1912.07817v1 [cs.FL] 17 Dec 2019

arxXiv

Prema: A Tool for Precise Requirements Editing,
Modeling and Analysis

Yihao Huang*, Jincao Feng*, Hanyue Zheng*, Jiayi Zhu*, Shang Wang*,
Siyuan Jiang®, Weikai Miao*'Y, Geguang Pu**¥
* Shanghai Key Lab of Trustworthy Computing, East China Normal University, China
f Shanghai Institute of Intelligent Science and Technology, Tongji University, China
i Shanghai Trusted Industrial Control Platform Co., Ltd, China
§ Eastern Michigan University, USA

Abstract—We present Prema, a tool for Precise Requirement
Editing, Modeling and Analysis. It can be used in various
fields for describing precise requirements using formal notations
and performing rigorous analysis. By parsing the requirements
written in formal modeling language, Prema is able to get a model
which aptly depicts the requirements. It also provides different
rigorous verification and validation techniques to check whether
the requirements meet users’ expectation and find potential
errors. We show that our tool can provide a unified environment
for writing and verifying requirements without using tools that
are not well inter-related. For experimental demonstration, we
use the requirements of the automatic train protection (ATP)
system of CASCO signal co. LTD., the largest railway signal
control system manufacturer of China. The code of the tool
cannot be released here because the project is commercially
confidential. However, a demonstration video of the tool is
available at https://youtu.be/BX0yv8pRMWs.

Index Terms—formal methods, requirements modeling, re-
quirements verification, formal engineering methods

[. INTRODUCTION

Requirements verification and validation (V&V) is an im-
portant research area in requirement engineering [[12]. They
can reduce the number of defects before software deploy-
ment [[11]. V&V is especially important for safety-critical sys-
tems which tight compliance with certification processes [3].

Specifications in the industry are commonly specified in
natural language, due to the ambiguity of which, rigorous
V&V techniques cannot be utilized. On the other hand, tools
designed for requirement engineering are scarce. Doors [[10]
is one of the requirement management tools which is widely
used. However, the large number of built-in features of the
tool are designed for general purpose. That is, for people
in a particular field, who only need limited features of the
tool, other unused features are redundant. Since V&V requires
precise specifications, for example, mathematically defined,
formal specifications are preferred. To help requirement engi-
neers create and analyze formal specifications, tools [11] for
formal methods are proposed, such as Timed Automata [5]] and
UPPAAL [6], which can create, simulate and verify the timed
automata using model checking techniques. Another example
is Statecharts [4], which is a modeling environment for state

11Geguang Pu, Weikai Miao are the corresponding authors.

machine design. The BIP model is also used for component-
based software modeling and system validation [17] [18].
Though these tools are well-done in modeling and verification,
they are not professional in particular fields.

Fig. 1. The framework of Prema

What’s more, formal methods are not widely adopted in
industry, even for safety-critical systems [2]. One major reason
is that most software requirement engineers are not familiar
with formal methods. Moreover, based on our collaborating
experience with our industry partners, requirement engineers
have little motivation to learn these methods due to the
learning costs and the lack of requirement tools.

To address this problem, we present Prema, an requirements
engineering tool that (1) uses our designed formal specification
language for the industry partners; (2) allows users to write
formal specifications and supplement natural language ones
as comments in the editor, and (3) automatically generates
rigorous V&V reports based on the formal specifications. To
reduce requirement engineers’ learning costs, we custom-make
the formal language based on the requirement writing habits
to support the domain features.

The intuition for designing these customized formal lan-
guages came from the requirement documents of the three
various industry fields: aerospace, aviation, and railway signal
control. In each field, we choose a classical company to
collaborate with. In railway signal control area, CASCO [16]]
is our partner. We found that in embedded control systems,
most natural language specifications are very detailed and have

similar styles. With some alterations, they can become formal
specifications. For example, in CASCO’s requirements docu-
ments, many specifications are written with pieces of Python-
like pseudocode to clarify the corresponding specifications.
With little modification, we designed a formal language just
like the pseudocode, on which we then run the analysis. Be-
sides CASCO, we also have designed two formal languages for
the aerospace company and the aviation company respectively.
These languages have been applied successfully in the safety-
critical area in our previous work [14] [15]. As a proof of a
concept, we present in this paper the demo of Prema with the
formal language for CASCO.

Our tool, Prema, is an integrated development environment
for requirements engineering, which consists of a front-end
with an editor, a compiler, and an analyzer (shown in Figure|[T).
The programming language of Prema is C# and it is running
on Windows 10. Requirement engineers can write natural
language and formal specifications, add images, tables, and
flow charts in the editor. The compiler processes formal
specifications into models. The analyzer contains a set of V&V
methods including (1) diagrams used for validation, such as
state machine diagram; (2) system simulation; (3) test case
generation for each requirement; and (4) property verification.
In Prema, natural language specifications and formal ones
are developed and maintained in the same editing zone so
that V&V methods can be executed as soon as possible and
requirement engineers do not need to switch environments for
maintaining these two types of requirements artifacts.

. | When the vending machine is in select_state, the machine
£ | should wait for users to choose beverage. After the
‘E | beverage is chosen, the state of the machine changes to
E*E beverage _state. (the natural language description)
T eSS
o,| if (STATE==select_state) {
2] choose_beverage ()
state=beverage_state
} (the formal specification)
ﬂCompiler
©
& o—C)
E get beverage
ﬂAnalyzer
I
I
O—Cm)
i) get beverage
8
= insert coin Simulation
R~
choose beverage—> (]

Fig. 2. Vending Machine Example

We conducted a case study using Prema for ATP require-
ments of CASCO. The requirements contain 454 pages, 482
computation tasks, 2 state machines, 1227 variable relationship

diagrams. Prema found 132 errors of the ATP requirements by
using syntax analysis and V&V methods. The errors include
127 syntax errors, 3 variable circular definition error, 1 variable
dimension error and 1 DivideByZeroException.

II. RUNNING EXAMPLE

We use a simple application example of a vending machine
that sells beverage, which is a classical V&V example [J].
This vending machine has three states: pay_state, select_state,
and beverage_state. In the pay_state, the system waits for users
to insert coins. In the select_state, the system waits for users
to select beverage. In the beverage_state, the system dispenses
the beverage and transits to the pay_state.

Firstly, requirement engineers write specifications of this
vending machine in Prema. An example of a requirement is
in Figure [2] which has two parts: a natural language descrip-
tion of what this vending machine should do and a formal
specification of the same requirement. After the specifications
are written, requirement engineers run the compiler of Prema
which converts the formal specifications into a model saved
in the backend (Model in Figure 2). Finally, requirement
engineers can run any V&V analysis method provided in
Prema. Figure 2] shows the simulation of the state machine
based on the specifications of the vending machine.

III. APPROACH

As shown in Figure [T} front end, compiler and analyzer are
the three parts of Prema. Specifications, models and reports
are the corresponding outputs of these three parts.

Fle Edt Tool Help

[a Open [sove | gy Analysis | N Verifcation [7y7< Check @ Demensional Analysis |3 Simulation | Testeas
editor
[Foaa Coa ¥
| e R
[F Requrement | DC® B S I 6 H HHH$ HS H6 = I= — Qe ax
Gose } L0 HmY o fA @E0
Iopropertes — -
] - editing area || w00 display area
| 16 westaters 15 WIv st eyele K, and IfState s A /at cycle k, and if Signal s Trueat
navigation || 16 0% cyce k then A and B should be set to zer0
then
pane_|I| %

® 00021
fee02] Atcycle k. State shall
At cycle k, **state*s

not failure at cycle k 1F ((State(k-1) is @)
and (ot Signal(k) and not F(

Copyright © 2019 Lab3

Fig. 3. The Front End of Prema

A. Front-end

A snapshot of the front-end is shown in Figure 3] On the top
of the front-end, there are six buttons which correspond to the
six functions: analysis, verification, type check, dimensional
analysis, simulation and test case generation. These are all
V&V methods which will be described in Section [II=Cl

The navigation pane shows the section headings of the
requirements hierarchically. To open a requirement, users can

click the heading of a requirement and the specifications of
the requirement will be presented on the editor.

The editor supports Markdown syntax. By using the Mark-
down language, requirement engineers can easily add descrip-
tions in formats other than text, such as truth tables and
flow charts. Editing area is for writing requirements while
the display area shows the live preview of the document.
To distinguish the natural language specifications and formal
ones in the editor, we just take the text segments with special
symbols (TAB character) at the beginning into account as
formal specifications, while others are natural language ones.
The entire front-end is similar to an IDE, so that requirement
engineers can use it without much learning cost.

B. Compiler

Prema uses different compilers for different formal lan-
guages. A compiler has two parts: a parser and a model
generator. The parser is produced by a third-party tool from a
grammar defined by us. It can convert formal specifications
into a syntax tree in accordance to the above-mentioned
grammar. Then, a model generator will traverse the syntax
tree, get all the information of it and transform it into a model.

The third-party tool we used to build the parser is ANTLR
(ANother Tool for Language Recognition) [1], which is a
parser generator for processing structured text. Because our
industry partners have different applications with various re-
quirement writing habits and standards, the formal languages
are customized to each company and have their own distinc-
tive grammars. Although the formal language for CASCO’s
requirements shown in this paper has a grammar similar to
that of Python’s, our other formal languages are more like
C++ programming language for the aviation company and
the aerospace company. We list the grammar for the formal
language we designed for CASCO in Figure

Syntax Of Expressions:
expr_stmt : testlist (ASSIGN* testlist)? | flow_stmt ;
flow_stmt : return_stmt ;
return_stmt : RETURN (testlist)? ;
testlist : test (options {k=2;}: COMMAA* test)* (COMMA)? ;
test : and_test (OR” and_test)* | lambdef;
and_test : not_test (AND” not test)*;
not test : NOT# not test | comparison ;
comparison : expr (comp_op”* expr)* | expr (IS* NOT expr)*| expr (NOT INA expr)* ;
comp op : LESS | GREATER | EQUAL | GREATEREQUAL | LESSEQUAL | NOTEQUAL | IN | IS ;
expr : xor_expr (VBAR xor_expr)* ;
xor_expr : and_expr (CIRCUMFLEX# and_expr)* ;
and_expr : term ((PLUS|MINUS)# term)* ;
term : factor ((STAR | SLASH | PERCENT)~ factor)* ;
factor : (PLUS|MINUS)* factor | power ;
power : atom# (trailer)* ;
atom : LPAREN” (testlist)? RPAREN | TRUE | FALSE | NAME | INT | FLOAT | (STRING) + ;

Syntax Of Statements:
stmt : funcdef | simple_stmt | if stmt;
simple_stmt : expr_stmt (options {greedy=true;}:SEMI expr_stmt)* (SEMI)? NEWLINE ;
funcdef : def;
def : DEF NAME parameters suite_block ;
suite_block : COLONA suite ;
suite : simple_stmt | NEWLINE INDENT (stmt)+ DEDENT ;
if stmt : IF~ test suite_block (elif stmt)* else_stmt? ;
elif stmt : ELIFA test suite_block ;
else_stmt : ELSE~ suite_block ;

Fig. 4. Syntax of the Formal Language for CASCO

After we get a syntax tree from a parser, the model generator
creates a model based on the tree. To describe an embedded
control system accurately, the model usually contains three

parts: a state machine, computation tasks and a data dictionary.
The state machine shows the states of the system and the
migration relationships between them. The model generator
automatically labels the variables that have names ended with
”State” as state variables. The data dictionary records all
the variables used in the requirements. The validation of
the model is proved to be equivalent to that of the original
formal requirements. We present the model we created for a
subsystem in the railway signal control system of CASCO in
our case study (Section[[V). The model is a little different from
the universal model of embedded control software. It has two
small state machines which represent part of the system. The
other two formal languages (for the aerospace company and
the aviation company) are transformed into different models.
For example, the model for aviation company has control flow
graphs, in addition to a state machine and a data dictionary.

C. Analyzer

After we have the model generated by the compiler, the
analyzer helps to check whether the model is consistent
with the expectations of the requirement engineers for soft-
ware functionalities. The analyzer has the following parts:
(1) diagram-based validation, (2) simulation, (3) test case
generation, (4) property verification, (5) type check, and (6)
dimensional analysis. Each part has a corresponding button
on the front-end, so requirement engineers can click a button
to run that V&V method. Due to the space limit, we will not
discuss the last two parts: type check and dimensional analysis.

1) Diagrams for Validation: Prema can generate mode
transition diagrams, state machine diagrams and variable re-
lationship diagrams. A mode transition diagram describes
the operating framework of the embedded control software,
which is represented as an automata. An example of a state
machine diagram is shown in Figure 2] In the state machine
diagram, it shows the relationship between multiple states
of a variable. The states are shown as vertices while the
transition relationships are represented by the directed edges
with conditions on them. In the variable relationship diagram,
users can select the variable which needs to be checked in the
list supported by Prema. This variable is called key variable.
The diagram will show the variables which use the key variable
and the variables used by the key variable. Prema supports
direct and indirect reference relationship among the variables.

2) Simulation: The simulation function allows users to
run a simulation of the system behavior of software at the
requirement level. It can be used for all computation tasks of
the state machine. When using this function, users have to
choose some requirement items which need to be simulated
from the entire requirements. Figure [5]shows the simulation of
a state machine. This state machine has four states and seven
migration conditions. There is one migration condition on each
directed edge. To run a simulation, the users need to provide
input variable values at each cycle or give a list of input
variable values of many cycles at once. In addition, because it
is a simulation of periodic software, so in each cycle, users can
stop the simulation to judge whether the results are expected.

o
P

CGQ?"_’UQ

,/"’
{on

con®—"

-

Fig. 5. Simulation Sketch Map

3) Test case Generation: The test case generation function
can create test cases for each requirement. The generation
algorithm is based on MC/DC (Modified Condition Decision
Coverage) [9] criteria, which is required by DO-333 (a indus-
trial standard) [13]]. According to the definition of MC/DC,
each condition in each decision must be able to independently
affect the output of a decision. So we designed an algorithm
to collect constraints of each function. Through using the Z3
solver [[7]], we can get test cases by constraints.

4) Property Verification: The property verification part is
where we apply formal methods to check the safety of the
requirements. These methods can help requirement engineers
discover unexpected behaviors expressed in the requirement.
To use this function, engineers first provides a property which
is expected to be satisfied by the system in a Boolean expres-
sion. Then they selects a part of the requirements that need
to be verified. Prema uses Z3 solver to solve the expression.
If Z3 does not output counterexample, it means the property
is satisfied. Otherwise error paths and variable values which
lead to failure will be displayed.

IV. CASE STUDY

The case study examines how Prema works for an entire
requirement document of a subsystem in a railway signal con-
trol system of CASCO. The original requirements document of
the ATP system is written in Microsoft Word, which has 454
pages. It contains 482 computation tasks, which can be viewed
as functions or programming blocks. The requirements not
only have English and Chinese description of requirements, but
also have images and code snippets. Because the requirement
documents provided by CASCO are Word documents, so
we use the import function of Prema to transform it into
Markdown documents, which are shown in the front end.

The diagram-based validation function generates 2 state
machine diagrams with 197 variables and 1227 variable re-
lationship diagrams. The two state machines both have 4
vertices which represent the states of the state variable with
7 and 8 directed edges in them respectively. Through using
the diagram-based validation function, we detect 3 variable
circular definition error of the computation tasks.

Simulation is executed on the 2 state machines with input
variable values of 15273 cycles. In the simulation process,

there exists a DivideByZeroException which interrupts the
program and reports an error.

Property verification is used on the entire requirement with
the property supported by the requirement engineers. The
result is consistent with the expectation of them.

Test case generation is based on MC/DC criteria. In ATP,
131 computation tasks can generate test cases. Each of them
has 6.8 test cases on average. According to statistics, the
requirement items whose test case coverage is 100% account
for 64.85% of the entire requirements.

V. CONCLUSION

In this paper, we presented Prema, a tool for precise
requirement editing, modeling and analysis. The case study of
ATP shows how it helps requirement engineers to efficiently
complete their work and finding potential requirement errors.

VI. ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their valuable feed-
back. Yihao Huang is partially supported by NSFC Projects
No. 61572197 and No. 61632005. Weikai Miao is supported
by the NSFCs of China (No. 61872144 and No. 61872146 and
No. 61532019). Geguang Pu is partially supported by China
HG]J Project No. 20172X01038102-002 and NSFC Project No.
61532019. This work is also supported by the CASCO Ltd..

REFERENCES

[1] Parr T. The Definitive ANTLR 4 Reference[M]. 2013.

[2] Sommerville I. Software engineering 9th Edition[J]. 2011.

[3] Martins L E G, Gorschek T. Requirements Engineering for Safety-
Critical Systems: An Interview Study with Industry Practitioners[J]. IEEE
Transactions on Software Engineering, 2018.

[4] Harel D. Statecharts: A visual formalism for complex systems[J]. Science
of computer programming, 1987, 8(3): 231-274.

[5] Bengtsson J, Yi W. Timed automata: Semantics, algorithms and
tools[C]//Advanced Course on Petri Nets. 2003: 87-124.

[6] Behrmann G, David A, Larsen K G. A tutorial on uppaal[C]//Formal
methods for the design of real-time systems.2004: 200-236.

[71 De Moura L, Bjrner N. Z3: An efficient SMT solver[C]//TACAS. 2008:
337-340.

[8] Baier C, Katoen J P. Principles of model checking[M]. MIT press, 2008.

[9] Rajan A , Whalen M W , Heimdahl M P E . The effect of program and
model structure on mc/dc test adequacy coverage[C]// ICSE. IEEE, 2008.

[10] Doors IBM R. Available in www-01.ibm.com/software/awdtools/door
s [J]. Accessed in September, 2012.

[11] De Gea J M C, Nicols J, Alemn J L F, et al. Requirements engineering
tools: Capabilities, survey and assessment[J]. Information and Software
Technology, 2012, 54(10): 1142-1157.

[12] Busari S A. Towards search-based modelling and analysis of require-
ments and architecture decisions[C]//Proceedings of the 32nd IEEE/ASE.
IEEE Press, 2017: 1026-1029.

[13] Cofer D, Miller S. DO-333 certification case studies[C]//NASA Formal
Methods Symposium. 2014: 1-15.

[14] Miao W, Pu G, Yao Y, et al. Automated Requirements Validation for
ATP Software via Specification Review and Testing[C]/ ICFEM. 2016.

[15] Wang Z , Pu G, Qin S, et al. MDM: A Mode Diagram Modeling
Framework for Periodic Control Systems[J]. 2012.

[16] Casco. Available: http://www.casco.com.cn/

[17] Emmanouela Stachtiari, Anastasia Mavridou, Panagiotis Katsaros, Si-
mon Bliudze, J. Sifakis Early Validation of System Requirements and
Design Through Correctness-by-Construction, Journal of Systems and
Software, July, 2018.

[18] Anastasia Mavridou, Eduard Baranov, Simon Bliudze, and Joseph
Sifakis. Configuration logics: Modeling architecture styles. Journal of
Logical and Algebraic Methods in Programming, 86(1):2 29, 2017.

