = Unk) and (T2 ! = Unk)

T1 else if T1!=Unk
T2 else if T2!=Unk

Unk if T1 = T2 = Unk
Prefix op e: T
E ::= OP(op) e bool if op = not and ((T=bool) or (T=Unk))

num otherwise ((T= num) or (T=Unk))
num types include char,short, int, etc.

Postfix op e: T
E ::= e OP(op) num if ((T= num) or (T=Unk))

num types include char,short, int, etc.
Comparison e1: T1, e2: T2
E ::= bool if (T1 ⊆ T2) or (T2 ⊆ T1)
e1 OP(op) e2 or (T1=Unk) or (T2=Unk)
Infix e1: T1, e2: T2
E ::= T2 if (T1 ⊆ T2) != Unk
e1 OP(op) e2 T1 else if (T2 ⊆ T1) != Unk

T1 else if T1 != Unk
T2 else if T2 != Unk

Unk else if both are Unk
Method Call e: T, e1: T1, ..., en: Tn
E ::= e OP(ACC) decl: RT T::m (T1’ p1, T2’ p2, ..., Tn’ pn)
CALL(T,m,n,RT) RT if (Ti ⊆ Ti’) or (Ti=Unk) for i = 1..n
LP e1,..., en RP
Constructor Call e: T, e1: T1, ..., en: Tn
E ::= decl: T T::T(T1’ p1, T2’ p2, ..., Tn’ pn)
CCALL(T,T,n,T) T if (Ti ⊆ Ti’) or (Ti=Unk) for i = 1..n
LP e1,...,en RP
Field Access e: T
E::= e OP(ACC) FT
FIELD (T,f,FT)
Statement

Variable Decl e: T’
E ::= VAR(T)[=e], T if (T’ ⊆ T) or (T=Unk)
ForStmt S::= void i1: Ti1, ..., in: Tin
for (i1,...,in ; e; e: T, T=bool or T=Unk,
u1, ..., um) S1 u1: Tu1, ..., um: Tum, S1: T1
S::= while (e) S1 void e: T, T=bool or T=Unk, S1: T1
S::= if (e) S1 e: T, T=bool or T=Unk, S1: T1, S2: T2
[else S2]
ExprStmt S::= e ; T e: T
Block S::=s1,.,sn void e1: T1, ..., en: Tn
Return S::= return e T e: T

decl: RT T::m (T1’ p1, T2’ p2, ..., Tn’ pn)
T ⊆ RT

dealing with partially complete code and there are potentially
program entities whose types cannot be resolved by PPA [5].
In those cases, the variables without type information are
annotated with Unknown type. Thus, we build a type checker
for excode with the accommodation of the Unknown type.

AUTOSC performs type inference at the same time as type
checking on excode statements and expressions using the rules
in Table II. The process of type checking is similar to type
checking for the source code in Java. However, there are two
key differences. First, it works at the excode statements/expres-
sions corresponding to the statements/expressions at the source
code level (note: variables’ names are not there). Second,
due to unresolvable types, AUTOSC has to consider Unknown

type in a flexible manner, e.g., that type does not violate any
subtype constraint. Let us explain the key type-checking rules.

1. Literal. When seeing the excode LIT(T) that represents a
literal with a type T, we consider T as its type.

2. Variable. When seeing a VAR, if the type of excode is
available, we use it. Otherwise, the resulting type is Unknown.

3. Assignment. The LHS and RHS expressions are type-
checked first. If both types are known, the type of RHS must
be a subtype or equal to the type of LHS. If either of them are
Unknown, we consider the assignment as valid with the known
type. If both are Unknown, the resulting type is Unknown.

4. Prefix. If the operator is a negation and if the type of e is
available, it must be boolean, otherwise, it must be convertible
to a numeric type (char, short, int, etc.) The resulting type is
boolean or a numeric type, accordingly. If the type of e is
Unknown, the result depends only on the operator (Table II).

5. Postfix. The type of e must be convertible to a numeric
type or it is unavailable. The resulting type is numeric.

6. Comparison. The type of one side must be a sub-type
or equal to the type of the other side, or the type of at least
one of them must be Unknown. The resulting type is boolean.

7. Infix. Both expressions on two sides need to be type-
checked. If both types are not Unknown, the type of one side
must be a subtype or equal to the other, and the expression
is assigned with the super type. If the type of one of the two
sides is Unknown, the expression is assigned of the type of the
known one. Otherwise, the type of the expression is Unknown.

8. Method Call. The expressions for the receiver and the
arguments need to be type-checked first. The type of each
argument (if available) must be a subtype or equal to the type
of the corresponding formal parameter in the declaration of
the method. The return type is used as the type of the call.

9. Constructor Call. A constructor call is handled similarly
as a method call except that the declared type is used and the
method name is the same as the class name.

10. Field Access. The receiver needs to be type checked.
The class of the field must be the same as the respective type
stored in the excode.

11. Variable Declaration. The RHS expression (if any)
needs to be type checked, and its type (if available) must be
a subtype or equal to the type stored in the excode VAR(T).

12. For/While/If statement. The components in the excode
of such a statement need to be type checked. The conditional
control statement must be of the type boolean or Unknown.

13. Expression/Block Statement. Each statement in each
of those compound statements needs to be type checked.

14. Return statement. The expression needs to be type-
checked and its type must be a subtype or equal to the return
type of the enclosing method.

Definition 11 (Type-correct candidate template). Given an
excode sequence E representing the current partial code, the
template T (as an excode sequence) is considered as a type-
correct candidate template if the sequence concatenated by E
and T is type checked by our rules.



In Figure 1, both candidates 0 and VAR(NodeList) OP(ACC)
CALL(NodeList,getLength,0,int) LP RP are type-correct.

VII. CONCRETIZING STATEMENT TEMPLATES AND
RANKING CODE CANDIDATES

This section describes how the type-correct candidate tem-
plates as excode sequences are converted to code candidate
sequences with the accessible variables in the current scope.
The most likely code sequences are ranked based on their
occurrence likelihoods computed by an LM. Let us detail it.

Algorithm 2 Concretizing Candidate Template

1: function CONCRETIZE(templ, V )
2: codeCands = concretizeNext(templ, V, ∅, 1)
3: return codeCands

4: function CONCRETIZENEXT(templ,V ,currCands,i)
5: if i > len(templ) then
6: return currCands
7: codeCands = ∅
8: codeTokens = π(templ[i], V ) . Def. 4
9: if currCands = ∅ then

10: for all t ∈ codeTokens do
11: newCand = concat(EMPTY SEQ, t)
12: codeCands.adds(newCand)

13: else
14: for all t ∈ codeTokens do
15: for all cand ∈ currCands do
16: newCand = concat(cand, t)
17: codeCands.adds(newCand)

18: return ConcretizeNext(templ, V, codeCands, i+1)

Concretization. Algorithm 2 shows our procedure. Each ex-
code token is converted into code tokens using function π
(Def. 4). These tokens are used to initiate a set of code se-
quences (lines 9–12) or concatenated with the current con-
cretized code sequences to create the new ones (lines 14–17).
The process recursively continues until the end of the template.
Training an LM on lexical code and Ranking candidate
statements. To rank the candidate code statements, we train
an n-gram model, φlexemes, on the lexical forms of the source
code in a corpus. For training, all source files are tokenized
based on naming conventions (Camelcase and Hungarian),
and the obtained tokens are normalized to lowercase. The
trained LM is used to estimate the occurrence likelihoods
of the code sequence that is concatenated from the current
code and the candidate statement. That is, given the current
code C, the likelihood of the candidate statement γ is:
φlexemes(concat(Clexemes, γlexemes)), where Clexemes and
γlexemes are the lexical forms of C and γ, respectively.

VIII. EMPIRICAL METHODOLOGY

We have conducted several experiments to empirically eval-
uate AUTOSC in statement completion. For that, we seek to
answer the following research questions:

Table III: Large Corpus

Project #files #statements #unique tokens AVG #tokens
in a statement

Ant 1,196 50,041 3,721 8.5
Batik 1,657 82,193 5,032 8.8
Cassandra 687 47,874 3,757 9.8
Log4J 309 8,920 899 9.7
Lucene 3,681 117,447 7,191 8.1
Maven2 378 10,029 1,906 9.4
Maven3 850 18,060 2,749 9.6
Xalan-J 958 59,430 3,427 8.9
Xerces 829 66,275 3,769 8.8

Table IV: Small Corpus

Training data Test data
#Files 2,415 10
#Methods 6,680 59
#Statements 37,050 440
#Unique tokens 7,781 304
AVG #tokens in a statement 9.2 6.2

RQ1: Accuracy and Comparison. How accurate is AUTOSC
in current statement completion and next statement suggestion?
How is it compared with the state-of-the-art tool PCC [27]?
RQ2: Intrinsic Accuracy. How accurate is AUTOSC in
completing code statement on various factors including code
sequences’ lengths and code token types?
RQ3: Sensitivity Analysis. How do various factors affect our
model, e.g., completion position, thresholds, and data’s sizes?
RQ4: Time Complexity. What is our training/testing time?

A. Subject Systems

In this study, we collected the same data set of Java projects
used in the existing studies in code completion [9], [20] (Table
III) (Large Corpus). In the dataset, the average number of code
tokens in a statement is 8.8, whereas more than 85% of the
code statements contain less than 12 code tokens.

For comparison on next-statement (NS) suggestion, we also
used the same dataset as in PCC [27] (Small Corpus in
Table IV). In the training data, 90% of statements contain less
than 12 tokens. The test dataset contains only 10 individual
files without their projects. Both training and test data are
much smaller than our Large Corpus.

In our experiments, to balance between the completion
effectiveness and efficiency, we set the maximum number of
tokens in a statement of 12.
B. Evaluation Setup, Procedure, and Metrics

We used the same setting with data across projects as in
existing work [9], [25], [20]. That is, we divided the source
files of a project into 10 equal folds. We performed 10-fold
cross-validation: each fold was chosen for testing, while the
remaining folds and other projects were used for training.

Accuracy on statement completion is measured as follows.
For a method in a source file in the test data, our evaluation
tool traverses its code sequentially from the beginning. At a
position i in a method with a code sequence Mn = c1c2...cn,
a tool computes the top k most likely code sequences, s1,



s2,..., sk, for the remaining of the current statement based on
the previous code sequence from the start of the method to
the position (i − 1): c1c2...ci−1. If the actual code sequence,
from i to the end of the current statement si at the position t
is among the above k suggested sequences, we count this as
a hit. The top-k accuracy is the ratio of the total hits over the
number of tokens. Top-k accuracy for a project is computed
on all positions of its methods in cross validation.

Note that, for the compound statements including if-then,
if-then-else, switch, for, while, and do-while statements, we
run a model to complete/suggest their control expressions.
Moreover, at a local variable declaration statement, AUTOSC
suggests a placeholder and consider it matching with the actual
name, because any new name can be used at that point.

To compare AUTOSC with PCC [27] in statement comple-
tion (SC) on Large Corpus, we use the following SC setting
that works for PCC, which is aimed to suggest the next
statement only (Section X). At a position i, the previous code
sequence is divided into C1=c1c2...ct and C2=ct+1ct+2...ci−1,
where t is the ending position of the nearest completed
statement. C1 is used as the input of PCC to suggest the
next statement. We collected into the list of the resulting
suggestions the top k most likely code statements from PCC
that begin with C2. Among the list, if there exists a statement
that is the actual code sequence, we count this as a hit.

To compare AUTOSC with PCC [27] in next-statement
(NS) suggestion on Small Corpus, we uses the same setting
as in PCC [27]. That is, instead of traversing source code
sequentially token by token, we ran AUTOSC and computed
the top-k accuracy only at the beginning position of every code
statement. However, in Small Corpus, the test data includes
individual files without containing the corresponding projects’
files. Meanwhile, AUTOSC is designed using program analysis
on the code of currently developing projects. Therefore, we
created dummy projects for each of the testing files.

IX. EMPIRICAL RESULTS

A. Accuracy Comparison (RQ1)

1) Comparative Results of SC on Large Corpus: We com-
pared AUTOSC with PCC [27], which applies a statement-
level n-gram LM and searches for similar statements for next
statement completion (will be detailed in Section X). We also
compared AUTOSC against two baseline approaches: n-gram
LM and n-gram+PA. For n-gram LM, we trained a n-gram
LM and used it to predict the next token by token, and rank the
candidates for the code sequence according their occurrence
likelihoods. The n-gram+PA model works similarly to n-gram
LM except that PA is additionally applied to filter out the
invalid candidate sequences. Then, the valid ones is ranked.
We used the 6-grams for both n-gram LM and n-gram+PA.
In AUTOSC’s n-gram LMs, φexcode and φlexemes, n = 6. We
did not compare with a model that solely uses PA since it
generates a huge number of equally-ranked candidates.

As seen in Table V, the top-1 accuracy for AUTOSC is 39.8–
41.3%. That is, up to 4 out of 10 requests, users could find their
expected next code sequence for the current statement at the

Table V: Code Statement Completion Accuracy

Project Top-k AUTOSC n-gram
LM

n-gram
LM + PA PCC [27]

Ant Top 1
Top 5

41.3%
48.7%

0.09%
0.33%

0.12%
0.44%

2.13%
4.65%

Batik Top 1
Top 5

39.8%
50.1%

0.28%
0.78%

0.34%
0.83%

4.24%
7.24%

Cassandra Top 1
Top 5

40.5%
49.3%

0.19%
0.44%

0.25%
0.50%

2.59%
5.89%

Log4J Top 1
Top 5

40.4%
48.2%

0.02%
0.10%

0.02%
0.15%

1.12%
3.94%

Lucene Top 1
Top 5

39.3%
49.5%

0.23%
0.54%

0.31%
0.61%

3.87%
6.60%

Maven-2 Top 1
Top 5

40.2%
51.0%

0.10%
0.25%

0.16%
0.26%

0.58%
3.32%

Maven-3 Top 1
Top 5

38.9%
48.7%

0.16%
0.28%

0.22%
0.38%

1.33%
4.86%

Xalan Top 1
Top 5

40.1%
49.2%

0.17%
0.41%

0.19%
0.63%

2.91%
6.12%

Xerces Top 1
Top 5

39.7%
49.9%

0.22%
0.49%

0.23%
0.61%

2.35%
6.31%

top of our ranked list. For PCC, the top-1 accuracy is from 0.6–
4.3%, that is 9X–69X lower than AUTOSC’s. Meanwhile,
lexical n-gram achieves only from 0.02–0.28%. Even when
we used PA to filter out invalid suggestions, the top-1 accuracy
is still very low, 0.02–0.34%, that is more than 100X lower
than AUTOSC’s top-1 accuracy. For top-5 accuracy, AUTOSC
also achieves up to 51.0%, which is 7–14X and more than
50X higher than PCC and both n-gram LM and n-gram+PA.

There are two key reasons for their low accuracy. First,
code statement as its entirety is relatively project-specific [27].
Indeed, on average, the portion of the code statements in a
project that can be found in others is only 3.2%. That leads to
the low accuracy of PCC [27], which relies on the repetition of
entire code statements. Second, for n-gram baselines, because
the next sequence is suggested by predicting next token one
at a time, the accuracy of next sequence suggestion is affected
by the confounding effect of the accuracy of a single next-
token suggestion. The highest top-1 accuracy of an n-gram LM
for next code token suggestion is about 0.5 [17]. Therefore,
for predicting a next code sequence containing 6 tokens (on
average), the maximum top-1 accuracy is 0.56 ≈ 1.6%.
Note that, in this experiment, we used Large Corpus and
the statement-completion (SC) setting that are different from
Small Corpus and the next-statement (NS) setting used in
PCC [27]. Thus, this leads to a different accuracy for PCC
than the one reported in its paper [27].

2) Comparative Results of next-statement (NS) suggestion
on Small Corpus: As seen in Table VI, AUTOSC does
not perform next-statement suggestion as good as PCC. The
main reason is that the test set contains individual Java files
without the project-specific files and information such as the
fields and methods of the classes. Thus, the components of
AUTOSC relevant to program analysis, e.g., identifying the
valid candidates for the next token, and type-checking, cannot
be performed as expected.

3) Analysis: We analyzed the correct results and found
that AUTOSC’s high accuracy can be attributed to the fol-



Table VI: Next-Statement Suggestion Accuracy

Top 1 Top 3 Top 6 Top 10
AUTOSC 20.3% 28.5% 32.0% 42.2%
PCC [27] 28.9% 51.1% 54.8% 59.3%

1List<String> cfNames = new ArrayList<String>();
2Set stores = getValidColumnFamilies(columnFamilies);
3for (ColumnFamilyStore cfStore : stores) {
4 cfNames.add(
5 //cfStore.getColumnFamilyName());

Figure 2: A partial method in Cassandra

lowing. First, it uses excode to derive the template at a
higher abstraction level. This helps AUTOSC learn code
patterns from other locations and avoid missing the po-
tential candidates for the next sequence for the given par-
tial code. For example, given a partial statement which
starts with cfnames.add( at line 4 of Figure 2, where cf-
Names is a List<String>, its expected next sequence is
cfStore.getColumnFamilyName());, where cfStore is a local
variable. The partial statement and the expected sequence both
have never appeared in the training data. This makes the
baseline models, which work on lexical tokens, fail. Mean-
while, the excode sequence corresponding to cfnames.add( and
that excode sequence for cfStore.getColumnFamilyName() co-
occur several times. Thus, VAR(ColumnFamilyStore) OP(ACC)
CALL(getColumnFamilyName)...LP RP RP ; (corresponding to
the code sequence cfStore.getColumnFamilyName());) is listed
in the set of about 2,000 candidate templates.

Additionally, the application of PA to filter out the type-
incorrect templates help AUTOSC achieve high accuracy. In
the above example, the set of 137 valid candidates among
2,000 candidates, that are learned from other places, are
adapted to fit with the current context using PA. For example,
AUTOSC concretized VAR(ColumnFamilyStore) OP(ACC)...LP
RP RP ; by using the accessible variable cfStore for excode
token VAR(ColumnFamilyStore) instead of cfs or filter as in
other models. This adaptation ability to the current method
with PA is the third reason for AUTOSC’s high accuracy.

Another reason for our high accuracy is that in AUTOSC,
OOV is addressed by enforcing accessibility rules to avoid
missing the valid file-specific or project-specific tokens when
producing the candidate templates.

Finally, AUTOSC leverages the naturalness of source code
in the lexical form, to effectively rank the candidate code
sequences. In Figure 3, given a partial statement starting
with reports.addAll(, where the type of reports is List, the
expected sequence is getReportExecutions());. In fact, method
getReportExecutions is declared inside the current class and
has never been seen in the training data. This accessible call
is still used to produce template. Since the type restriction
for the argument of method addAll, there are a few type-valid
candidates, such as getReportExecutions()); or null);. Then, the
candidate getReportExecutions()); is ranked on the top by the

1List<MojoExecution> reports = new ArrayList();
2reports.addAll( //getReportExecutions();

Figure 3: A partial method in Apache Maven

Figure 4: Accuracy on length of remaining code sequences

lexeme-based LM, φleximes, because the tokens reports and
Report in getReportExecutions frequently go together, such
as: reports.contains(report) and reports.add(reportMojo);.

We further studied the cases in which AUTOSC did not
suggest well. We found that the majority of them are the
cases whose the completion position is near the beginning of
the current statement, especially the cases of suggesting entire
statement (will be explained in Section IX-C1). Since the next-
token prediction accuracy is not 100%, the more next tokens
predicted, the lower next-sequence completion accuracy.

B. Intrinsic Evaluation Results (RQ2)

We further studied the complexity and diversity, and AU-
TOSC’s effectiveness on different kinds of code tokens and
different lengths of the statements completed by AUTOSC.
We randomly sampled 10,000 results from 460K total results.

First, we classified the sampled results into 12 categories
corresponding to the size (1–12 tokens) of the remaining code
sequence of the currently completed statement (the maximum
number of tokens to be completed is set to 12). Figure 4 shows
the number of correct results over the total number of results
for each category. As expected, the longer the remaining
sequence, the more number of tokens to be completed, the
less number of correct results. As seen, AUTOSC correctly
handles complex completed statements with various lengths.
Also, through the similar shapes of two types of columns
from left to right, we see that the proportions of correct results
over the total ones for all categories are quite uniform. Thus,
our model is effective for various lengths of the remaining
sequences, even for long sequences. A correct example in
Maven-3 is as follows. The given partial code is the fragment
Activ activ = new Activ(); . The correct suggestion is ac-
tiv.setActiveByDefault(settingsActivation.isActiveByDefault());,
which has a total of 11 tokens after the cursor.

Second, to study the results by AUTOSC with respect
to different kinds of tokens, we classified all the tokens in



Figure 5: Accuracy on various token types

Table VII: Impact of Completion Points on Accuracy

Location Top 1 Top 2 Top 3 Top 4 Top 5
1st quartile 24.5% 30.1% 35.8% 39.2% 41.1%
2nd point 38.6% 43.0% 46.6% 48.9% 51.2%
3rd quartile 56.8% 58.6% 59.0% 60.6% 62.4%

the sampled results into several categories corresponding to
different syntactical token types. As seen in Figure 5, the
proportions of the correct results over the total ones for all
categories are relatively similar. Thus, AUTOSC is equally
effective for diverse kinds of tokens. A correct example is a
conditional expression, null && file.isDirectory()) (containing a
null literal, infix operators, identifiers, and separators.) for a
partial condition of an if-then statement, if (jarFile == .

C. Sensitivity Results (RQ3)

1) Completion position: Because AUTOSC is based on the
given code sequence, a completion point in the code sequence
of a method Mn = c1c2...cn has impact on accuracy. Thus,
we conducted an experiment to measure that. We first chose
a random project, Lucence. For each method, we chose a
completion point at three locations: the first quartile point
l1 = bn/4c + 1, the middle point l2 = bn/2c + 1, and the
third quartile point l3 = b3n/4c+ 1.

As seen in Table VII, accuracy slightly increases if we move
the point to a later part of a method from 1st to 3rd quartile
point. This is expected as AUTOSC has more information.

We also computed the accuracy as the completion points
at the beginning of a new statement (i.e., next-statement
suggestion). The percentage of the cases in which the next
statement being correctly ranked on the top of the suggestion
list is 8.2% (top-1 accuracy, not shown). This is expected
because any type of statement is valid at those beginning
points. However, AUTOSC’s accuracy is still 3.9X better than
top-1 accuracy in next-statement suggestion of PCC [27].

2) Threshold K: AUTOSC also relies on the pre-defined
number K of most likely tokens for next excode to identify
templates. Figure 6 shows the accuracy and running time
per completion request when we varied K. As seen, when
K is small, the accuracy are very low because the correct
next excode token might be dropped out of top K. The

Figure 6: Impact of threshold K on accuracy and running time

Table VIII: Impact of n in n-gram LMs on Accuracy

n 2 3 4 5 6
Top 1 29.7% 30.3% 31.3% 35.4% 40.4%
Running time 1095ms 2287ms 3169ms 4388ms 5447ms

accuracy increases when we keep a larger number of top
candidates. However, with a large K, K=9–10, the number
of the predicted code sequences is very large. This lead to a
slower increasing trend as K is larger. Regarding the running
time, since the number of the predicted code sequences
exponentially increases when we increase K, the running time
for each request also grows exponentially when K is larger.

3) Value of n in the n-gram LMs: We also measured the
impact of the size n in the n-gram LMs φexcode and φlexemes,
on AUTOSC’s accuracy. We varied n for both φexcode and
φlexemes from 2–6 and computed top-1 accuracy when we
ran AUTOSC on a randomly selected project.

As seen in Figure VIII, the accuracy grows from 29.7% to
40.4% for n=2–6. The reason is that the n-gram LMs with
larger n is able to capture more precisely the current context
and rank better the correct next excode tokens (for φexcode) and
the correct next code sequences (for φlexemes). Meanwhile, the
running time for each completion request increases linearly
from 1,095ms to 5,447ms, because longer sequences need to
be computed as n is increased from 2 to 6.

4) Training data’s size: For training data’s size, we ran-
domly selected a project, Ant, and divided its source files into
10 folds. We used one fold for testing and increased the sizes
of the training data by adding into a dataset of 8 other projects
one fold at a time until 9 remaining folds are added. Top-1
accuracy increases from 28.6% to 41.3% when we increase
training data (Table IX). As expected, with larger training data
sets, the model has observed more and performs better.

D. Time Complexity (RQ4)

All experiments were run on a Windows with 16 Intel Xeon
3.7GHz, 32GB RAM. AUTOSC took 10 minutes for training.
The average running time for a request is 5.5s. On average, in
the results in which the remaining code sequence is in top 5 of
the ranked list, the average number of tokens in the remaining
code sequences is 3.1 tokens. This equals the typing speed of



Table IX: Impact of Training Data’s Size on Accuracy

#Folds 1 3 5 7 9
Top 1 28.6% 31.4% 34.9% 37.8% 41.3%
Top 5 30.2% 35.4% 38.5% 42.0% 48.7%

about 0.56 tokens per sec, which is slightly slower than the
average human typing speed, 0.68 tokens/sec [22].

E. Ineffective Cases

For incorrect cases, we classified them into the categories
based on their number of code tokens that are in the remaining
of the expected sequences. We found that the portion of the
cases which contain redundant tokens is up to 23%. For the
percentages of the cases of 1, 2 and 3 missed-tokens are 29%,
12% and 26%, respectively. Meanwhile, the portion of the
cases of more than 3 missed-tokens is only 10%. For example,
the correct one is commits.get(readFrom); (the suggested one is
commits.get(writeTo);) for the given partial code commits = .
Thus, these results show that even for the ineffective cases,
AUTOSC’s suggestion lists are still reasonable.
F. Threats to Validity

Our selected projects are not representative and different
from PCC [27]’s dataset. However, we chose a high number
of projects with large numbers of statements. For PCC, we
used its default setting for the comparison. Our simulated
code suggestion procedure is not true code editing. Inaccu-
racy is from the fact that AUTOSC cannot correctly resolve
types/roles sometimes due to incomplete code.

X. RELATED WORK

AUTOSC is related to PCC by Yang et al. [27]. In com-
parison, there are fundamental differences between AUTOSC
and PCC. First, PCC focuses on suggesting the next statement
when a user finishes the previous statement, while AUTOSC
supports both filling a partially typed statement (SC) and
generating a next statement (NS). PCC can be used to support
statement completion when the partially typed statement is
matched against the suggested statement s, and the remaining
tokens of s will be recommended for users. Second, while
PCC is based solely on statistical LM, AUTOSC combines PA
and LM. Third, the way PCC used an LM is also different.
PCC combines all lexical tokens belonging to a statement into
a pseudo-token called IR, for the statement. In training, it
converts source code into sequences of IRs and trains a n-gram
model to learn to recommend an entire statement. Because
the entire statements do not repeat often, PCC has to consider
similar IRs as the same, causing inaccuracy. AUTOSC uses
LM+PA to predict token by token and compose them. We
showed that AUTOSC outperforms PCC in both SC and NS.

There exists a rich literature of approaches on CC. The
approaches can be broadly classified into the following cate-
gories. The first category relies on program analysis. IDEs sup-
port the completion of method calls/field accesses. Eclipse [7]
and IntelliJ IDEA [13], [12] also support template-based com-
pletion for common constructs and APIs (for/while, Iterator).

The second category uses code pattern mining [3], [8], [10],
[11], [14], [19], [21], [24], [28], [29]. Grapacc [19] uses API
patterns to match them against the current code. Bruch et
al. [3] suggest a call based on frequent methods, co-occurrent
calls, and best matching and their calling structures.

The third category relies on statistical LMs [15]. Hindle et
al. [9] use n-gram on lexical tokens to predict the next token.
Later, Tu et al. [25] improve n-gram model with caching
for recently seen tokens. Raychev et al. [23] use n-gram to
predict API call. SLAMC [20] associates code tokens with
sememes, including token roles and data types. In comparison,
there are key differences. First, excode is designed for template
statements while sememes are abstractions over source code
to predict the next token. Second, AUTOSC has a type checker
for excode with Unknown type, while sememes do not have it.
Third, n-gram topic model is used in sememes to provide the
context for prediction, while AUTOSC uses PA+LM. Finally,
SLAMC suggests only the next token. GraLan [18] is a graph-
based LM that captures usage patterns to suggest API calls.

Recent advances in deep learning have been used in next
token suggestion. White et al. [26] use Recurrent Neural
Network (RNN) to learn the context to predict the next token,
while Dam et al. [6] rely on LSTM. DNN4C incorporates syn-
tactic information for better prediction using DNN LM [17].

Despite the success of using statistical LMs, those existing
approaches are still limited to support only next token. They
do not combine LM with PA as in AUTOSC.

XI. CONCLUSION

We introduce AUTOSC [1], which combines PA and the
principle of software naturalness complete partial statements.
We aim to benefit from the strengths of both directions.
AUTOSC is trained on a code corpus to learn the candidate
templates. Then, it uses PA to validate and concretize the
templates into valid code statements. Finally, they are ranked
by using a LM trained on the lexical form of the source code.

We conducted several experiments to evaluate AUTOSC
in statement completion and next-statement suggestion on
datasets with +460K statements with a total of +1M suggestion
points. Our results show that AUTOSC is very effective with
top-1 accuracy of 40% and top-5 accuracy of 49.4% on
average. That is, in 4 out of 10 cases, when a user requests to
complete his/her currently-written statement, (s)he can find the
remaining of the desired statement in the top of the suggestion
list. Importantly, AUTOSC significantly improves over the
baseline model using only n-gram on lexical code (up to 142X
in top-1 accuracy) and the model using lexical n-gram+PA (up
to 117X in top-1 accuracy). It also improves over the state-of-
the-art tool PCC [27] with 69X higher in top-1 accuracy.
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