
Automated Trainability Evaluation for Smart
Software Functions

Ilias Gerostathopoulos∗, Stefan Kugele∗, Christoph Segler†, Tomas Bures‡ and Alois Knoll∗
∗Department of Informatics, Technical University of Munich, Garching b. München, Germany

Email: {ilias.gerostathopoulos, stefan.kugele}@tum.de, knoll@in.tum.de
†BMW Group Research, New Technologies, Innovations, Garching b. München, Germany

Email: christoph.segler@bmwgroup.com
‡ Charles University in Prague, Czech Republic

Email: bures@d3s.mff.cuni.cz

Abstract—More and more software-intensive systems employ
machine learning and runtime optimization to improve their
functionality by providing advanced features (e. g. personal driv-
ing assistants or recommendation engines). Such systems incorpo-
rate a number of smart software functions (SSFs) which gradually
learn and adapt to the users’ preferences. A key property of
SSFs is their ability to learn based on data resulting from the
interaction with the user (implicit and explicit feedback)—which
we call trainability. Newly developed and enhanced features in a
SSF must be evaluated based on their effect on the trainability of
the system. Despite recent approaches for continuous deployment
of machine learning systems, trainability evaluation is not yet
part of continuous integration and deployment (CID) pipelines.
In this paper, we describe the different facets of trainability
for the development of SSFs. We also present our approach
for automated trainability evaluation within an automotive CID
framework which proposes to use automated quality gates for the
continuous evaluation of machine learning models. The results
from our indicative evaluation based on real data from eight
BMW cars highlight the importance of continuous and rigorous
trainability evaluation in the development of SSFs.

Index Terms—trainability, smart software functions, continu-
ous deployment

I. INTRODUCTION

More and more computing systems feature advanced
software-enabled functionalities that make them be perceived
as “smart” by their users. Smartness is achieved via various
machine learning and runtime optimization capabilities that
aim to increase the value delivered to the users. Indeed, seen
as the ability to learn and improve over time, smartness is
increasingly a must-have property of many modern systems.

In an attempt to understand and aid the development of
smart systems, we coin the term trainability to describe the key
quality property of smart systems: the ability of a system to
accurately, quickly, cost-effectively, and robustly learn users’
behaviors and preferences with the goal to maximize the value
delivered to them. In a way, trainability is the opposite notion
of learnability, which focuses on the ability of users to learn
to use a system [1].

As an example from the automotive domain, consider a
windscreen wiper that supports two modes of operation:

The research leading to these results has received funding from the ECSEL
Joint Undertaking (JU) under grant agreement No 783221.

(i) interval-based, i. e., there are three levels with fixed in-
tervals between wipes, and (ii) automatic, i. e., the intervals
are computed based on rain intensity. In practice, customers
perform in either case additional manual wipes. A smart
windscreen wiper would try, e. g., via reinforcement learning,
to adapt to the driver’s preferences and minimize the number of
manual interventions. Its trainability depends on how quickly,
accurately, and effectively it learns such preferences.

Considering trainability as an important quality property of
smart systems, along with traditional properties of software
systems such as availability, maintainability, and performance,
two important questions arise: First, how can we quantify
trainability so that different versions of a system can be
compared on their effect on this property? Second, how can
we assess the effect of software development and evolution
(integration of new or enhanced features) on the trainability
of a smart system? Here, we are particularly interested in
automation that allows for quickly and reliably providing
feedback to developers regarding the effect of their software
changes on the trainability of the system under development.

To answer the above questions, in this paper we contribute
by (i) elaborating on five key facets of trainability (solution
quality, convergence, overhead, robustness, and effect) and
associated metrics for their evaluation; (ii) reporting on our
on-going attempt for embedding trainability evaluation in the
development of smart systems in the automotive domain.

II. TRAINABILITY FACETS AND METRICS

In this work, we propose five SCORE trainability facets
that are of particular interest and importance during the
development of smart systems:

• Solution quality, i. e., what the quality of the learned
model or optimized function is;

• Convergence, i. e., how efficient the learning is in terms
of time or algorithmic steps to reach its goal;

• Overhead, i. e., what the cost of learning and execution
is in terms of resources (e. g. memory, CPU);

• Robustness, i. e., how stable the quality of the learned
model or optimized function is when trained with differ-
ent input data or under different system conditions;



TABLE I
METRICS OF SOLUTION QUALITY TRAINABILITY FACET

Technique Metrics

Stochastic search
↪→ Single-objective distance from global optimum, distance from best

known solution, ...
↪→ Multi-objective Hypervolume, inverted generational distance, gener-

ated spread, Euclidean distance from ideal solution,...

Supervised Learning
↪→ Classification accuracy, balanced accuracy, precision, recall, F1

score, area under the ROC, . . .
↪→ Regression root mean squared error (RMSE), mean absolute error,

coefficient of determination (R2), . . .

Unsupervised Learning
↪→ Clustering Internal: silhouette coefficient, Dunn’s index, . . .

External: adjusted Rand index, Jaccard index, . . .

• Effect, i. e., what the effect of the learning is on the actual
customer satisfaction and adoption.

Solution quality can be quantified via various existing
metrics (Tab. I). The selection of one or more metrics de-
pends on the specific technique used to develop a smart
system. For instance, in systems employing single-objective
stochastic optimization, the distance of the reported solution
to the optimal one or to the best so-far known solution can
be measured [2]. Similarly, in multi-objective optimization,
different quality indicators can be used (e. g. hypervolume
indicator) [3]. Various well-known metrics exist also for the
evaluation of classification (e. g. accuracy, F1 score) and
regression (e. g. RMSE) algorithms. Finally, clustering algo-
rithms are typically evaluated using internal (e. g. Silhouette
coefficient) or external (e. g. Jaccard index) metrics, depending
on the availability of ground truth [4], [5]. Convergence
refers to the time to reach an acceptable (potentially optimal)
solution and can be quantified either via the number of steps
or iterations an algorithm needs to reach this solution or
via the computation time, which is implementation-specific.
Similarly, overhead refers to the computational or memory
resources that are needed for the solution to be executed and is
highly implementation-specific since specific implementations
of algorithms incur more overhead than others. Robustness
refers to the differences in solution quality when training a
machine learning model with different input data or optimizing
a function under different operational conditions—with higher
robustness leading to smaller differences. Robustness can be
measured via evaluating the quality of multiple “runs” of the
smart system. The challenge is how to generate different input
datasets or ensure that the system goes through diverse oper-
ational conditions. Finally, effect refers to the value delivered
to the users as a result of enhanced functionality. Though this
alone is an important property of any function, we consider it
also an important facet of trainability since it is particularly
difficult to assess how smart a system should be in order to
be accepted by the potential users. Effect can be measured
only by deploying the smart system to real cars and collecting
feedback from users (e. g. usage rates, ratings).

The SCORE facets and their analysis above show that

QG2/3

QG0/1

S SF

u

αi o

(a)

QG2/3

QG0/1

S ? SF

u

αi α∗ o

(b)

QG2/3

S SF
α∗i o

(c)

Fig. 1. Reference architecture of a SSF with user u, actions α, predicted user
action α∗, input i, and output (result) o: (a) Training phase, (b) test phase;
the component ? compares the user action α with the predicted action α∗.
(c) The SSF S is active and controls the SF.

t

Local test

QG0

Integration
test

QG1

[Variants?]

Deploy to
employees

QG2

Deploy var.
to empl.

Deploy to
customers

QG3

push

[no]

[yes]

Fig. 2. Trainability Evaluation Framework for Automotive CID.

trainability can be considered as a universal property of smart
systems that employ machine learning and self-optimization.

III. TRAINABILITY EVALUATION FRAMEWORK

In our initial attempt to assess the effect of software
development on the trainability of a smart system, we focused
on Smart Software Functions (SSFs) in the automotive domain.
In automotive, SSFs are meant to enhance drivers’ and passen-
gers’ comfort by learning and automating certain manual tasks
such as turning on/off seat heating, opening/closing the driver’s
window, and changing the driving mode to sport/comfort.

Fig. 1 depicts the reference architecture of a SSF in three
different phases. In the training phase (cf. Fig. 1a), the user u
is interacting with the classic non-smart Software Function
(SF). Based on these user actions α, the Smart learning
component (denoted as S) trains a classifier to predict when to
apply a user action based on vehicle data (e. g. predict “start
seat heating” when the temperature is low). In the testing phase
(cf. Fig. 1b), the architecture changes since S now outputs
predicted user actions α∗ that are compared to the actual user
actions, which are still used for controlling the SF. Based
on the predicted and actual actions, we can measure certain
trainability facets without interfering with the actual system.
In the active phase (cf. Fig. 1c), the SSF is completely active
and the predictions from S are now used for controlling SF.

Given the above reference architecture and phases, we
propose to evaluate the trainability of different revisions of
SSFs using a Continuous Integration and Deployment (CID)
approach that provides fast and reliable feedback to the devel-
opers on the effect of their changes on the SCORE trainability
facets (cf. Fig. 2). In particular, the following four quality gates
(QG) ensure that only revisions satisfying certain trainability
criteria proceed to the next stages.
QG0 In this step, the developer follows guidelines that pre-
scribe which trainability criteria should be satisfied before
pushing a revision. For example, a criterion could be that the
classification accuracy of S should be at least 60% and not



lower than the accuracy of the previous revision. Obviously,
the validity of such checks depends on the availability of data
that can be accessed locally by the developer. In general, we
assume that the developer has access to a subset of historical
vehicle data in order to develop their SSFs.
QG1 This QG gets activated once a revision is pushed to the
CID pipeline. In this step, the SSF can only run in the training
and test phase, due to the execution on recorded datasets
without any user in place yet (cf. Figs. 1a and 1b). Here, apart
from the solution quality of S, its robustness and overhead
are also tested. For instance, robustness can be checked by
measuring the standard deviation of a solution quality metric
such as accuracy. Overhead can also be realistically measured
in terms of CPU cycles or RAM used in training and testing
since Hardware-in-the-Loop testing environments are present.
Concretely, Listing 1 shows a possible specification of the
checks to be performed in QG1. First, the specification defines
the type and size of input data to be used in the training
and testing phases of S. Data can be retrieved belonging to
either users or cars (type) and over a prescribed duration. For
example, Listing 1 specifies that datasets from 8 users driving
their car for 90 days should be used. Each dataset should
be split into 5 folds and training should be performed using
all the possible combinations of 4 consecutive folds (5-fold
validation) and tested on the remaining fold. This creates 40
(8*5) tests. Here, the metric of solution quality is balanced
accuracy which can measure the accuracy even in imbalanced
datasets that are common for SSFs, as some functions are only
rarely used. This value has to be larger than 60% for each test
to pass. For the solution quality facet to be satisfied, more than
half of the total tests should pass and the number of passing
tests should not be less than the equivalent number in the
previous revision. The method shown in this example is just
a simple way to identify trainability regressions; Also more
sophisticated methods (e. g. t-tests) can be easily specified.
In this case, the specification also denotes that in each test
the size of the classification model should not exceed 200
MB in order to satisfy the overhead criterion. Finally, as a
criterion for robustness, the standard deviation of balanced
accuracy values from all tests should be less than 0.1. Note
that convergence cannot be evaluated at this step since this
can only be done with an increasing amount of data, and for
the effect, an interaction with a real user is necessary.
QG2 Once the revision passes from QG1, it gets deployed on
company cars that are driven by employees of the automotive
company, which can be considered as “beta testers” in this set-
ting. We distinguish between deployment of a single revision
and deployment of two or more revisions that contain variants
of a SSF that should be compared against each other via
A/B testing [6]. For the latter case, we assume that an online
experimentation module decides which variants are deployed
on each car and is responsible for gathering data for each
deployment variant. At this step, along with the other facets,
it becomes possible to evaluate the convergence and effect
facets of a revision. Also, it now becomes possible to test not
only S but the whole SSF in the following way: First, the

input:
type: user
count: 8
recorded_time: 90 days
train_test_split: 5-fold

solution_quality:
balanced_accuracy:
- each: value >= 0.60
- all: passed_count >= 0.5 * total_count
- all: passed_count >= passed_count_previous_revision

convergence: ~ # not applicable for QG1
overhead:
model_size:
- each: value < 200 MB
- all: passed_count == total_count

robustness:
balanced_accuracy:
- all: standard_deviation < 0.1

effect: ~ # not applicable for QG1

Listing 1. Definition of QG1.

input:
type: user
count: 100
evaluation: 3 days
train_test_split: 2/3
active: 7 days
filter:
department: <COMPANY>
model: <COMPANY>

solution_quality: # inherited from QG1
convergence:
training_time:
- each: 3 evaluations <= value <= 5 evaluations

overhead: # inherited from QG1
robustness: # inherited from QG1
effect:
percentage_used:
- each: value > 0.60
- all: passed_count >= 0.9 * total_count

Listing 2. Definition of QG2.

SSF is in passive mode (cf. Figs. 1a and 1b) and goes through
a number of evaluations where S is first trained for a certain
amount of time and then tested. After a number of evaluations,
S converges to the acceptable level of solution quality. At this
point, SSF changes to active mode (cf. Fig. 1c) whereby S is
used as input for user actions and the effect of the revision is
evaluated. All evaluation results are sent to the company CID
servers to allow for testing the metrics of QG2. Concretely,
Listing 2 specifies the case where a revision should be tested
with 100 employees driving a specific car model and working
in a specific department. Here, a single evaluation takes 3 days
and is split in 2 days of training time and 1 day of testing
time. The convergence constraint is that S should reach the
solution quality criterion of 60% (as specified in the previous
QG) within at least 9 days and at most 15 days. After this, the
system should stay in active mode (where the effect can be
measured) for 7 days. In this case, the effect is measured by
the percentage of time SSF is on and not manually deactivated
by the user (for more than 60% for at least 90% of the users).
QG3 In the last step, a single variant (if many) of the
SSF revision is deployed to customer cars. The approach to
trainability assessment is very similar to the previous step
since the SSF should again undergo a train-test-active cycle to
make the evaluation of all the SCORE facets possible. Here
though there is also the opportunity for longer active phases
and continuous monitoring of effect metrics.



IV. DEMONSTRATION AND INDICATIVE EVALUATION

In this section, we demonstrate our approach on the develop-
ment of an Automatic Window Opener (AWO). AWO predicts
when to open or close the driver’s window based on the user’s
actions in certain situations delineated by car data such as
inside/outside temperature, road type, or location of the car
key. We assume that the development of AWO goes through
two revisions: in the first revision, S is trained using a Support
Vector Machine (SVM) classifier on all the available car data
as input; in the second, S is trained with the same classifier,
but in this case based on 30 inputs from the car data selected
by a feature selection algorithm (here, Fisher Score). For our
demonstration, we configured QG1 as specified in Listing 1.
We assume that the developer has access to a single user
dataset when developing and testing locally (QG0), while
QG1 has access to 8 user datasets. These datasets originate
from eight BMW cars that have been equipped with hardware
loggers, collecting all messages which were sent over the
internal communication networks. As specified in Listing 1,
each dataset contains vehicle data recorded over 90 days.

When the first revision (SVM without feature selection)
is pushed to the CID pipeline, 9 out of 40 tests passed the
solution quality criterion of balanced accuracy above 60%
and only 15 out of 40 tests passed the overhead criterion of
model size below 200 MB; thereby the revision does not pass
QG1. AWO is then refined (second revision) and tested locally
(QG0). After passing QG0, this revision is pushed to the CID
pipeline. This revision now passes 24 out of 40 tests (60%)
and hence satisfies the solution quality criterion. At the same
time, all runs pass the overhead criterion and the robustness
checks, since the model size of each run is below 200 MB
and the standard deviation of the 40 balanced accuracy values
is 0.0867 which is below 0.1 as specified in the robustness.
Since all facets are satisfied, the revision passes QG1.

Our indicative evaluation shows that the different steps and
QGs in the proposed CID pipeline were able to quickly detect
the poorly performing first revision and prevent it from being
deployed to real cars. We also show that it is feasible to capture
all the SCORE facets in our framework and evaluate each one
of them when and where it is most applicable.

V. RELATED WORK

To the best of our knowledge, there is only little work on
CID pipelines in the automotive domain. Vöst and Wagner [7]
report on a test selection approach supporting CI. The authors
consider non-smart SFs, in particular, the adaptive cruise
control and show a reduction of executed tests. Their approach
covers QG1 for non-smart functions. Knaus et al. [8] and van
der Valk et al. [9] highlight the challenges of CI pipelines
in the automotive development process. They underline the
importance of tools and automation, especially in the building
and integration stages going along with the presented CID
approach of Fig. 2. Moreover, they highlight the importance
of contracts within an automotive ecosystem.

The proposed notion of “trainability” can be seen in contrast
to the “learnability” notion in software quality characteristics.

In particular, ISO/IEC 25010:2011 defines learnability as the
“degree to which a product or system can be used by specified
users to achieve specified goals of learning to use the product
or system with effectiveness, efficiency, freedom from risk
and satisfaction in a specified context of use” [1]. Likewise,
we consider trainability as a quality attribute of a SSF.
However, trainability features the ability of a SSF to learn
user preferences and not the ability to be learned.

Similarly to Renggli et al. [10], we use the YAML file
format to specify quality gates facilitating an embedding
in commonly used CI/CD systems such as Travis CI. In
comparison, we do not only focus on machine learning models
but generalize to a variety of solution quality trainability facets
holistically. Moreover, the proposed CID approach does not
only consider early phases but spans the whole product life-
cycle from development to deployment of SSFs to customers.

VI. CONCLUSION

In this paper, we proposed the notion of SCORE—Solution
quality, Convergence, Overhead, Robustness, Effect—to define
the different facets of trainability for the development of
smart software functions. Based on these trainability facets, we
presented our approach for automated trainability evaluation
within an automotive continuous integration and deployment
framework. We demonstrated the applicability of our approach
on the development of a smart function in the automotive
domain using real vehicle data. In future work, we would like
to introduce more metrics in each facet of trainability and
evaluate QG2 and QG3 on real users.

REFERENCES

[1] ISO/IEC, “ISO/IEC 25010:2011 systems and software engineering –
systems and software quality requirements and evaluation (square) –
system and software quality models,” ISO/IEC, Tech. Rep., 2011.

[2] R. L. Rardin and R. Uzsoy, “Experimental Evaluation of Heuristic
Optimization Algorithms: A Tutorial,” Journal of Heuristics, vol. 7,
no. 3, pp. 261–304, May 2001.

[3] S. Wang, S. Ali, T. Yue, Y. Li, and M. Liaaen, “A practical guide to
select quality indicators for assessing pareto-based search algorithms
in search-based software engineering,” in Proc. of ICSE ’16. Austin,
Texas: ACM Press, 2016, pp. 631–642.

[4] M. Z. Rodriguez, C. H. Comin, D. Casanova, O. M. Bruno, D. R.
Amancio, L. d. F. Costa, and F. A. Rodrigues, “Clustering algorithms: A
comparative approach,” PLOS ONE, vol. 14, no. 1, pp. 210–236, 2019.

[5] O. Arbelaitz, I. Gurrutxaga, J. Muguerza, J. M. Pérez, and I. Perona,
“An extensive comparative study of cluster validity indices,” Pattern
Recognition, vol. 46, no. 1, pp. 243–256, Jan. 2013.

[6] R. Kohavi and R. Longbotham, “Online controlled experiments and
A/B testing,” in Encyclopedia of Machine Learning and Data Mining,
C. Sammut and G. I. Webb, Eds. Springer, 2017, pp. 922–929.

[7] S. Vöst and S. Wagner, “Trace-based test selection to support continuous
integration in the automotive industry,” in Proc. of CSED@ICSE 2016.
ACM, 2016, pp. 34–40.

[8] E. Knauss, P. Pelliccione, R. Heldal, M. Ågren, S. Hellman, and
D. Maniette, “Continuous integration beyond the team: A tooling
perspective on challenges in the automotive industry,” in Proc. of ESEM
2016. ACM, 2016, pp. 43:1–43:6.

[9] R. van der Valk, P. Pelliccione, P. Lago, R. Heldal, E. Knauss, and J. Juul,
“Transparency and contracts: continuous integration and delivery in the
automotive ecosystem,” in Proc. of ICSE’18. ACM, 2018, pp. 23–32.

[10] C. Renggli, B. Karlas, B. Ding, F. Liu, K. Schawinski, W. Wu, and
C. Zhang, “Continuous integration of machine learning models with
ease.ml/ci: Towards a rigorous yet practical treatment,” CoRR, vol.
abs/1903.00278, 2019.


