
Logzip: Extracting Hidden Structures via Iterative
Clustering for Log Compression

Jinyang Liu‖†, Jieming Zhu¶, Shilin He†, Pinjia He§∗, Zibin Zheng‖, Michael R. Lyu†

‖Sun Yat-Sen University, Guangzhou, China ¶Huawei Noah’s Ark Lab, Shenzhen, China
†The Chinese University of Hong Kong, Hong Kong, China §ETH Zurich, Switzerland

liujy57@mail2.sysu.edu.cn, jmzhu@ieee.org, {slhe, lyu}@cse.cuhk.edu.hk,
pinjia.he@inf.ethz.ch, zhzibin@mail.sysu.edu.cn

Abstract—System logs record detailed runtime information of
software systems and are used as the main data source for many
tasks around software engineering. As modern software systems
are evolving into large scale and complex structures, logs have
become one type of fast-growing big data in industry. In partic-
ular, such logs often need to be stored for a long time in practice
(e.g., a year), in order to analyze recurrent problems or track
security issues. However, archiving logs consumes a large amount
of storage space and computing resources, which in turn incurs
high operational cost. Data compression is essential to reduce
the cost of log storage. Traditional compression tools (e.g., gzip)
work well for general texts, but are not tailed for system logs.
In this paper, we propose a novel and effective log compression
method, namely logzip. Logzip is capable of extracting hidden
structures from raw logs via fast iterative clustering and further
generating coherent intermediate representations that allow for
more effective compression. We evaluate logzip on five large log
datasets of different system types, with a total of 63.6 GB in size.
The results show that logzip can save about half of the storage
space on average over traditional compression tools. Meanwhile,
the design of logzip is highly parallel and only incurs negligible
overhead. In addition, we share our industrial experience of
applying logzip to Huawei’s real products.

Index Terms—Logs, structure extraction, log compression, log
management, iterative clustering

I. INTRODUCTION

System logs typically comprise a series of log messages,
each recording a specific event or state during the execution
of both user applications and components of a large system.
These logs have widespread use in many software engineering
tasks. They are not only critical for system operators to
diagnose runtime failures [1], [2], to identify performance
bottlenecks [3], [4], and to detect security issues [5], [6], but
also potentially valuable for service providers to track usage
statistics and to predict market trends [7], [8].

Nowadays, logs have become one type of fast-growing big
data in industry [9]. As systems grow in scale and complexity,
logs are being generated at an ever-increasing rate. For exam-
ple, either in the cloud side (e.g., a data center hosts thousands
of machines) or in the client side (e.g., a smartphone vendor
with millions of smart devices worldwide), it is common for
these systems to generate tens of TBs of logs in a single
day [10]. The massive logs could easily lead to several PBs of

∗Pinjia He is the corresponding author.

data growth a year. In addition, each log is usually replicated
into several copies, such as in HDFS, for storage resilience.
Some important parts of log data are even synchronized across
at least two separate data centers for disaster recovery. This
imposes severe pressure on the capacity of storage systems.

What’s more, many logs require long-term storage, usually
a year or more according to the development lifecycle of
software products. Historical logs are amenable to discovering
fault patterns and identifying recurrent problems [11]. For
example, many users often rediscover old problems because
they have not installed fix packs [9]. Meanwhile, auditing
logs, which record sensitive operations performed by users
and administrators, are often required to be kept for at least
two years for possible tracking of system misuse in future.
Although storage has become much cheaper than before,
archiving logs in such a huge volume is still quite costly. It not
only takes up a great amount of storage space and electrical
power, but also consumes network bandwidth for transmission
and replication.

To reduce the heavy storage cost of log data, our engineering
team seeks two directions of data reduction: 1) reducing
logs from the source, and 2) log compression. Logs can be
largely reduced by requesting developers to print less logging
statements and setting appropriate verbosity levels (e.g., INFO
and ERROR). Yet, logging too little might miss some key
information and result in unintended consequences [12], [13].
How to set up an optimal logging standard is still an open
problem [14], [15]. Instead, we focus on log compression
in this paper. It is a common practice to apply compression
before storing the data on disks. Mainstream compression
schemes (e.g., gzip and bzip) can usually reduce the size of
logs by a factor of 10 [16]. These general-purpose compression
algorithms allow for encoding arbitrary binary sequences, but
can only exploit redundant information within a short sliding
window (e.g., 32KB in gzip’s Deflate algorithm). As such,
they cannot take advantage of the inherent structure of log
messages that might enable more effective compression.

To address this problem, in this paper, we present logzip,
a novel log compression method. In contrast to traditional
compression methods, logzip can compress large log files
with a much higher compression ratio by harnessing the
inherent structures of system logs. Log messages are printed

ar
X

iv
:1

91
0.

00
40

9v
1

 [
cs

.D
B

]
 2

4
Se

p
20

19

by specific logging statements, thus each has a fixed message
template. The core idea of logzip is to automatically extract
such message templates from raw logs and then structurize
them into coherent intermediate representations that are bet-
ter suitable for general-purpose compression algorithms. To
achieve this, we propose the iterative clustering algorithm for
structure extraction, following an iterative process of sampling,
clustering, and matching. Logzip further generates three-level
intermediate representations with field extraction, template
extraction, and parameter mapping. These transformed repre-
sentations are further fed to a traditional compression method
for final compression. The whole logzip process is designed to
be efficient and highly parallel. As a side effect, the structured
intermediate representations of logzip can be directly utilized
in many downstream tasks, such as log searching and anomaly
detection, without further processing.

We evaluate logzip on five real-world log datasets (i.e.,
HDFS, Spark, Andriod, Windows, and Thunderbird) from the
loghub repository [17]. They are chosen to span multiple types
of systems, including distributed systems, mobile systems,
operating systems, and supercomputing systems, and also
have different sizes ranging from 1.58 GB to 29.6 GB. The
experimental results confirm the effectiveness of logzip, which
achieves high compression ratios: 16.2∼813.2. Compared to
traditional compression schemes (i.e., gzip, bzip2, lzma),
logzip achieves additional 1.3X∼15.1X compression ratios.
This leads to a reduction of 47.9% storage cost on average. Ad-
ditionally, logzip is highly efficient since the proposed iterative
clustering algorithm can be embarrassingly parallelized. We
have successfully applied logzip to a real product of Huawei
and also share some of our experiences. We emphasize that
logzip is generally applicable to all system-generated textual
logs, and we leave its use for binary logs for future research.

In summary, our paper makes the following contributions:
• We propose an effective compression method, logzip,

which leverages the hidden structures of logs extracted
by iterative clustering.

• Extensive experiments are conducted on a range of log
datasets to validate the effectiveness and the general
applicability of logzip.

• We not only share our success story of deploying logzip
in industry, but also open the source code of logzip1 to
allow for future research and practice.

The remainder of this paper is organized as follows. Sec-
tion II introduces the structure of system logs. We present our
iterative structure extraction approach in Section III and then
describe its use in log compression in Section IV. The exper-
imental results are reported in Section V. The industrial case
study is described in Section VI. We review the related work
in Section VII and finally conclude the paper in Section VIII.

II. LOG STRUCTURE

In this section, we introduce the structures of execution logs,
which will be utilized to facilitate log compression. Fig. 1

1https://github.com/logpai/logzip

// A logging statement code snippet extracted from
spark/storage/BlockManager.scala
logInfo(s"Found block $blockId remotely")

Structure Extraction

Log Messages

Message
Header

Message
Content Found block rdd_2_3 locally

Tokens

17/06/09 20:10:46 INFO storage.BlockManager: Found
block rdd_2_0 locally
17/06/09 20:10:46 INFO storage.BlockManager: Found
block rdd_2_3 locally

Found block * locally
Event
Template

Parameters rdd_2_0
rdd_2_3

17/06/09 20:10:46 INFO storage.BlockManager:
Date Time Level Component

Fig. 1. An Example of Extracted Log Structure

shows the outputs of the logging statement logInfo(s“Found
block $blockId locally”) in the source code of Spark. “logInfo”
is a logging framework in Scala, and the free text within the
brackets are written by developers. This logging framework
automatically records information like logging date, time,
verbosity level, component, etc. When the logging statement
is executed, it outputs a log line like “17/06/09 20:10:46
INFO storage.BlockManager: Found block rdd 2 0 locally.”.
The cluster-computing framework Spark uses logs like this
to monitor its execution. In practice, a large-scale software
system such as Spark records a great deal of information. To
reduce the storage cost, we focus on optimizing compression
of logs by exploring the structure of logs.

Specifically, hidden structures can be observed in the exam-
ple in Fig. 1. The log message contains two parts, the message
header automatically generated by the logging framework, and
the message content recorded by developers.

There are several fields in the message header, such as
“Date”, “Time”, “Level”, “Component”. The format is gen-
erally fixed for a system since developers barely change the
logging framework they use. Therefore, it is possible to easily
extract these fields from each log of a system by using
manually defined regular expressions. If more than one logging
frameworks are involved, users could define different regular
expressions according to different log formats, which only
takes minutes for a developer.

Unlike the message header, the message content is unstruc-
tured because developers are allowed to write free-form texts
to describe system operations. However, it is possible to find
hidden structures in the message content. For example, in
Fig 1, “$blockId” in the logging statement is a variable that
may change in every execution (i.e., variable part), whereas
other parts remain unchanged (i.e., constant part). We propose
to automatically extract the constant part from raw logs as
hidden structure via iterative structure extraction (ISE) . In
the process, the constant part and variable part of a given raw
log message can be distinguished. In this paper we denote the
constant part as event template (or template in short), and the
variable part as parameters.

III. ITERATIVE STRUCTURE EXTRACTION

Our proposed approach logzip mainly leverages the hidden
structures of logs to facilitate log compression. In this section,
we introduce the iterative clustering algorithm for hidden
structure extraction.

A. Overview
There are three major ways to extract templates2 from

logs: (1) manual construction from logs; (2) extraction from
logging statements in source code; and (3) extraction from
raw logs. In practice, software logs have complex hidden
structures and are large-scale. Thus, manual construction of
templates is labor-intensive and error-prone. Additionally, the
source code of specific components of the system is often
inaccessible (e.g., third-party libraries). Therefore, template
extraction from software logs is the most widely-applicable
approach and thus logzip proposes an iterative clustering
algorithm to extract templates from logs automatically. Ac-
cording to the benchmark by Zhu et al [17], existing template
extraction approaches could perform accurately on software
logs. However, these methods require all the historical logs as
input, leading to severe inefficiency and hindering them from
adoption in practice. Inspired by the cascading clustering by
He et al. [18], we propose iterative structure extraction (ISE),
which effectively extracts templates from only a fraction of
the historical logs.

Figure 2 illustrates the overview of ISE. ISE is an iterative
algorithm containing 3 steps in each iteration: sampling, clus-
tering, and matching. The input of ISE is a log file consisting
of raw log messages, and the output is extracted templates and
structured logs. Specifically, in an iteration, we first sample a
portion of the input logs. A hierarchical division method is
then applied to the sample logs to generate multiple clusters,
from which templates can be extracted automatically. In the
matching step, we try to match all the unsampled raw logs
with these templates, collect unmatched logs, and feed them
into the next iteration as input. By iterating these steps, all log
messages could be matched accurately and efficiently with a
proper template assignment. The reason behind this is that the
sampled logs can often cover the templates hidden in most of
the input logs in each iteration. In particular, a fraction of the
logging statements could be executed much more frequently
than the others. Therefore, templates generated from a small
portion of logs can generally match most raw logs at the first
several iterations. In the following, we introduce each step of
ISE in detail.

B. Sampling
We first randomly sample a portion of logs from the given

raw log file with a ratio p. Thus, each log line has an equal
probability p (e.g., 0.01) to be selected. If the input contains
L log lines, the sampling step results in S = p × L sampled
log lines. This step is inspired by the insight that dominant
templates in the original input logs are still dominant in the
sampled logs.

2We use hidden structure and template interchangeably in this paper.

Raw Logs Sampling Clustering &

Template Extraction

Matching

Iteration

Mismatched

Matched

Matching

Fig. 2. Overview of Iterative Structure Extraction

C. Clustering

These sampled log lines are then grouped into clusters.
ISE extracts a template from each cluster by hierarchical
divisive clustering in a top-down manner, where we start
with a single cluster that consists of all sampled log lines.
We observed that execution logs have multiple features (i.e.,
verbosity level, component name, and most frequent tokens)
that can be utilized to distinguish the clusters they belong
to. Thus, we hierarchically divide logs into coarse-grained
clusters by using one feature at each division. After that,
an efficient clustering algorithm is applied to each of these
clusters to further divide logs into fine-grained clusters. To
facilitate efficient log compression, the fine-grained clustering
algorithm is designed to be highly parallel. We detail the
coarse-grained clustering (i.e., divisions by level, component
name, most frequent tokens) and the fine-grained clustering
algorithms as follows:

1) Divide by level: Intuitively, logs in the same cluster
should share the same level, e.g., INFO logs are generally quite
different from DEBUG logs because they are recorded for
different purposes. Therefore, we first divide logs into clusters
according to their levels.

2) Divide by component name: Similar to the reason for
using the level feature, logs generated by different components
in a system are barely in the same cluster. So we further
separate logs with the same level by their components.

3) Divide by frequent tokens: Intuitively, the constant parts
of a log generally have higher occurrences than its parameter
parts, because the parameter parts may vary in executions of a
logging statement while the constant parts do not. Therefore, it
is reasonable to group logs that share the same frequent tokens
into the same cluster. To achieve this, we first tokenize each
log message to a list of tokens by using system defined (or as
user input) delimiters (e.g., comma and space). Then, we count
the frequency of each token in the sampled logs. After that,
we find the top-1 frequent token for each log line, according
to which we further divide the clusters obtained from the
last division using component names. Thus, in this step, logs
grouped to the same cluster share the same top-1 frequent
tokens. Moreover, top-2, top-3,..top-N frequent tokens can be
applied in the same way to further divide the clusters, where
N is a tunable parameter that is normally set to 3.

Existing

Clusters

New Log

Messages

Similarity

Computing

Update

Templates

Fig. 3. Workflow of Sequential Clustering

4) Divide by fine-grained clustering: The hierarchical divi-
sion by log features results in coarse-grained clusters. Logs
in the same cluster share the same features as described
above. However, these features are not sufficient to determine
fine-grained clusters from which we could extract accurate
templates. Therefore, we further conduct fine-grained cluster-
ing on each of the clusters. Inspired by Spell [19], we use
longest common subsequence (LCS) to compute the similarity
between log messages. Importantly, we also improve the
original LCS for speedup. We define the improved similarity
as

φ(a, b) = |a ∩ b|

where a and b are tokenized log messages, | · | denotes the
number of tokens in a sequence. In other words, φ(a, b) is the
number of common tokens of a and b.

We perform the fine-grained clustering in a streaming
manner. Fig. 3 describes the workflow of our method. Given
a log message m, we first tokenize it, then assign it to an
existing cluster. To be more specific, we compute the similarity
between the input log message with the representative template
of each existing cluster, while we keep the largest similarity
and the corresponding cluster. If the kept similarity is greater
than a threshold of θ, we assign the input log message to
the cluster. Note that θ = |m|/2 by default, where |m|
denotes the number of tokens contained in the input log.
After the assignment, we update the template of the cluster
as LCS(m, t), where t is the old template representing the
cluster. Note when computing LCS, we mark “*” at the places
where the two sequences disagree. For example, the LCS of the
two logs “Delete block: blk-231, blk-12” and “Delete block:
blk-76” is “Delete block: *”. If the largest similarity could
not reach θ, we create a cluster for m, with m itself as the
representative template.

The time-consuming step is the computation of similarity
between the given log and each template of existing clusters.
We propose to use the number of common tokens instead
of LCS to measure similarity, which is much more efficient
yet effective for two reasons: (1) logs with same tokens but
different orderings rarely occur in logs. (2) we have utilized
obvious log features to divide logs into coarse-grained clusters.
In each of the clusters, logs are expected to share only a
few templates, i.e., there are few opportunities for conflicts
to occur.

As described above, the sampled logs are divided into
clusters hierarchically, each of which has a template to repre-
sent logs within the cluster. We emphasize that the clustering
algorithm is highly parallel. In particular, the clusters after
each division are independent so they could be dispatched
to different nodes for parallel computation on the subsequent
steps.

D. Matching

After collecting all templates from clusters, we use the
templates to match each unsampled log message as described
in Fig. 2. By matching, each log message is assigned a
template thus the hidden structure is extracted. We use the
hidden structure to facilitate log compression.

A traditional matching strategy is to transform templates
into regular expressions by replacing “*” with “.*?”, then ap-
ply regular expressions matching between every combination
of log messages and templates, which may explode because
of the large number of templates. To mitigate this efficiency
issue, we propose to build all candidate templates as a prefix
tree [20], and perform matching by searching through it.

We build all templates as a prefix tree before searching.
The prefix tree starts with a START node. When a template
arrives, we tokenize it as is done to a log message. The first
token of the log is inserted as a child node of the START node.
Then we pass through the token sequence while the previous
token is the parent node of the current one. At the end of
the last node, we add an END node that contains the whole
template for convenience. Intuitively, each template sequence
is mapped as a path in the prefix tree. We put all templates into
the same tree, and since different templates can have several
prefix tokens in common, their paths may overlap.

Because of sharing the prefix tokens, a log message is
compared with all templates at the same time while searching
in the compact tree. Specifically, given a log message, we
tokenize it and read from the first token to the last while
comparing with nodes in the tree. For the first token, we
search if it exists in the second layer of the tree (the first
layer is a START node). If the first token matches a node, we
continue to check the second token and the children of the
node. We stop when all tokens are read. If an END node is
reached, we return the template, or we return NONE to denote
mismatching. Note that “*” in a template denotes parameters
with variable length, thus we allow “*” in the tree to hold more
than one tokens if no child node of “*” matches the next log
token. For example “Delete block:“*” can successfully match
“Delete block: blk-231, blk-12”. In addition, parameters of
a log could be extracted while matching by keeping tokens
that match “*”. In the above example, “blk-231, blk-12” is
the parameter. As a result of the matching step, the template
and parameters of a log message are extracted if it matches
successfully.

The intuition of the tree matching scheme is to compress
all templates into a prefix tree by overlapping paths. There-
fore, the comparison between log message and all templates
becomes one-pass searching. Moreover, checking whether a

Structure
Extraction

Message
Header

Date

Time

Component
...

Split

Compress

Templates

Parameters

Sub-Fields

EventID
Split

Message
Content

Raw logs

Sub-Fields

Compressed
 File

Intermediate
Representation

...

gzip

bzip2

lzma

...

Fig. 4. Overall Framework of Logzip Compression

token matches a node can be done in O(1) by hashing, which
makes the tree based strategy a lot more efficient in compar-
ison with regular expression matching. More importantly, the
matching step is highly parallel because the search for different
log lines on the tree is independent.

E. Iteration

At the end of each iteration, ISE obtains several templates
that could cover all sampled logs. These templates are suffi-
cient to match the majority of all the input log messages in
this iteration while some log messages may remain unmatched.
Therefore, we repeat the above procedures (i.e., sampling,
clustering, and matching) for the unmatched log messages as
shown in Fig. 2. To this end, new templates are extracted from
these log messages, and new unmatched data is generated
in each iteration. We keep iterating until the percentage of
matched log messages reaches a user-defined threshold (em-
pirically, 90%).

In practice, logging statements of a system evolve slowly.
Therefore, ISE could be considered as a one-off procedure for
a specific system. To be more specific, we can perform ISE on
a portion of logs of the system, and collect templates for future
use. After having templates, we could extract structures of new
logs from the system through matching instead of running the
ISE.

IV. LOG COMPRESSION

In this section, we present our log compression method,
logzip. We first summarize the workflow of logzip. Then the
detail of the compression approach is introduced.

A. Overview of Logzip

The main idea behind logzip is to reduce the redundant
information contained in the original log file. Fig. 4 depicts
the overall framework of logzip. For each raw log message
in the log data, it is firstly structurized into message header
and message content via manually defined regular expressions.
Then, the message header is split into multiple objects accord-
ing to their fields and further sub-fields. Regarding message
content, hidden structures are extracted by applying ISE. After
that, we represent each log message as a template, an event

ID as well as the corresponding parameter. In addition, each
item in the parameter list is split into sub-fields. Then, those
logs that share the same event ID are stored into the same
object in a compact manner. At last, all generated objects are
compressed to a compact file by existing compression tools.
Details are described as follows.

B. Approach

Logzip can perform compression in 3 levels, and achieve
different effectiveness and efficiency. Fig. 5 is an example of
logzip workflow.

Level 1: Field Extraction. We first extract fields of given
raw logs by applying a user-defined regular expression. For
the example in Fig. 5, “DATA”, “TIME” and “LEVEL” could
be extracted by identifying the white space delimiter. “COM-
PONENT” and “MESSAGE CONTENT” are separated by a
colon. We emphasize that it is easy to manually construct the
regular expression, which generally remains unchanged for
a specific system since the message header is automatically
recorded by the logging framework (e.g., log4j in Java, logging
in Python). Then, each field is further split into sub-field ac-
cording to special characters (e.g., non-alphabetic characters)
to increase the coherence in a sub-field. These sub-fields are
then stored into separate objects. For level 1, we do not process
the message content and store it into an object.

Level 2: Template Extraction. The message content is
further processed by extracting the hidden structures, i.e.,
message templates. We directly apply ISE as described in
Section III. After that, the message content could be repre-
sented as its template and parameters, and we assign auto-
incremental EventID initialized to 0 for unique templates,
which forms a template mapping dictionary (EventID is the
key and the corresponding template is the value). In fact, a
template may be shared by many log messages. For example,
The HDFS logs that we studied contain around 11.2 million
log messages, but they share only 39 templates. Therefore, we
use the corresponding EventId to denote the template of each
log message. In doing this, log messages are transformed into
a compact form containing short EventId and parameters. At
last, the template mapping dictionary is stored into an object

17/06/09 20:10:46 INFO storage.BlockManager: Found block rdd_2_0 locally
17/06/09 20:10:46 INFO storage.BlockManager: Found block rdd_2_3 locally
17/06/09 20:10:52 INFO spark.CacheManager: Partition rdd_2_1 not found, computing it
17/06/09 20:10:52 INFO spark.CacheManager: Partition rdd_2_3 not found, computing it

 DATE TIME LEVEL COMPONENT
17/06/09 20:10:46 INFO storage.BlockManager:
17/06/09 20:10:46 INFO storage.BlockManager:
17/06/09 20:10:52 INFO spark.CacheManager:
17/06/09 20:10:52 INFO spark.CacheManager:

Log Structurization

Field Extraction Strcture Extraction & Mapping

17 / 06 / 09 20 : 10 : 46 INFO storage . BlockManager:
17 / 06 / 09 20 : 10 : 46 INFO storage . BlockManager:
17 / 06 / 09 20 : 10 : 52 INFO spark . CacheManager:
17 / 06 / 09 20 : 10 : 52 INFO spark . CacheManager:

Template
Mapping
Object

... EventID
Object

Sub-Field
Object

{1: Found block *locally,
 2: Partition * not found,
 computing it}
{1:rdd, 2: _, 3:2,
 4:0, 5:3, 6:1}

1, 2, 3, 2, 4
1, 2, 3, 2, 5
1, 2, 3, 2, 6
1, 2, 3, 2, 5

Templates

Parameters

EventID ParaID
1
1
2
2

Parameter
Mapping
Object

Sub-Field
Object

ParaID
Object

Sub-Field
Object

MESSAGE CONTENT
Found block rdd_2_0 locally
Found block rdd_2_3 locally
Partition rdd_2_1 not found, computing it
Partition rdd_2_3 not found, computing it

...

Raw Logs

Kernel Compression

...

Fig. 5. An Example of Logzip Workflow in Three Levels

alone, while the EventIds are stored in an EventId object. For
the parameters extracted from the message content, we split
each item of parameters in a similar manner as in level 1.
Clearly, each parameter is split with non-alphabetic characters
as delimiters. Then each generated sub-field within a group
constitutes one object separately. Here a group represents all
logs that share the same template. The intuition behind is that
parameters within a group may be duplicated or similar, and
putting similar items into a file could make the best of existing
tools, e.g., gzip.

Level 3: Parameter Mapping. We further optimize the rep-
resentation of parameters in level 3. Based on our observation,
some inseparable and very long parameters (i.e., no delimiter
inside) waste too much space. For example, the block ID (e.g.,
“blk -5974833545991408899”) is space-consuming and may
have high occurrence. To sidestep the problem, as shown in
Fig. 5, we encode unique sub-field values to sequential 64-
base numbers (ParaID), which forms a parameter mapping
dictionary (ParaID is the key and the corresponding parameter
is the value). For the sake of saving more space, parameters
from all groups share the same parameter mapping dictionary.
To conclude, in level 3, parameters are encoded into ParaIDs.
At last, one parameter mapping dictionary object and ParaID
objects for each group are generated separately.

Compression. After three levels of splitting, encoding and
mapping, several objects are generated. The last step is to pack
all these objects to be a compressed file without losing any
information. Since our main interest lies in the aforementioned
three levels of processing, we directly utilize those off-the-
shelf compression algorithms and tools in this step, e.g., gzip,
bzip2, and lzma. In this way, our logzip is compatible with
existing compression tools and algorithms. It is worth noting
that most log analysis algorithms (e.g., anomaly detection [21],

[22]) take templates as input without parameters. Therefore,
logzip could perform lossy compression in this case by dis-
carding all parameter objects before compression with existing
tools, which could be more effective.

Decompression. As the reverse process of log compression,
decompression should be able to recover the original dataset
without losing any information. At first, multiple objects
are generated after unzipping the compressed file. Then, we
recover the message header by simply merging all the sub-
fields values extracted in level 1 in order. As for recovering
the message content, we first get the templates by indexing
the event encoding dictionary with the EventID. Similar, the
parameter list is retrieved by indexing the parameter encoding
dictionary using the ParaID. By replacing the “*” in the
template using parameters in order, the message content can
be completely recovered.

V. EVALUATION

In this section, we conduct comprehensive experiments by
applying logzip to a variety of log datasets and report the
results. We aim to answer the following research questions.
RQ1: What is the effectiveness of logzip?
RQ2: How effective is logzip in different levels?
RQ3: What is the efficiency of logzip?

A. Experimental Setup

Log Datasets: We use five representative log datasets to
evaluate logzip, as presented in Table I. These log datasets are
generated by various systems spanning Distributed Systems
(HDFS, Spark), Operating System (Windows), Mobile System
(Android) and Supercomputer (Thunderbird). Some datasets
(HDFS [25], Thunderbird [26]) are released by previous log
research, while the other (Spark, Windows, Android) are

TABLE I
SUMMARY OF LOG DATASETS

Dataset Description Time Span #Messages Size

HDFS HDFS system log 38.7 hours 11,175,629 1.58 GB

Spark Spark job log N.A. 33,236,604 2.75 GB

Android Andriod system log N.A. 30,348,042 3.62 GB

Windows Windows event log 227 days 114,608,388 26.09 GB

Thunderbird Supercomputer log 244 days 211,212,192 29.60 GB

collected from real systems in our lab environment. Moreover,
the total size of all datasets is around 63.6 GB, which contains
a total amount of more than 400 million log messages. All the
datasets that we use are available on our Github.

Evaluation Metrics: To measure the effectiveness of logzip,
we use Compression Ratio (CR), which is widely utilized in
the evaluation of compression methods. The definition is given
below:

CR =
Original F ile Size

Compressed F ile Size

Note that the original size of a given log dataset is always fixed
while the compressed file size may vary. When reducing the
compressed file size, a higher compression can be achieved,
which indicates more effective compression.

Compression Kernels: As introduced in Section IV, logzip
utilizes existing compression utilities as the compression ker-
nel in the last step. In the experiments, three prevalent and
effective compression algorithms (i.e., gzip, bzip2, lzma) are
selected. Note that these compression algorithms can also be
employed to compress log files solely, which will serve as
baselines in our experiments.

Experimental Environment: We run all experiments on a
Linux server with Intel Xeon E7-4830 @ 2.20GHZ CPU and
1TB RAM, running Red Hat 4.8.5 with Linux kernel 3.10.0.

B. RQ1: Effectiveness of Logzip

To study the effectiveness of logzip, we use logzip it to
compress all five collected log datasets. As introduced before,
we use these existing popular compression tools (i.e., gzip,
bzip2, lzma) as well as two log compression algorithms (i.e.,
Cowic [23], LogArchive [24]) as baselines for a fair compari-
son. Since logzip can be equipped with different compression
kernels, it also has three variants, i.e., logzip (gzip), logzip
(bzip2), logzip (lzma). We report both the compressed file
size and the compression ratio (CR) in Table II. Note that
all results of logzip are obtained in level 3.

We first make brief comparisons among gzip, bzip2 and
lzma. lzma is generally the most effective one on most datasets
while gizp performs the worst. As for the two algorithms
specifically designed for log data, Cowic and LogArchive,
LogArchive could achieve higher CR than gzip but is generally
less effective than bzip2 and lzma. Cowic is even worse than
gzip, since Cowic is designed for a quick query on compressed
data instead of pursuing high CR.

Logzip variants with different compression kernels result
in different compressed size, which is determined by the

effectiveness of the kernels. Compared with the three baseline
methods, logzip equipped with the corresponding compression
kernel achieves higher CR on all five datasets. In particular,
logzip can achieve a CR of 4.56x on average and 15.1x at best
over the gzip traditional mature compression algorithm. For
example, the compressed file is around 149MB by gzip while
72MB by logzip (gzip), and our method can save around half
of the storage, which is crucial in practice. Logzip equipped
with other compression kernels achieves similar results.

C. RQ2: Effectiveness of Logzip in Different Levels

As introduced in Section IV, logzip is designed in three
levels, splitting the original log message into multiple objects
with different fineness. In this section, we evaluate the effec-
tiveness of logzip at each level. In practice, logs are generated
and collected in a streaming manner, and stored as a file when
they grow to a proper size, e.g., 1GB. For the simplicity of
comparison, our experiments are conducted on the first 1GB
logs of all five datasets. Besides, since our focus lies in varying
different levels and compression kernel is not a major concern,
we conduct experiments by taking gzip as the baseline method
and logzip (gzip) as our compression approach. Based on this,
we vary the level of logzip (gzip) to evaluate the effectiveness
of an individual level, and the experimental results should also
apply to other compression kernels.

Fig. 6 shows compressed file sizes on five datasets in
different levels. We can find that level 1 field extraction works
well on all datasets, compressing the original 1GB log files to
files of less than 100MB. It is because generally most fields
of a log file have limited unique values, and gzip is able to
compress such text data into a file of small size. Moreover,
compared to the baseline gzip compression, logzip with only
level 1 already achieves much better compression results.

Considering the structure extraction of message content in
level 2, it sharply reduces the compressed size on almost
every dataset. In particular, after applying logzip (level 2), the
compressed log file of Android takes up only 1

3 of the baseline
gzip-compressed file, and similarly, the fraction is even less
than 1

10 on Windows. The results confirm the effectiveness of
level 2 in log compression. The reason is also straightforward.
In level 2, ISE extracts the invariant templates out of log
message content and replace it with an event ID. Hence,
only keeping event IDs instead of original template strings
saves a large amount of storage space. Besides, parameters are
also split in a similar way as level 1 field extraction, which
contributes to reducing the compressed file size. However, we
also observe that the improvement is not obvious on the HDFS
log file. After close analysis on the HDFS logs, we find that the
major part of HDFS log message content is parameters instead
of the template. Parameters such as “Block Id” (e.g., “blk -
5974833545991408899”) are too long and cannot be separated
in level 2. Therefore, the compressed file size of the HDFS
data is not as small as other log files.

In level 3, we map parameters into 64-base numbers. As
shown in Fig. 6, logzip gets at least half the compressed
size compared with gzip on all five datasets. In particular,

TABLE II
COMPRESSION RESULTS W.R.T. SIZE (IN MB) AND COMPRESSION RATIO (CR) OF DIFFERENT COMPRESSION METHODS

(COWIC [23] AND LOGARCHIVE [24] ARE BASELINE ALGORITHMS FOR LOG COMPRESSION.)

Size CR Size CR Size CR Size CR Size CR

Raw 1,618 1 3,011 1 3,707 1 27,648 1 30,720 1

Cowic 373.6 4.3 707.4 4.3 1196.7 3.1 2794.0 9.9 8418.1 3.6

LogArchive 114.2 14.2 102.1 29.5 278.7 13.3 271.5 101.8 1146.4 26.8

gzip 149 10.9 175 17.2 439 8.4 1,638 16.9 1,946 15.8

logzip (gzip) 72 22.5 112 26.9 229 16.2 108 256.0 926 33.2

improvement 51.7% 2.1x 36.0% 1.6x 47.8% 1.9x 93.4% 15.1x 52.4% 2.1x

bzip2 108 15.0 107 28.1 257 14.4 396 69.8 1,229 25.0

logzip (bzip2) 63 25.7 85 35.4 145 25.6 85 325.3 723 42.5

improvement 41.7% 1.7x 20.6% 1.3x 43.6% 1.8x 78.5% 4.7x 41.2% 1.7x

lzma 96 16.9 122 24.7 167 22.2 118 234.3 1,126 27.3

logzip (lzma) 61 26.5 72 41.8 122 30.4 34 813.2 704 43.6

improvement 36.5% 1.6x 41.0% 1.7x 26.9% 1.4x 71.2% 3.5x 37.5% 1.6x

Thunderbird
Compression

HDFS Spark Android Windows

HDFS Spark Andriod Windows Thunderbird
0

20

40

60

80

100

120

140

C
om

pr
es

se
d

Si
ze

 (M
B

)

gzip
logzip (level 1)
logzip (level 2)
logzip (level 3)

Fig. 6. Compressed File Size (MB) in Different Levels

comparing to logzip (level 2), the compressed file size is
greatly reduced on HDFS dataset, which confirms the im-
portance of encoding the long and duplicate parameters as
aforementioned. Comparable or slightly worse results show
on other datasets. This is caused by introducing extra ParaIDs
for these logs without many space-consuming parameters. In
fact, these extra ParaIDs cost little space, which is tolerable.
That is, users could directly apply logzip (level 3) to their
dataset to achieve the best performance without considering
whether the log contains such parameters.

To conclude, logzip is effective in every level for the log
dataset that we study. More importantly, logzip theoretically
generalizes well for the text log data of other types for 2
reasons: (1) Only a little prior knowledge is required when
formatting raw logs. Once set up, no more manual effort is
required unless a system updates greatly. (2) Logs generated
by logging statements naturally contain hidden structures.
The key step of logzip, ISE, is able to automatically extract
the hidden information used for log compression. Note that
logzip is designed for logs stored in text form, which is the
most common case. Those in a binary format are beyond our
consideration, and we will explore the case in future work.

D. RQ3: Efficiency of Logzip

In this section, we evaluate the efficiency of logzip (gzip)
(in short, logzip). Logzip is designed to be highly parallel,
thus we would like to know the efficiency achieved by
utilizing different numbers of workers. Gzip is known as an
efficient compression tool thus used as a baseline. We apply
both algorithms on the first 1GB log data of HDFS, Spark,
Thunderbird and Windows, for the same reason mentioned in
section V-C. We exclude Android dataset for saving space.
In addition, we vary the worker number of logzip in range
[1, 2, 4, 8, 16, 32].

Fig. 7 depicts the execution time and compressed size
achieved by logzip and gzip, on four datasets. Note that the
execution time consists of all steps including ISE (Sec III) and
compression (Sec IV). As for logzip, the time cost halved after
doubling the number of workers. More importantly, it is worth
noting that the time cost by using 32 workers is comparable
with that of gzip, even better in HDFS and Spark. The result
shows the parallelizability and efficiency of logzip, which can
be explained by the design of logzip: (1) We extract high-
quality templates from only a small portion of logs in ISE,
e.g., 1% log messages are sufficient to generate templates that

1 2 4 8 16 32 gzip
#Workers

0
200
500

1000

1500

2000

2500
T

im
e

(s
)

Time

0

20

40

60

80

Si
ze

 (M
B

)

Size

(a) HDFS

1 2 4 8 16 32 gzip
#Workers

0
200
500

1000

1500

2000

2500

T
im

e
(s

)

Time

0

20

40

60

80

Si
ze

 (M
B

)

Size

(b) Spark

1 2 4 8 16 32 gzip
#Workers

0
200
500

1000

1500

2000

2500

T
im

e
(s

)

Time

0

20

40

60

80

Si
ze

 (M
B

)

Size

(c) Thunderbird

1 2 4 8 16 32 gzip
#Workers

0
200
500

1000

1500

2000

2500

T
im

e
(s

)

Time

0

20

40

60

80

Si
ze

 (M
B

)

Size

(d) Windows

Fig. 7. Compression Time & Size vs #Worker

match 90%∼100% logs messages. (2) The top-down manner
clustering are higly parallel since fine-grained clustering could
be performed simultaneously and independently. (3) We build
all templates into a compact prefix tree, the one-pass matching
scheme is efficient. (4) A log file could be split into several
chunks, and performing logzip on each chunk at the same time
is possible to reduce time consumption.

In addition, the compressed size slightly increases with more
workers involved. This is the result of chunking of logs. A
whole log file is split into chunks before feeding to a worker,
as a result, each worker only sees a part of the data, which
slightly hinders logzip to utilize the global information for
compression.

To conclude, logzip is highly parallel and could achieve
comparable or better efficiency than gzip. Note that, after
chucking the input log file, the compressed size may increase
a little bit, but it is tolerable in practice.

VI. INDUSTRIAL CASE STUDY

At Huawei, logs are continuously collected during the
whole product lifecycle. With the rapid growth of scale and
complexity of industrial systems, logs become a representative
type of big data for software engineering teams at Huawei.
For example, System X (anonymized for confidential issues),
which is one of the popular products at Huawei, generates
about 2 TB of log data daily. Storage of logs at such a scale
has become a challenging task. Most of the logs need to be
stored for a long time, usually 1∼2 years, considering the
product lifecycle of System X is about two years. In particular,
historical logs are kept for the following practical tasks: 1)
root cause analysis: identification of similar failures or faults
that happened before; 2) failure categorization: categorization
of similar failures for the development planning of next
software version; and 3) automated log analysis tools: acting
as experimental data for the research and development of
automated log analysis tools.

Log storage currently takes up over PBs of disk space in
a cluster, which indicates a huge cost of power consumption.
Meanwhile, log data is regularly replicated to one or two data
centers (according to different importance levels) at different
locations for disaster tolerance. This results in another type
of expensive cost, i.e. bandwidth consumption. Reducing the
storage cost of log data has become a main objective of
the product team because their storage budget is limited but
the number of products is growing. With close collaboration

with the product team, we have recently transferred logzip
into System X. Logzip is deployed on a 64-core Linux
server with Ubuntu 16.04 installed to compress raw log files.
When logzip is parallelized with 32 processors, it achieves
comparable compression time with the traditional gzip method.
The product team accepts the performance of logzip, since
most of the old logs are rarely accessed and can be archived
at one time. Yet, the use of logzip successfully reduces the
size of logs, saving about 40% of space compared to the gzip
algorithm that is previously used. It not only reduces the cost
of log storage but also cuts the cost on network consumption
during replication. This has become a successful use case of
logzip.

VII. RELATED WORK

Log Management for SE. Logs are critical runtime in-
formation recorded by developers, which are widely analyzed
for all sorts of tasks. 1) Log analysis is conducted for various
targets, such as code testing [27], problem identification [28],
[29], user behavior analysis [30], [31], security monitoring
[32], etc. Most of these tasks use data mining models to extract
critical features or patterns from a large volume of software
logs. Therefore, we believe our work on log compression could
benefit log data storage and save the cost of dumping the
large volume of logs. 2) Log parsing. is generally utilized
as the first step of downstream tasks. In recent years, various
log parsers have been proposed. SLCT [33] is the first work
on automated log parsing based on token frequency, to the
best of our knowledge. Then data mining-based methods
(LKE [21], IPLoM [34], Spell [19], Drain [35], [36]) are
proposed. LKE and IPLoM are offline parsers, and SHISO
and Drain could parse online in a streaming manner. These
parsers are evaluated and compared in the benchmark by Zhu
et al. [17]. The parsers could extract hidden structures but they
take all logs as input thus are not efficient compared with the
proposed ISE.

Text Compression. File compression algorithms have been
developed for years [37], [38], and some of them are utilized
in compressing tools (gzip, lzma, bzip2). These general tools
are commonly used and achieve satisfactory CR. To further
improve CR specific for text files, Lempel-Ziv-Welch (LZW)
based methods are widely studied [39]–[41]. Oswald et al. [42]
explore text compression in the perspective of Data Mining.
They enhance Huffman Encoding by frequent pattern mining.

Since log data as a kind of text data is more structured, we
propose logzip to use the information to facilitate compression.

Log Compression. Due to the inherent structure of log data,
it’s possible to compress log files with higher CR, thus some
log-specific algorithms are proposed. CLC [43] and DSLC [44]
utilize prior knowledge and manual pre-treatment to compress
log files. LogArchive [24] adaptively distributes log messages
to different buckets and track most recent log messages in each
bucket with a sliding window. Finally, buckets are compressed
separately in parallel. Cowic introduced by Lin et al. [16]
divides log messages into fields and manually build a model
for each field, but Cowic targets query efficiency instead
of high CR. MLC [45] explores data redundancy of log
file and divides logs into buckets based on similarities, then
apply existing compression tools as we do in logzip. These
algorithms explore hidden structures of logs to compress logs,
which could outperform general compression tools. But they
are limited by the trade-off between high CR and efficiency.
Compared with them, we extract hidden structures via ISE,
which is efficient and highly parallel. As a result, logzip
achieves high CR without loss of efficiency.

Log Analytics Powered by AI (LogPAI). LogPAI is a
research project originating from CUHK. The ultimate goal
of LogPAI is to build an open-source AI platform for auto-
mated log analysis. Towards this goal, we have built open
benchmarks over a set of research work as well as release
open datasets and tools for log analysis research. In partic-
ular, loghub hosts a large collection of system log datasets.
Logparser provides a toolkit and benchmarks for automated
log parsing [17], [46], [47]. Loglizer implements a number of
machine-learning based log analysis techniques for automated
anomaly detection [18], [48]. LogAdvisor is a framework for
determining optimal logging points in source code [12], [14],
[49]. In this work, logzip provides an tool for effective log
compression. With both datasets and source code available, we
hope that our LogPAI project could benefit both researchers
and practitioners in the community.

VIII. CONCLUSION

In this paper, we propose logzip, a log compression ap-
proach that largely reduces the operational cost for log storage.
Logzip extracts and utilizes the inherent structures of logs via
a novel iterative clustering technique. Logzip is designed to
be seamlessly integrated with the existing data compression
utilities (e.g., gzip). Furthermore, the semi-structure inter-
mediate representations generated by logzip can be directly
used for a variety of downstream log mining tasks (e.g.,
anomaly detection). Extensive experiments on five real-world
system log datasets have been conducted to evaluate the
effectiveness of logzip. The experimental results show that
logzip significantly enhances the compression ratios over three
widely-used data compression tools and also outperforms the
state-of-the-art log compression approaches. Moreover, logzip
is highly parallel and achieves comparable efficiency as gzip
on a 32-core machine. We believe that our work, together with

the open-source logzip tool, could benefit engineering teams
facing the same problem.

IX. ACKNOWLEDGEMENT

The work described in this paper was supported by
the National Key Research and Development Program
(2016YFB1000101), the National Natural Science Foundation
of China (61722214), the Research Grants Council of the
Hong Kong Special Administrative Region, China (No. CUHK
14210717 of the General Research Fund), and Microsoft
Research Asia (2018 Microsoft Research Asia Collaborative
Research Award).

REFERENCES

[1] D. Yuan, S. Park, P. Huang, Y. Liu, M. M. Lee, X. Tang, Y. Zhou, and
S. Savage, “Be conservative: Enhancing failure diagnosis with proactive
logging,” in Proceedings of the 10th USENIX Symposium on Operating
Systems Design and Implementation (OSDI), 2012, pp. 293–306.

[2] Y. Zhang, S. Makarov, X. Ren, D. Lion, and D. Yuan, “Pensieve: Non-
intrusive failure reproduction for distributed systems using the event
chaining approach,” in Proceedings of the 26th Symposium on Operating
Systems Principles (SOSP), 2017, pp. 19–33.

[3] M. Chow, D. Meisner, J. Flinn, D. Peek, and T. F. Wenisch, “The mys-
tery machine: End-to-end performance analysis of large-scale internet
services,” in OSDI, 2014, pp. 217–231.

[4] K. Nagaraj, C. E. Killian, and J. Neville, “Structured comparative anal-
ysis of systems logs to diagnose performance problems,” in Proceedings
of the 9th USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2012, pp. 353–366.

[5] M. Du, F. Li, G. Zheng, and V. Srikumar, “Deeplog: Anomaly detection
and diagnosis from system logs through deep learning,” in Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communica-
tions Security (CCS), 2017, pp. 1285–1298.

[6] A. Oprea, Z. Li, T. Yen, S. H. Chin, and S. A. Alrwais, “Detection of
early-stage enterprise infection by mining large-scale log data,” in DSN,
2015, pp. 45–56.

[7] G. Lee, J. J. Lin, C. Liu, A. Lorek, and D. V. Ryaboy, “The unified
logging infrastructure for data analytics at twitter,” PVLDB, vol. 5,
no. 12, pp. 1771–1780, 2012.

[8] A. J. Oliner, A. Ganapathi, and W. Xu, “Advances and challenges in log
analysis,” Commun. ACM, vol. 55, no. 2, pp. 55–61, 2012.

[9] A. V. Miranskyy, A. Hamou-Lhadj, E. Cialini, and A. Larsson,
“Operational-log analysis for big data systems: Challenges and solu-
tions,” IEEE Software, vol. 33, no. 2, pp. 52–59, 2016.

[10] D. Logothetis, C. Trezzo, K. C. Webb, and K. Yocum, “In-situ mapre-
duce for log processing,” in Proceedings of the 2011 USENIX Confer-
ence on USENIX Annual Technical Conference (ATC), 2011.

[11] M. Lim, J. Lou, H. Zhang, Q. Fu, A. B. J. Teoh, Q. Lin, R. Ding, and
D. Zhang, “Identifying recurrent and unknown performance issues,” in
IEEE International Conference on Data Mining (ICDM), 2014, pp. 320–
329.

[12] J. Zhu, P. He, Q. Fu, H. Zhang, M. R. Lyu, and D. Zhang, “Learning
to log: Helping developers make informed logging decisions,” in Pro-
ceedings of the 37th International Conference on Software Engineering
(ICSE), 2015, pp. 415–425.

[13] H. Li, W. Shang, and A. E. Hassan, “Which log level should developers
choose for a new logging statement?” Empirical Software Engineering
(EMSE), vol. 22, no. 4, pp. 1684–1716, 2017.

[14] Q. Fu, J. Zhu, W. Hu, J. Lou, R. Ding, Q. Lin, D. Zhang, and T. Xie,
“Where do developers log? an empirical study on logging practices
in industry,” in Proceedings of the 36th International Conference on
Software Engineering (ICSE), 2014, pp. 24–33.

[15] X. Zhao, K. Rodrigues, Y. Luo, M. Stumm, D. Yuan, and Y. Zhou,
“Log20: Fully automated optimal placement of log printing statements
under specified overhead threshold,” in Proceedings of the 26th Sympo-
sium on Operating Systems Principles (SOSP), 2017, pp. 565–581.

[16] H. Lin, J. Zhou, B. Yao, M. Guo, and J. Li, “Cowic: A column-wise
independent compression for log stream analysis,” in Proceedings of the
15th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGrid), 2015, pp. 21–30.

[17] J. Zhu, S. He, J. Liu, P. He, Q. Xie, Z. Zheng, and M. R. Lyu, “Tools
and benchmarks for automated log parsing,” in Proceedings of the 41th
International Conference on Software Engineering (ICSE), SEIP track,
2019.

[18] S. He, Q. Lin, J. Lou, H. Zhang, M. R. Lyu, and D. Zhang, “Identifying
impactful service system problems via log analysis,” in Proceedings
of the 2018 ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
ESEC/SIGSOFT (FSE), 2018, pp. 60–70.

[19] M. Du and F. Li, “Spell: Streaming parsing of system event logs,” in
Proceedings of the IEEE 16th International Conference on Data Mining
(ICDM), 2016, pp. 859–864.

[20] Wikipedia contributors, “Trie — Wikipedia, the free encyclopedia,”
2019, [Online; accessed 11-May-2019]. [Online]. Available: https:
//en.wikipedia.org/w/index.php?title=Trie&oldid=890445171

[21] Q. Fu, J. Lou, Y. Wang, and J. Li, “Execution anomaly detection in
distributed systems through unstructured log analysis,” in Proceedings
of the 9th IEEE International Conference on Data Mining (ICDM), 2009,
pp. 149–158.

[22] W. Xu, L. Huang, A. Fox, D. A. Patterson, and M. I. Jordan, “Detecting
large-scale system problems by mining console logs,” in Proceedings of
the 27th International Conference on Machine Learning (ICML), 2010,
pp. 37–46.

[23] H. Lin, J. Zhou, B. Yao, M. Guo, and J. Li, “Cowic: A column-wise
independent compression for log stream analysis,” in Proceedings of the
15th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGrid), 2015, pp. 21–30.

[24] R. Christensen and F. Li, “Adaptive log compression for massive log
data,” in Proceedings of the ACM SIGMOD International Conference
on Management of Data (SIGMOD), 2013, pp. 1283–1284.

[25] W. Xu, L. Huang, A. Fox, D. A. Patterson, and M. I. Jordan, “Detecting
large-scale system problems by mining console logs,” in Proceedings
of the ACM SIGOPS 22nd symposium on Operating systems principles
(SOSP), 2009, pp. 117–132.

[26] A. Oliner and J. Stearley, “What supercomputers say: A study of five
system logs,” in Proceedings of the 37th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), 2007.

[27] B. Chen, J. Song, P. Xu, X. Hu, and Z. M. J. Jiang, “An automated
approach to estimating code coverage measures via execution logs,”
in Proceedings of the 33rd ACM/IEEE International Conference on
Automated Software Engineering (ASE), 2018, pp. 305–316.

[28] Q. Lin, H. Zhang, J. Lou, Y. Zhang, and X. Chen, “Log clustering based
problem identification for online service systems,” in Proceedings of the
38th International Conference on Software Engineering (ICSE), SEIP
track, 2016, pp. 102–111.

[29] B. Chen and Z. M. J. Jiang, “Characterizing and detecting anti-patterns
in the logging code,” in Proceedings of the 39th International Confer-
ence on Software Engineering (ICSE), 2017, pp. 71–81.

[30] X. Yu, M. Li, I. Paik, and K. H. Ryu, “Prediction of web user behavior by
discovering temporal relational rules from web log data,” in Proceedings
of the 23rd International Conference on Database and Expert Systems
Applications (DEXA), Part II, 2012, pp. 31–38.

[31] N. Poggi, V. Muthusamy, D. Carrera, and R. Khalaf, “Business process
mining from e-commerce web logs,” in Proceedings of the 11th Interna-
tional Conference on Business Process Management (BPM), 2013, pp.
65–80.

[32] M. Montanari, J. H. Huh, D. Dagit, R. Bobba, and R. H. Campbell,
“Evidence of log integrity in policy-based security monitoring,” in

Proceedings of the IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN) Workshops, 2012, pp. 1–6.

[33] R. Vaarandi, “A data clustering algorithm for mining patterns from event
logs,” in Proceedings of the 3rd IEEE Workshop on IP Operations &
Management (IPOM). IEEE, 2003, pp. 119–126.

[34] A. Makanju, A. N. Zincir-Heywood, and E. E. Milios, “Clustering
event logs using iterative partitioning,” in Proceedings of the 15th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD), 2009, pp. 1255–1264.

[35] P. He, J. Zhu, Z. Zheng, and M. R. Lyu, “Drain: An online log parsing
approach with fixed depth tree,” in Proceedings of the 2017 IEEE
International Conference on Web Services (ICWS), 2017, pp. 33–40.

[36] P. He, J. Zhu, P. Xu, Z. Zheng, and M. R. Lyu, “A directed acyclic
graph approach to online log parsing,” CoRR, vol. abs/1806.04356,
2018. [Online]. Available: http://arxiv.org/abs/1806.04356

[37] J. Ziv and A. Lempel, “A universal algorithm for sequential data
compression,” IEEE Trans. Information Theory (TIT), vol. 23, no. 3,
pp. 337–343, 1977.

[38] ——, “Compression of individual sequences via variable-rate coding,”
IEEE Trans. Information Theory (TIT), vol. 24, no. 5, pp. 530–536,
1978.

[39] R. Pizzolante, B. Carpentieri, A. Castiglione, A. Castiglione, and
F. Palmieri, “Text compression and encryption through smart devices
for mobile communication,” in Proceedings of the 7th International
Conference on Innovative Mobile and Internet Services in Ubiquitous
Computing (IMIS), 2013, pp. 672–677.

[40] M. Mauer, T. Beller, and E. Ohlebusch, “A lempel-ziv-style compression
method for repetitive texts,” in Proceedings of the Prague Stringology
Conference, 2017, pp. 96–107.

[41] E. Rivals, J.-P. Delahaye, M. Dauchet, and O. Delgrange, “A guaranteed
compression scheme for repetitive dna sequences,” in Proceedings of the
Data Compression Conference (DCC). IEEE, 1996, p. 453.

[42] C. Oswald and B. Sivaselvan, “An optimal text compression algorithm
based on frequent pattern mining,” J. Ambient Intelligence and Human-
ized Computing, vol. 9, no. 3, pp. 803–822, 2018.

[43] K. Hätönen, J. Boulicaut, M. Klemettinen, M. Miettinen, and C. Masson,
“Comprehensive log compression with frequent patterns,” in Proceed-
ings of the Data Warehousing and Knowledge Discovery, 5th Interna-
tional Conference (DaWaK), 2003, pp. 360–370.

[44] B. Rácz and A. Lukács, “High density compression of log files,” in
Proceedings of the Data Compression Conference (DCC), 2004, p. 557.

[45] B. Feng, C. Wu, and J. Li, “MLC: an efficient multi-level log com-
pression method for cloud backup systems,” in 2016 IEEE Trust-
com/BigDataSE/ISPA, 2016, pp. 1358–1365.

[46] P. He, J. Zhu, S. He, J. Li, and M. R. Lyu, “Towards automated log
parsing for large-scale log data analysis,” IEEE Trans. Dependable Sec.
Comput., vol. 15, no. 6, pp. 931–944, 2018.

[47] ——, “An evaluation study on log parsing and its use in log mining,”
in 46th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, DSN 2016, Toulouse, France, June 28 - July
1, 2016, 2016, pp. 654–661.

[48] S. He, J. Zhu, P. He, and M. R. Lyu, “Experience report: System log
analysis for anomaly detection,” in 27th IEEE International Symposium
on Software Reliability Engineering (ISSRE), 2016, pp. 207–218.

[49] P. He, Z. Chen, S. He, and M. R. Lyu, “Characterizing the natural
language descriptions in software logging statements,” in Proceedings of
the 33rd International Conference on Automated Software Engineering

(ASE), 2018, pp. 178–189.

https://en.wikipedia.org/w/index.php?title=Trie&oldid=890445171
https://en.wikipedia.org/w/index.php?title=Trie&oldid=890445171
http://arxiv.org/abs/1806.04356

	I Introduction
	II Log Structure
	III Iterative Structure Extraction
	III-A Overview
	III-B Sampling
	III-C Clustering
	III-C1 Divide by level
	III-C2 Divide by component name
	III-C3 Divide by frequent tokens
	III-C4 Divide by fine-grained clustering

	III-D Matching
	III-E Iteration

	IV Log Compression
	IV-A Overview of Logzip
	IV-B Approach

	V Evaluation
	V-A Experimental Setup
	V-B RQ1: Effectiveness of Logzip
	V-C RQ2: Effectiveness of Logzip in Different Levels
	V-D RQ3: Efficiency of Logzip

	VI Industrial Case Study
	VII Related Work
	VIII Conclusion
	IX Acknowledgement
	References

