arXiv:2108.01001v2 [cs.SE] 5 Aug 2021

Learning Domain-Specific Edit Operations from
Model Repositories with Frequent Subgraph Mining

Christof Tinnes!, Timo Kehrer*, Mitchell JoblinT, Uwe Hohenstein, Andreas Biesdorf’, Sven Apeli
Siemens AG - Corporate Technology, 81739 Miinchen, Germany

{christof.tinnes,mitchell.joblin,uwe.hohenstein } @siemens.com, THumboldt-Universitit zu Berlin, 12489 Berlin-Adlershof, Germany

{timo.kehrer} @informatik.hu-berlin.de, tSaarland University, 66123 Saarbriicken, Germany
{apel} @cs.uni-saarland.de

Abstract—Model transformations play a fundamental role in
model-driven software development. They can be used to solve
or support central tasks, such as creating models, handling
model co-evolution, and model merging. In the past, various
(semi-)automatic approaches have been proposed to derive model
transformations from meta-models or from examples. These
approaches require time-consuming handcrafting or recording
of concrete examples, or they are unable to derive complex
transformations. We propose a novel unsupervised approach,
called OCKHAM, which is able to learn edit operations from
model histories in model repositories. OCKHAM is based on
the idea that meaningful edit operations will be the ones that
compress the model differences. We evaluate our approach in two
controlled experiments and one real-world case study of a large-
scale industrial model-driven architecture project in the railway
domain. We find that our approach is able to discover frequent
edit operations that have actually been applied. Furthermore,
OCKHAM is able to extract edit operations in an industrial setting
that are meaningful to practitioners.

I. INTRODUCTION

Software and systems become increasingly complex. Various
languages, methodologies, and paradigms have been developed
to tackle this complexity. One widely-used methodology is
Model-Driven Engineering (MDE) [52], which uses models
as first class entities and facilitates generating documentation
and (parts of the) source code from these models. Usually,
Domain-Specific Modeling Languages are used and tailored
to the specific needs of a domain. This reduces the cognitive
distance between the domain and the used language. A key
ingredient of many tasks and activities in MDE are model
transformations [57]).

In this paper, we focus on edit operations as an important
subclass of model transformations. An edit operation is an
in-place model transformation and usually represents regular
evolution [63] of the models. For example, when moving a
method from one class to another in a class diagram, also
a sequence diagram that uses the method in message calls
between object lifelines needs to be adjusted (e.g., by changing
the receiver of a message accordingly). To perform this in a
single edit step, one can create an edit operation that executes
the entire change, including the class and sequence diagram
changes. Some tasks can even be completely automatized and
reduced to the definition of edit operations. Edit operations

are used for model repair, quick-fix generation, auto com-
pletion [24} 139, |48]], model editors [[19, |62]], operation-based
merging [38]], model refactoring [4} [17]], model optimization
[12], meta-model evolution and model co-evolution [3} 25} 53]],
artifact co-evolution in general [21} 41], semantic lifting of
model differences [8} 133} 34, 37, 42], model generation [S0],
and many more.

In general, there are two main problems involved in the
specification of model transformations than can be used as
edit operations. Firstly, creating the necessary transformations
for the task and the Domain-Specific Modeling Languages
at hand using a dedicated transformation language requires a
deep knowledge of the Domain-Specific Modeling Language’s
meta-model and the underlying paradigm of the transformation
language. It might even be necessary to define project-specific
edit operations, which causes a large overhead for many
projects or tool providers [17, 30, 32]]. Secondly, for some
tasks, the domain-specific transformations are only a form of
tacit knowledge [51]], and it will be hard for domain experts
to externalize this knowledge.

Because, on the one hand, model transformations play such
a central role in MDE, but, on the other hand, it’s not easy
to specify them, attempts have been made to support their
manual creation or even (semi-)automated generation. As for
manual support, visual assistance tools [S] and transformation
languages derived from a modeling language’s concrete syntax
[L, 26] have been proposed to release domain experts from the
need of stepping into the details of meta-models and model
transformation languages. However, they still need to deal with
the syntax and semantics of certain change annotations, and edit
operations must be specified in a manual fashion. To that end,
generating edit operations automatically from a given meta-
model has been proposed [135,144]. However, besides elementary
consistency constraints and basic well-formedness rules, meta-
models do not convey any domain-specific information on
how models are edited. Thus, the generation of edit operations
from meta-models is limited to rather primitive operations as
a matter of fact. Following the idea of model transformation
by-example (MTBE) [IL1, 30} 61]], initial sketches of more
complex and domain-specific edit operations can be specified
using standard model editors as a macro recorder. However,
these sketches require manual post-processing to be turned into

general specifications, mainly because an initial specification
is derived from only a single transformation example. Some
MTBE approaches [17, 132] aim at getting rid of this limitation
by using a set of transformation examples as input which
are then generalized into a model transformation rule. Still,
this is a supervised approach which requires sets of dedicated
transformation examples that need to be defined by domain
experts in a manual fashion. As discussed by Kehrer et al. [32],
a particular challenge is that domain experts need to have,
at least, some basic knowledge on the internal processing of
the MTBE tool in order to come up with a reasonable set of
examples. Moreover, if only a few examples are used as input
for learning, Mokaddem et al. [[17] discuss how critical it is to
carefully select and design these examples.

To address these limitations of existing approaches, we
propose a novel unsupervised approach, OCKHAM, for mining
edit operations from existing models in a model repository,
which is typically available in large-scale modeling projects (cf.
Section @) OCKHAM is based on an Occam’s razor argument,
that is, the “useful” edit operations are the ones that “compress”
the model repository. In a first step, OCKHAM discovers
frequent change patterns using frequent subgraph mining on
a labeled graph representation of model differences. It then
uses a compression metric to filter and rank these patterns. We
evaluate our approach using two experiments with simulated
data and one real-world large-scale industrial case study from
the railway domain. In the simulated cases, we can show that
OCKHAM is able to discover the edit operations that have been
actually applied in the simulation, even when we apply some
“perturbation”. In the real-world case study, we find that our
approach is able to scale to real-world model repositories
and to derive edit operations. We evaluated OCKHAM by
comparing the results to randomly generated edit operations in
five interviews with practitioners of the product line. We find
that the edit operations represent typical edit scenarios and are
meaningful to the practitioners.

In a summary, we make the following contributions:

o We propose an unsupervised approach based on frequent
subgraph mining to derive edit operations out of model
repositories, without requiring any further information
(e.g., labeling).

e« We evaluate our approach empirically based on two
controlled simulated experiments and show that the
approach is able to discover the actually applied edit
operations.

o We evaluate the approach using an interview with five
experienced system engineers and architects from a real-
world industrial setting in the railway domain with more
than 200 engineers, 300GB of artifacts and more than 6
years of modeling history. We show that our approach is
able to detect meaningful edit operations in this industrial
setting and to scale to real-world repositories.

II. MOTIVATION: AN INDUSTRIAL SCENARIO

Our initial motivation to automatically mine edit operations
from model repositories arose from a long-term collaboration
with practitioners from a large-scale industrial model-driven
software product line in the railway domain. The modeling is
done in MAGICDRAW [27] using SysML, and there is an export
to the Eclipse Modeling Framework (EMF) which focuses on
the SysML parts required for subsequent MDE activities (e.g.,
code generation). Modeling tools such as MAGICDRAW come
with support for model versioning. In our case, the models are
versioned in the MagicDraw Teamwork Server. We therefore
have access to a large number of models and change scenarios.

During discussing major challenges with the engineers of
the product line, we observed that some model changes appear
very often together in this repository. For example, when the
architect creates an interface between two components, s/he
will usually add some Ports to Components and connect them
via the ConnectorEnds of a Connector. Expressed in terms of
the meta-model, there are 17 changes to add this interface. We
are therefore interested if we can automatically detect these
patterns in the model repository. More generally, our approach,
OCKHAM, is based on the assumption that it should be possible
to derive “meaningful” patterns from the repositories.

These patterns could then be used for many applications [4}
8L 2111331 [37,139,142 148l 162]]. In our case study, the models have
become huge over time (approx. 1.2 million elements split into
100 submodels) and also model differences between different
products have become huge (up to 190.000 changes in a single
submodel). The analysis of these differences, e.g., for quality
assurance of the models, or domain analysis has become time-
consuming. To speed-up the analysis of the model differences, it
would be desirable to reduce the “perceived” size of the model
difference by grouping fine-grained differences to higher-level,
more coarse-grained and more meaningful changes. For this
semantic lifting of model differences, the approach by Kehrer
et al. [34], which uses a set of edit operations as configuration
input, can be used. These large model differences have actually
been our main motivation to investigate how we can derive the
required edit operations (semi-)automatically.

We will use the data from this real-world project to evaluate
OCKHAM in Section [V]

III. BACKGROUND

In this section, we provide basic definitions that are important
to understand our approach presented in Section

A. Graph theory

As usual in MDE, we assume that a meta-model specifies the
abstract syntax and static semantics of a modeling language. We
conceptually consider a model as a typed graph (aka. abstract
syntax graph), in which the types of nodes and edges are drawn
from the meta-model. Figure [I] illustrates how a simplified
excerpt from an architectural model of our case study from
Section [II] in concrete syntax is represented in its abstract
syntax, typed over the given meta-model.

Example model in concrete syntax

Package Drive Brake Control : Package Drive Brake Control .
Labeled graph representation

Railcar for our example model

Status Haul Drive
Status Haul Drive

Cab

Requirement: Haul
Drive Mode can be
switched on via
operating switch in
the cab.

Coach
Package

Meta-Model of the
Simple Component Model

0.1 package|
[package

= id: Ent
= name : EString

Require-
ment

0..4] requirement

10..*] component
[0..4] connector] © name : EString

[B comector | m.arsrg Heot | ¥
[Siacem | G 107 port Connector
[1..1] tgtl
[1..1] requirement,
& Requirement | 13 1
ETRT

Fig. 1: We consider models as labeled graphs, where labels
represent types of nodes and edges defined by a meta model.
For the sake of brevity, types of edges are omitted in the figure.

Since we further assume models to be correctly typed, in
our notion of a graph used throughout the paper, we abstain
from a formal definition of typing using type graphs and type
morphisms [10]. Instead, to keep our basic definitions as simple
as possible, we work with a variant of labeled graphs where a
fixed label alphabet represents node and edge type definitions
of a meta-model. Given a label alphabet L, a labeled directed
graph G is a tuple (V, E, \), where V is a finite set of nodes,
E is a subset of V' x V, called the edge set,and A : VUE — L
is the labeling function, which assigns a label to nodes and
edges. If we are only interested in the structure of a graph and
typing is irrelevant, we will omit the labeling and only refer
to the graph as G = (V, E).

Given two graphs G = (V, E,\) and G' = (V/,E', \), G’
is called a subgraph of G, written G’ C G, if V! C V,
E' C E, and Az) = MN(z) for each z € V' U E".
A (weakly) connected component (component, for short)
C = (Vo,Ec) C @G is an induced subgraph of G in
which every two vertices are connected by a path, that is,
Yu,v € Vo : In € Ns. t. {(U,vl), (v1,v2),..., (Umu)} -
Ec U EC, where EC is the set of all reversed edges, that is,
(u,v) € Ec becomes (v,u) € Ec.

B. Frequent Subgraph Mining

We will use frequent subgraph mining as the main ingredient for
OCKHAM. We distinguish between graph-transaction-based
frequent subgraph mining and single-graph-based frequent
subgraph mining. Graph-transaction-based frequent subgraph
mining uses a collection (aka. database) of graphs, while single-
graph-based frequent subgraph mining looks for subgraphs of
a single graph. We are considering graph-transaction-based
frequent subgraph mining in this work. A subgraph mining
algorithm typically takes a database of graphs and a threshold
t as input. It then outputs all the subgraphs with, at least,
t occurrences in the database. An overview of the frequent
subgraph mining algorithms can be found in the literature [28]].
A general introduction to graph mining is given by Cook and

Holder [13]], who also proposed a compression-based subgraph
miner called SUBDUE [36]. SUBDUE has also been one of our
main inspirations for a compression-based approach. OCKHAM
is based on GASTON [47], which mines frequent subgraphs
by first focusing on frequent paths, then extending to frequent
trees, and finally extending the trees to cyclic graphs.

C. Model Transformations and Edit Operations

The goal of OCKHAM is to learn domain-specific edit oper-
ations from model histories. In general, edit operations can
be informally understood as editing commands which can be
applied to modify a given model. In turn, a difference between
two model versions can be described as a (partially) ordered
set of applications of edit operations, transforming one model
version into the other. Comparing two models can thus be
understood as determining the edit operation applications that
transform one model into the other. A major class of edit
operations are model refactorings, which induce syntactical
changes without changing a models’ semantics. Other classes
of edit operations are recurring bug fixes and evolutionary
changes (i.e., adding new functionality).

In the classification given by Visser et al. [63]], edit operations
can describe regular evolution [63], that is, “the modeling
language is used to make changes”, but are not meant to de-
scribe meta-model evolution, platform evolution or abstraction
evolution. More technically, in Mens et al.’s taxonomy [45]],
edit operations can be classified as endogenous (i.e., source
and target meta-model are equal), in-place (i.e., source and
target model are equal) model transformations. For the purpose
of this paper, we define an edit operation as an in-place model
transformation which represents regular model evolution.

The model transformation tool HENSHIN [3]] supports the
specification of in-place model transformations in a declarative
manner. It is based on graph transformation concepts [18], and
provides a visual language for the definition of transformation
rules, which is used, e.g., in the last step of Figure 2] Roughly
speaking, transformation rules specify graph patterns to be
found and created or deleted.

IV. APPROACH

We address the problem of automatically identifying edit
operations from a graph mining perspective. As already
discussed in Section we will work with labeled graphs
instead of typed graphs. There are some limitations related to
this decision, which are discussed in Section

OCKHAM consists of the five steps illustrated with a running
example in Figure [2| and outlined below. Our main technical
contributions are Step 2 and Step 4. For Step 1, Step 3,
and Step 5 we apply existing tooling: SIDIFF, GASTON, and
HENSHIN.

Step 1: Compute Structural Model Differences: To learn
a set of edit operations in an unsupervised manner, OCKHAM
analyzes model changes which can be observed in a model’s
development history. In this first step, for every pair of
successive model versions n and n+1 in a given model history,
we calculate a structural model difference A(n,n+1) to capture

N
-Add

Preserve

/G

A(n,n 1) Package
Preserve_ (| Preserve_
Comp Comp

(Preserve_

p

Add_
Port

} Add_
Requirement

Step 1: Matching and
derivation of difference gra|

o/
4@

Add_
Reguirement

Step 2: Derivation of Add_
simple change graph (SCG) | “onector
:':gl:Suppor‘[:SO, Vel =2, leg] =1
~ compr(g,) =87
g,:Support=15, |vg,| =6, |eg,| =5
compr(g,) = 154
gs: Support=15, [vy,| =7, |ey,| =7

compr(g,) =196
Step 4: Select most relevant

subgraphs (ranking)

Add_
Connector

Preserve_
Package

Preserve_ ||
C

/

™~

Add_
Requirement,

<

Step 5: Generate the edit operations
Preserve_ I;Vr-eseruei) Henshin rule
c lc —

Add_

g3

Connector

ackageld
¥

g omponentid

|

Fig. 2: The 5 step process for mining edit operations.

these changes. Since we do not assume any information (e.g.,
persistent change logs) to be maintained by a model repository,
we use a state-based approach to calculate a structural difference
A(n,n + 1), which proceeds in two steps [31]]. First, the
corresponding model elements in the model graphs G,, and
G41 are determined using a model matcher [40]. Second, the
structural changes are derived from these correspondences: All
the elements in G, that do not have a corresponding partner
in G4 are considered to be deleted, whereas, vice versa, all
the elements in G, that do not have a corresponding partner
in GG,, are considered to be created.

For further processing in subsequent steps, we represent a
structural difference A(n,n + 1) in a graph-based manner,
referred to as difference graph [48]]. A difference graph
GA(nnt1) 18 constructed as a unified graph over Gy, and
Gp+1. That is, corresponding elements being preserved by an
evolution step from version n to n + 1 appear only once in
GA(n,n+1) (indicated by the label prefix “preserved_”), while
all other elements that are unique to model GG,, and G, are
marked as deleted and created, respectively (indicated by the
label prefixes “delete_” and “create_”).

To give an illustration, assume that the architectural model
shown in Figure [T is the revised version n + 1 of a version
n by adding the ports along with the connector and its
associated requirement. Figure [2] illustrates a matching of
the abstract syntax graphs of the model versions n and
n + 1. For the sake of brevity, only correspondences between
nodes in G,, and G, 11 are shown in the figure, while two
edges are corresponding when their source and target nodes
are in a correspondence relationship. The derived difference

graph GA(n,n41) is illustrated in Figure [2} For example, the
corresponding nodes of type Component occur only once in
G A(n,n+1)» and the nodes of type Port are indicated as being
created in version n + 1. Our implementation is based on the
Eclipse Modeling Framework. We use the tool SIDIFF [535]]
to compute structural model differences. Our requirements on
the model differencing tool are support for EMF, the option to
implement a custom matcher, and an approach to semantically
lift model differences based on a set of given edit operations.
Modeling tools such as MAGICDRAW usually provide IDs for
every model element, which can be used by a custom matcher
to calculate matches based on existing IDs. We intend to use
the semantic lifting approach for the compression of differences
in the project from Sec. [} Other tools such as EMFCOMPARE
could also be used for the computation of model differences
and there are no other criteria to favour one over the other. An
overview of the different matching options is given by Kolovos
et al. [40]; a survey of model comparison approaches is given
by Stephan and Cordy [60].

Step 2: Derive Simple Change Graphs: Real-world models
maintained in a model repository, such as the architectural
models in our case study, can get huge. It is certainly fair
to say that, compared to a model’s overall size, only a small
number of model elements is actually subject to change in a
typical evolution step. Thus, in the difference graphs obtained
in the first step, the majority of difference graph elements
represent model elements that are simply preserved. To that
end, before we continue with the frequent subgraph mining in
step 3, in step 2, difference graphs are reduced to simple
change graphs (SCGs) based on the principle of locality

relaxation that only changes that are “close” to each other
can result from the application of a single edit operation. We
discuss the implications of this principle in Section By
“close”, we mean that the respective difference graph elements
representing a change must be directly connected (i.e., not
only through a path of preserved elements). Conversely, this
means that changes being represented by elements that are part
of different connected components of a simple change graph
are independent of each other (i.e., they are assumed to result
from different edit operation applications).

More formally, given a difference graph G'a(y, n41), @ simple
change graph SCGA(mn+1) © Ga(nng1) 18 derived from
GA(n,nt1) in two steps. First, we select all the elements in
GA(n,n+1) Tepresenting a change (i.e., nodes and edges that are
labeled as “delete_*” and “create_*”, respectively). In general,
this selection does not yield a graph, but just a graph fragment
F C GA(n,n+1), which may contain dangling edges when the
source or target node of a changed edge is a preserved node not
included in F'. In a second step, these preserved nodes are also
selected to be included in the simple change graph. Formally,
the simple change graph is constructed as the boundary graph
of F, which is the smallest graph SCGA(n,n+1) € GA(nyn+1)
completing F' to a graph [31]]. The derivation of a simple change
graph from a given difference graph is illustrated in the second
step of Figure [2] In this example, the simple change graph
comprises only a single connected component. In a realistic
setting, however, a simple change graph typically comprises a
larger set of connected components, like the one illustrated in
step 3 of Figure

Step 3: Apply Frequent Connected Subgraph Mining:
When we apply the first two steps to a model history, we
obtain a set of simple change graphs {SCGA(n1n+1) |n €
{1,...,N —1}}, where N is the number of revisions in the
repository. In this set, we want to identify recurring patterns
and therefore find some frequent connected subgraphs. A small
support threshold might lead to a huge number of frequent
subgraphs. This not only causes large computational effort but
also makes it difficult to find the relevant subgraphs. As it
would be infeasible to recompute the threshold manually for
every dataset, we pre-compute it by running an approximate
frequent subtree miner for different thresholds up to some fixed
size of the frequent subtrees. We fix the range of frequent trees
and adjust the threshold accordingly. Alternatively, a relative
threshold could be used, but we found in a pilot study that our
pre-computation works better in terms of average precision.
We discuss the effect of the support threshold in Section
Then, we run the frequent subgraph miner for the threshold
found via the approximate tree miner. Step 3 of Figure 2] shows
this for our running example. We start with a set of connected
components and the graph miner returns a set of frequent
subgraphs, namely {g1, 92,93} with g1 C g2 C g3. We use
GASTON [47]] graph miner, since it performed best (in terms of
runtime) among the miners that we experimented with (GSPAN,
GASTON and DIMSPAN) in a pilot study. In our pilot study,
we ran the miners on a small selection of our datasets and
experimented with the parameters of the miners. For many

datasets, GSPAN and DIMSPAN did not terminate at all (we
canceled the execution after 48h). GASTON (with embedding
lists) was able to terminate in less then 10s on most of our
datasets but consumes a lot of memory, typically between
10GB-25GB, which was not a problem for our 32GB machine
in the pilot study. To rule out any effects due to approximate
mining, we considered only exact miners. Therefore, we also
could not use SUBDUE [36], which directly tries to optimize
compression. Furthermore, SUBDUE was not able to discover
both edit operations in the second experiment (see Section [V)),
without iterative mining and allowing for overlaps. Enabling
these two options, SUBDUE did not terminate on more than
75% of the pilot study datasets. For frequent subtree mining,
we use HOPS [[65] because it provides low error rates and good
runtime guarantees.

Step 4: Select the most relevant subgraphs: Motivated
by the minimum description length principle, which has been
successfully applied to many different kinds of data [23]], the
most relevant patterns should not be the most frequent ones but
the ones that give us a maximum compression for our original
data [[15]. That is, we want to express the given SCGs by a set
of subgraphs with the property that the description length for
the subgraphs together with the length of the description of the
SCGs in terms of the subgraphs becomes minimal. This can be
understood by looking at the corner cases. A single change has a
large frequency but is typically not interesting. The entire model
difference is large in terms of changes but has a frequency of
only one and is typically also not an interesting edit operation.
“Typical edit operations” are therefore somewhere in the middle.
We will use our experiments in Section [V| to validate whether
this assumption holds. We define the compression value by
compr(g) = (supp(g) — 1) - (|Vy| + [E|), where supp(g) is
the support of g in our set of input graphs (i.e., the number
of components in which the subgraph is contained). The “—1”
in the definition of the compression value comes from the
intuition that we need to store the definition of the subgraph,
in order to decompress the data again. The goal of this step
is to detect the subgraphs from the previous step with a high
compression value. The subgraphs are organized in a subgraph
lattice, where each graph has pointers to its direct subgraphs.
Most of the subgraph miners already compute a subgraph lattice,
so we do not need a subgraph isomorphism test here. Due to
the downward closure property of the support, all subgraphs
of a given (sub-)graph have, at least, the same frequency (in
transaction-based mining). When sorting the output, we need to
take this into account, since we are only interested in the largest
possible subgraphs for some frequency. We therefore prune the
subgraph lattice. The resulting list of recommendations is then
sorted according to the compression value. Other outputs are
conceivable, but in terms of evaluation, a sorted list is typical
for a recommender system [S0].

More technically, let SG be the set of subgraphs obtained
from step 3. We then remove all the graphs in the set

SG- ={geSG|3g€ SG, with g C j
Asupp(g) = supp(g) A compr(g) < compr(g)}.

Our list of recommendations is then SG \ SG~, sorted
according to the compression metric.

For our running example in step 4 of Figure [2] assume that
the largest subgraph g3 occurs 15 times (without overlaps).
Even though the smaller subgraph g; occurs twice as often, we
find that g5 provides the best compression value and is therefore
ranked first. The subgraph g, will be pruned, since it has the
same support as its supergraph gs but a lower compression
value. We implement the compression computation and pruning
using the NetworkX Python library.

Step 5: Generate edit operations: As a result of step 4, we
have an ordered list of “relevant” subgraphs of the SCGs. We
need to transform these subgraphs into model transformations
that specify our learned edit operations. As shown in step 5
of Figure [2] the subgraphs can be transformed to Henshin
transformation rules in a straightforward manner. We use
HENSHIN because it is used for the semantic lifting approach
in our case study from Sec. [lIl In principle, any transformation
language that allows us to express endogenous, in-place model
transformations could be used instead. A survey of model
transformation tools is given by Kahani et al. [29].

V. EVALUATION

A. Research Questions
We evaluate OCKHAM w.r.t. the following research questions:

e RQ 1: Is the approach able to identify edit operations
that have actually been applied in model repositories? 1f
we apply some operations to models, the approach should
be able to discover these from the data. Furthermore, when
different edit operations are applied and overlap, it should
be possible to discover them.

o RQ 2: Is the approach able to find typical edit operations
or editing scenarios in a real-world setting? Compared
to the first research question, the approach should also be
able to find typical scenarios in practice when we do not
know which operations have been actually applied to the
data. Furthermore, it should be possible to derive these
edit operations in a real-world setting with large models
and complex meta-models.

e RQ 3: What are the main drivers for the approach to
work or fail? We want to identify the characteristics of
the input data or parameters having a major influence on
the approach.

o RQ 4: What are the main parameters for the performance
of the frequent subgraph mining? Frequent subgraph min-
ing has a very high computational complexity for general
cyclic graphs. We want to identify the characteristics of
the data that influence the mining time.

For RQ 1, we want to rediscover the edit operations from
our ground truth, whereas in RQ 2, the discovered operations
could also be some changes that are not applied in “only one
step” but appear to be typical for a domain expert. We refer
to the actually applied edit operations and the ones considered
as typical by a domain expert as “meaningful”.

B. Experiments

We conduct three experiments to evaluate our approach. In the
first two experiments, we run the algorithm on synthetic model
repositories. We know the “relevant edit operations”, since
we define them, and apply them to sample models. We can
therefore use these experiments to answer RQ 1. Furthermore,
since we can control many properties of our input data for
these simulated repositories, we can also use them to answer
RQ3 and RQ4. In the third experiment, we apply OCKHAM
to the dataset from our case study presented in Section [[] to
answer RQ 2. The first two experiments help us to find the
model properties and the parameters the approach is sensible
to. Their purpose is to increase the internal validity of our
evaluation. In addition, to increase external validity, we apply
the approach in a real-world setting. None of the experiments
alone can provide sufficient internal or external validity [59]]
but the combination of all experiments is suitable to assess
whether OCKHAM can discover relevant edit operations.

Experiment 1: As a first experiment, we simulate the
application of edit operations on a simple component model.
The meta-model is shown in Figure [T}

Setup: For this experiment, we only apply one kind of edit
operation (the one from our running example in Figure [2) to
a random model instance. The Henshin rule specifying the
operation consists of a graph pattern comprising 7 nodes and
7 edges. We create the model differences as follows: We start
with an instance mg of the simple component meta-model
with 87 Packages, 85 Components, 85 SwIlmplementations,
172 Ports, 86 Connectors and 171 Requirements. Then, the
edit operation is randomly applied e times to the model to
obtain a new model revision m;. This procedure is then applied
iteratively d times to obtain the “model history” mg — mq —
...mg—1 — mg. Each evolution step m; — m;4; yields
a difference A(m;, m;y1). To each application of the edit
operation, we apply a random perturbation. More concretely,
a perturbation is another edit operation that we apply with a
certain probability p. This perturbation is applied such that it
overlaps with the application of the main edit operation. We
use the tool HENSHIN [10] to apply model transformations
to one model revision. We then build the difference of two
successive models as outlined in Section In our experiment,
we control the following parameters for the generated data.

e d: The number of differences in each simulated model
repository. For this experiment, d € {10,20}.

o e: The number of edit operations to be applied per model
revision in the repository, that is, how often the edit
operation will be applied to the model. For this experiment,
e € {1,...,100}.

o p: The probability that the operation will be perturbed.
For this experiment, we use p € {0.1,0.2,...,1.0}.

This gives us 2000 (= 2x100x10) datasets for this experiment.
A characteristics of our datasets is that increasing e, the
probability of changes to overlap increases. Eventually, adding
more changes even decreases the number of components in
the SCG while increasing the average size of the components.

Our algorithm suggests a ranking of the top k£ subgraphs
(which eventually yield the learned edit operations). In the
ranked suggestions of the algorithm, we then look for the
position of the “relevant edit operation” by using a graph
isomorphism test. To evaluate the ranking, we use the “mean
average precision at k” (MAP@k) which is commonly used
as an accuracy metric for recommender systems [S6]:

MAPGK = — > Apak,
ID‘ dseD

where D is the family of all datasets (one dataset represents
one repository) and AP@k is defined by

S P(i) - rel(i)

AP@k =)
|total relevant subgraphs|

where P(¢) is the precision at ¢, and rel(?) indicates if the
graph at rank i is relevant. For this experiment, the number
of relevant edit operations (or subgraphs to be more precise)
is always one. Therefore, we are interested in the rank of the
correct edit operation. Except for the case that the relevant
edit operation does not show up at all, MAP@oo gives us the
mean reciprocal rank and therefore serves as a good metric
for that purpose.

For comparison only, we also compute the MAP@k scores
for the rank of the correct edit operations according to the
frequency of the subgraphs. Furthermore, we investigate how
the performance of the subgraph mining depends on other
parameters of OCKHAM. We are also interested in how average
precision (AP), that is, AP@oo, depends on the characteristics
of the datasets. Note that for the first two experiments, we do
not execute the last canonical step of our approach (i.e., deriving
the edit operation from a SCG), but we directly evaluate the
resulting subgraph from step 4 against the SCG corresponding
to the edit operation. We run the experiments on an Intel®
Core™ i7-5820K CPU @ 3.30GHz x 12 from which we use
3 cores per dataset and 31.3 GiB RAM.

To evaluate the performance of the frequent subgraph miner
on our datasets, we fixed the relative threshold (i.e., the support
threshold divided by the number of components in the graph
database) to 0.4. We re-run the algorithm for this fixed relative
support threshold and p < 0.4.

Results: See Table [Il for the MAP@k scores for all datasets
in the experiment. Table shows the spearman correlation
of the independent and dependent variables. If we look only
on datasets with a large number of applied edit operations,
e > 80, the spearman correlation for average precision vs. d
and average precision vs. p becomes 0.25 (instead of 0.12)
and -0.14 (instead of -0.07), respectively. The mean time for
running GASTON for our datasets was 1.17s per dataset.

Observations: We observe that increasing the number of
edit operations has a negative effect on the average precision.
Increasing the perturbation has a slightly negative effect, which
becomes stronger for a high number of applied edit operations

and therefore when huge connected components start to form.

The number of differences d (i.e., having more examples) has
a positive effect on the rank, which is rather intuitive. We also

observe a strong spearman correlation of the mining time with
the number of applied edit operations e (0.89) and implicitly
also the average number of nodes per component (0.83). If we
only look at the edit operations with rank > 1, we can also
see a strong negative correlation of —0.51 with the average
precision (not shown in Table [[T). This actually means that
large mining times usually come with a bad ranking.

Experiment 2: In contrast to the first experiment, we want
to identify more than one edit operation in a model repository.
We therefore extend the first experiment by adding another edit
operation and apply each of the operations with the same
probability. In order to test if OCKHAM also detects edit
operations with smaller compression than the dominant (in
terms of compression) edit operation, we choose the second
operation to be smaller, its Henshin rule graph pattern comprises
4 nodes and 5 edges. It corresponds to adding a new Component
with its Swilmplementation and a Requirement to a Package.

Setup: Since the simulation of model revisions currently
consumes a lot of compute resources, we fixed d = 10 and
considered only e <= 80 for this experiment. The rest of the
experiment is analogous to the first experiment.

Results: In Table [lT] we give the MAP@k scores for this
experiment. Table shows the correlation matrix for the
second experiment.

Observations: We can see that our compression-based
approach clearly outperforms the frequency-based approach
used as a baseline. From Table we can observe a strong
dependency of the average precision on the perturbation
parameter and the mining time.

Experiment 3: Of course, the power of the simulation to
mimic a real-world model evolution is limited. Especially, the
assumption of random and independent applications of edit
operations is questionable. Therefore, for the third experiment,
we use a real-world model repository from the railway software
development domain (see Section . Here, we do not know the
operations that have actually been applied. We therefore com-
pare the mined edit operations with edit operations randomly
generated from the meta-model, and want to show that the
mined edit operations are significantly more “meaningful” than
the random ones. We will use the results from this interview
to answer RQ2.

Setup: For this experiment, we mined 546 pairwise dif-
ferences, with 4109 changes on average, which also contain
changed attribute values (one reason for that many changes
is that the engineering language has changed from German
to English). The typical model size in terms of their abstract
syntax graphs is 12081 nodes and, on average, 50 out of 83
meta-model classes are used as node types.

To evaluate the quality of our recommendations, we con-
ducted a semi-structured interview with five domain experts of
our industry partner: 2 system engineers working with one of
the models, 1 system engineer working cross-cutting, 1 chief
system architect responsible for the product line approach and
the head of the tool development team. We presented them 25
of our mined edit operations together with 25 edit operations
that were randomly generated out of the meta-model. The edit

TABLE I: The MAP@k scores for the results using
compression and frequency for the first experiment.

| MAP@1 MAP@5 MAP@10 MAP@x
Compression 0.967 0.974 0.975 0.975
Frequency 0.016 0.353 0.368 0.368

TABLE III: Spearman correlations for the first experiment.

p Mining e d & #Nodes

Time per Comp
AP | -0.07 -0.24 -0.23 | 0.12 -0.21
AP (for e > 80) | -0.14 -0.19 -0.19 © 0.25 -0.03
Mining Time | 0.12 - 0.89 026 0.83

operations were presented in the visual transformation language
of HENSHIN which we introduced to our participants. Using
a 5-point Likert scale, we asked whether the edit operation
represents a typical edit scenario (5), can make sense but is not
typical (3), and does not make sense at all (1). We compare
the means of the Likert score for the population of random
edit operations and mined edit operations to determine whether
the mined operations are typical or meaningful.

Null hypothesis Hg: The mined edit operations do not
present a more typical edit scenario than random edit opera-
tions on average.

We set the significance level to a = 0.01. If we can reject
the null hypothesis, we conclude that the mined edit operations
more likely present typical edit scenarios than the random ones.
In addition, we discussed the mined edit operations with the
engineers that have not been considered to be typical.

Results: We found some operations that are typical to the
modeling language SysML, for example, one which is similar
to the simplified operation in Figure [2 We also found more
interesting operations, for example, the addition of ports with
domain specific port properties. Furthermore, we were able to
detect some rather trivial changes. For example, we can see that
typically more than just one swimlane is added to an activity,
if any. We also found simple refactorings, such as renaming
a package (which also leads to changing the fully qualified
name of all contained elements) or also some refactorings that
correspond to conventions that have been changed, for example,
activities were owned by so called “system use cases” before
but have been moved into “packages”. Table|V|shows the results
for the Likert values for the mined and random edit operations
for the five participants of our study. We can see that for all
participants, the mean Likert score for the mined operations is
significantly higher than the mean for the random operations.
After their rating, when we confronted the engineers with the
true results, they stated that the edit operations obtained by
OCKHAM represent typical edit scenarios. According to one
of the engineers, some of the edit operations “can be slightly
extended” (see also Section [V-C). Some of the edit operations
found by OCKHAM but not recognized by the participants
where identified “to be a one-off refactoring that has been

TABLE II: The MAP@k scores for the results using compres-
sion and frequency for the second experiment.

\ MAP@2 MAP@5 MAP@10 MAP@o
Compression 0.955 0.969 0.969 0.969
Frequency 0.013 0.127 0.152 0.190

TABLE IV: The Spearman correlation matrix for the second
experiment.

p Size at Mining e & #Nodes
‘ Threshold Time per Comp
AP | -0.31 -0.05 -0.25 -0.07 -0.19
p - 0.20 0.27 0 0.30
Size at Threshold - - 0.53 0.51 0.58
Mining Time - - - 0.87 0.92
e - - - - 0.92

performed some time ago”.

TABLE V: Statistics for the Likert values of the mined and
random edit operations.

Participant mean mean p-value p-value
mined random (t-test) (Wilcoxon)
P1 3.20 1.68 11.8-10°5 29.0-107°
P2 4.04 2.76 16.6 - 10~ 6.43 1073
P3 4.32 2.60 9.30-10—6 5.87-107°
P4 4.32 1.08 2.67 1015 3.51-10~10
P5 4.48 1.60 1.17-10~11 1.15-1077
Total 4.072 1.944 <22.10716 <22.10°16

Observations: The edit operations found by OCKHAM
obtained significantly higher (mean) Likert scores than the
random edit operations. We can therefore reject the null
hypothesis and conclude that, compared to random ones,
our mined edit operations can be considered as typical edit
scenarios on average. Furthermore a mean Likert score of
almost 4.1 shows that the edit operations are considered as
typical on average. In Section [V-C| we take a closer look at
the edit operations that where not considered as typical edit
scenario by the participants.

C. Discussion

In the first two experiments, we can see from the high MAP@k
values that OCKHAM is able to recover the edit operations that
have been applied. Furthermore, the third experiment shows that
OCKHAM provides meaningful edit operations in a real-world
setting. The observations from the first experiment suggests that
the main driver for the performance of the frequent subgraph
mining is the average number of nodes of our SCGs and
the number of edit operations applied in the evolution steps
yielding our model differences. To answer RQ3, we have to
take a closer look at the datasets for which our approach gives
non-optimal results.

1) Reasons for non-optimal results

We have to distinguish between the two cases that (1) the
correct edit operation is not detected at all and (2) the correct
edit operation has a low rank, i.e., appears later in the ranked
list.

TABLE VI: The main drivers for OCKHAM to fail in detecting
the correct subgraph in experiment 1.

Average Size of

p a Component Size at Mining

(# of Nodes) Threshold Time

Overall Mean 0.55 57.6 8.20 1.26
Mean for un-

detected operation 0.79 109.0 10.03 2.55

Edit operation has not been detected: For the second
experiment, in 22 out of 800 examples, OCKHAM was not
able to detect both edit operations. In 10 of these cases the
threshold has been set too high. To mitigate this problem, in the
real-world setting, the threshold parameters could be manually
adjusted until the results are more plausible. In the automatic
approach, further metrics have to be integrated. Other factors
that cause finding the correct edit operations to fail are the
perturbation, average size of component and the size of the
component “at threshold”, as can be seen from Table

Given a support threshold ¢, the size at threshold is the
number of nodes of the t-largest component. The intuition
behind this metric is the following: For the frequent subgraph
miner, in order to prune the search space, a subgraph is only
allowed to appear in, at most, t — 1 components. Therefore, the
subgraph miner needs to search for a subgraph, at least, in one
component with size greater than the size at threshold. Usually,
the size of a component plays a major role in the complexity of
the subgraph mining. When the t-largest component is small,
we could always use this component (or smaller ones) to guide
the search through the search space and therefore we will not
have a large search space. So, a large size of the component
at threshold could be an indicator for a complicated dataset.

We clearly see that perturbation, average size of a component,
and the size at threshold are increased for the datasets for which
our approach does not perform well. We looked deeper into
the results of the datasets from the first experiment for which
the correct subgraph has not been identified. We can see that,
for some of these subgraphs, there is a supergraph in our
recommendations that is top ranked. Usually this supergraph
contains one or two additional nodes. Since we have a rather
small meta-model and we only use four other edit operations
for the perturbation, it can happen rarely, that these larger
graphs occur with the same frequency as the actual subgraph.
The correct subgraphs are then pruned.

Edit operation has a low rank: First, note that we observe a
low rank (rank > 5) only very rarely. For the first experiment,
it happened in 7 out of 2000 datasets, while for the second
experiment, it did not happen at all. In Table [VII| we list the
corresponding datasets and the values for drivers of a low rank.
One interesting observation is that, for some of the datasets
with low ranked correct subgraph, we can see that the correct
graph appears very early in the subgraph lattice, for example,
first child of the best compressing subgraph but rank 99 in the
output, or first child of the second best subgraph but rank 15
in the output. This suggests that this is more a presentation
issue which is due to the fact that we have to select a linear

TABLE VII: Possible drivers for a low rank (> 5).

Average
d e p #Nodes per Size at Average Rank
Component Threshold Precision

10 92 03 142.2 13 0.13 8
10 67 04 91.0 16 0.14 7
10 78 0.8 87.3 14 0.14 7
10 98 0.8 127.7 14 0.067 15
20 81 0.1 227.0 16 0.13 8
20 99 0.1 272.2 19 0.010 99
20 100 0.1 272.7 17 0.013 78

order of all subgraph candidates for the experiment.

2) Qualitative results

We only found two mined edit operations that received an
average Likert score below 3 from the five practitioners in the
interviews. The first one was a refactoring that was actually
performed but that targeted only a minority of all models. Only
two of the participants where aware of this refactoring and
one of them did not directly recognize it due to the abstract
presentation of the refactoring. The other edit operation that
was also not considered as a typical edit scenario was adding
a kind of document to another document. This edit operation
was even considered as illegal by 3 out of the 5 participants.
The reason for this is the internal modeling of the relationship
between the documents, which the participants were not aware
of. So, it can also be attributed to the presentation of the results
in terms of Henshin rules, which require an understanding of
the underlying modeling language’s meta-model.

For four of the edit operations, some of the participants
mentioned that the edit operation can be extended slightly. We
took a closer look at why OCKHAM was not able to detect
the extended edit operation, and it turned out that it was due
to our simplifications of the locality relaxation and also due
to the missing type hierarchies in our graphs. For example,
in one edit operation, one could see that the fully qualified
name (name + location in the containment hierarchy) of some
nodes has been changed, but the actual change causing this
name change was not visible, because it was a renaming of a
package a few levels higher in the containment hierarchy that
was not directly linked to our change. Another example was a
“cut off” referenced element in an edit operation. The reason
why this has been cut off was that the element appeared as
several different sub-classes in the model differences and each
single change alone was not frequent.

When looking at the mined edit operations it became clear,
that the approach was able to implicitly identify constraints
which where not made explicit in the meta-model.

3) Result summary

RQ 1: Is this approach able to identify relevant edit
operations in model repositories? We can answer this
question with a “yes”. Experiment 1 and 2 show high MAP
scores. Only for a large number of applied operations and a
large size of the input graphs, the approach fails in finding the
applied edit operations.

RQ 2: Is this approach able to find typical edit op-
erations or editing scenarios in a real-world setting? We

could show that the approach is able to detect typical edit
scenarios. The approach is therefore sound to a large extend,
and incomplete edit operations can be adjusted manually. We
cannot state yet that the approach is also complete (i.e., is able
to find all relevant edit scenarios), though.

RQ 3: What are the main drivers for the approach to
work or fail? The main drivers for the approach to fail are a
large average size of a component and the size of the component
at threshold (see definition in Section [V-CI). The average size
is related to the number of edit operations applied per model
difference. In a practical scenario, huge differences can be
excluded when running edit operation detection. The size of
the component at threshold can, of course, be reduced by
increasing the support threshold parameters of the frequent
subgraph mining. With higher threshold, we increase the risk
of missing some less frequent edit operations but the reliability
for detecting the correct (more frequent) operations is increased.
Having more examples improves the results of our approach.

RQ 4: What are the main parameters for the perfor-
mance of the frequent subgraph mining? The main driver for
the performance of the frequent subgraph mining is the number
of applied edit operations per difference, which is related to
the average number of nodes per component. Furthermore, we
have a strong dependence between the average precision and
the time spent for the frequent subgraph mining.

VI. LIMITATIONS AND THREATS TO VALIDITY

A. Limitations

Locality relaxation: One limitation of our approach is the
locality relaxation, which limits our ability to find patterns
that are scattered across more than one connected component
of the SCG. As we have seen in our railway case study, this
usually leads to incomplete edit operations. Another typical
example for violating the relaxation are naming conventions.
In the future, we plan to use natural language processing
techniques like semantic matching to augment the models by
further references.

No attribute information: For this study, we did not take
attribute information into account. Attributes (e.g., the name of
a component) could also be integrated into the edit operation
as preconditions or to extract the parameters of an edit
operation. For the purpose of summarizing a model difference
or identifying violations in a model difference, preconditions
and parameters are not important, though, but only the presence
of structural patterns.

Application to simplified graphs: An edit operation generally
is a model transformation. Model transformation engines
such as HENSHIN provide also features to deal with class
inheritance or multi-object structures (roughly speaking, for
each expressions in model transformations). In our approach,
we are not handling these features yet. They can be integrated
into the approach in a post-processing step. For example, one
possibility would be to feed the example instances of patterns
discovered by OCKHAM into a traditional MTBE approach [32].

Transient effects: We also do not take so-called transient

effects into account yet. One applied edit operation can
invalidate the pre- or post-conditions of another edit operation.
However, we have seen in our experiments that it only causes
problems in cases where we apply only a few “correct” edit
operations with high perturbation. In the practical scenario, the
“perturbations” will more likely cancel each other out. When a
transient effect occurs very frequently, a new pattern will be
discovered. That is, when two (or more) operations are always
applied together, we want to find the composite pattern and
not the constituent ones.

Focus on single subgraphs instead of sets: Another limitation
is the fact that we focused the optimization on single edit
operations but not a complete set of edit operations. One
could detect only the most-compressing edit operation and then
substitute this in the model differences and re-run the mining
to discover the second most-compressing edit operation and
so on. Another solution would be to detect a set of candidate
edit operations using OCKHAM and then select an optimal set
using a meta-heuristic search algorithm and optimizing the
total compression. We leave this for further research.

B. Threats to validity

Internal validity: The first two experiments were designed so
that we can control input parameters of interested and observe
their effect on the outcome. OCKHAM makes assumptions
such as the locality relaxation, which could risk the real-world
applicability. Because of this and since we can not claim that
the results from the first two experiments also hold true in
a real-world setting, we additionally applied our approach to
an industrial case study. We can therefore be confident that
OCKHAM also gives reasonable results in a practical scenario.
In our simulations, we applied the edit operation randomly to
a meta-model. To reduce the risk of observations that are only
a result of this sampling, we created many example models. In
the real-world setting, we compared the mined edit operations
to random ones to rule out “patternicity” [S8]] as an explanation
for high Likert rankings. None of our participants reported
problems in understanding HENSHIN’s visual notation, which
gives us a high confidence regarding their judgements. The
participants of the interviews in the third experiment were
also involved in the project where the model history was
taken from. There might be the risk that the interviewees have
only discovered operations they have “invented”. In any case,
because of the huge project size and because 22 out of 25 of
the edit operations were recognized as typical by more than
one of the participants, this is unlikely.

External validity: Some of the observations in our experi-
ments could be due to the concrete set of edit operations in
the example or even due to something in the meta-models.
In the future, OCKHAM has to be tested for further meta-
models to increase the external validity of our results. We have
validated our approach in a real-world setting, which increases
our confidence in its practicality, though. Since we have used an
exact subgraph miner, we can be sure that the discovered edit
operation are independent of the subgraph mining algorithm.

VII. RELATED WORK

Several approaches have been proposed to (semi-)automatically
learn model transformations in the field of Model Trans-
formation By Example. In the first systematic approach of
MTBE, Varré [64] proposes an iterative procedure which tries
to derive exogenous (i.e., source and target meta-model are
different) model transformations by examples. Appropriate
examples need to be provided for the algorithm to work.
Many approaches to learning exogenous model transformations
have been proposed until now. For example, Berramla et al.
[9] use statistical machine translation and language models
to derive the transformations. Or Baki and Sahraoui [6]
apply simulated annealing to learn the operations. Regarding
exogenous transformations there is also an approach by Saada et
al. [54] which uses graph mining techniques to learn concepts
which are then used to identify new transformation patterns.

However, as already mentioned in the introduction, most
closely related to our approach is the area of MTBE for
endogenous model transformations. Compared to exogenous
MTBE, there are only a few studies available for endogenous
MTBE. Brosch et al. [11] present a tool called the OPERATION
RECORDER, which is a semi-automatic approach to derive
model transformations by recording all transformation steps.
A similar approach is presented by Yun et al. [61], who also
infer complex model transformations from a demonstration.
Alshanqiti et al. [2] learn transformation rules from a set
of examples by generalizing over pre- and postcondition
graphs. Their approach has been applied to the derivation
of edit operations, including negative application conditions
and multi-object patterns [32]. Instead of learning a single
operation, Mokaddem et al. [17] use a genetic algorithm to
learn a set of refactoring rule pairs of examples before and
after the application of refactoring. The creation of candidate
transformations that conform to the meta-model is done by the
use of a “fragment type graph”, which allows them to grow
candidate patterns which conform to the meta-model. Their al-
gorithm optimizes a model modification and preservation score.
Ghannem et al. [22] also use a genetic algorithm (i.e., NSGA-
II) to learn model refactorings from a set of “bad designed”
and “good designed” models. Their approach distinguishes
between structural similarity and semantic similarity and tries
to minimize structural and semantic similarity between the
initial model and the bad designed models and to maximize
the similarity between the initial and the well designed models.

All of these approaches for learning endogenous model trans-
formations are (semi-)supervised. Either a concrete example is
given (which only contains the transformation to be learned)
or a set of positive and negative examples is given. In the
case of Mokaddem et al.’s genetic approach, it is assumed that
all transformations that can be applied are actually applied to
the source models. For the meta-model used in our real-world
case study, we do not have any labeled data. In general, we
are not aware of any completely unsupervised approach to
learn endogenous model transformations. To reduce the search
space, we make use of the evolution of the models in the model

repository, though. We do not directly work on the models as in
the approaches above but work on structural model differences.

Furthermore, there is related work in the source code domain.
Regarding one of our motivations for mining edit operations,
namely to simplify differences, there are several approaches
in the source code domain [43l 166]]. These approaches are
more comparable to the approach of semantic lifting [34],
to aggregate or filter model differences according to given
patterns but they are not learning the patterns themselves.
There are also approaches to mine change patterns in source
code. For example, Dagit et al. propose an approach based on
the abstract syntax tree (AST) [14], and Nguyen et al. mine
patterns based on a so called fine-grained program dependence
graph [46]. There is also some work that focuses on mining
design patterns from source code [7, [16l 20, 49]. The idea
behind these approaches, that is, learning (change) patterns
from a version history, is comparable to ours. Other than these
approaches, OCKHAM works on a kind of abstract syntax graph
which already includes domain knowledge given by the meta-
model. Furthermore, we do not use a similarity metric to detect
change groups or frequent changes but use an (exact) subgraph
mining approach instead. In model-driven engineering, one
often has some kind of identifiers for the model elements,
which makes the differencing more reliable and removes the
need for similarity-based differencing methods.

VIII. CONCLUSION AND OUTLOOK

We proposed an approach, OCKHAM, for automatically deriving
edit operations specified as in-place model transformations from
model repositories, based on the idea that a meaningful edit
operation will be one which provides a good compression
for the model differences. OCKHAM uses frequent subgraph
mining on labeled graph representation of model differences
to discover frequent patterns in the model differences. The
patterns are then filtered and ranked based on a compression
metric to get a list of recommendations for meaningful edit
operations. To the best of our knowledge, OCKHAM is the
first approach for learning domain-specific edit operations in a
fully unsupervised manner, i.e., without relying on any manual
intervention or input from a developer or domain expert.

We have successfully evaluated OCKHAM on two case
studies using synthetic ground-truth EMF models and on a
large-scale real-world case study in the railway domain. We
find that our approach is able to extract edit operations that
have actually been applied from the model differences and also
discovers meaningful edit operations in a real-world setting.
Too large connected components in the differences is the main
driver for the approach to fail in discovering actually applied
edit operations. Performance mostly depends on the number
of applied edit operations in a model difference. Our approach
can be applied to models of any Domain-Specific Modeling
Language for which model histories are available. New effective
edit operations that are performed by the users can be learned
at runtime and recommendations can be made.

For our future research, we plan to extend OCKHAM by a
meta-heuristic search to identify the optimal set of operations.

Another alternative approach which we want to study in the
future is to use a clustering algorithm and then feed the clusters
into the frequent subgraph mining step of our approach. This
will allow us also to deal with examples where the connected
components of the difference graph are huge.

[1]

[2]

[3]

[4]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

(14]

[15]

[16]

[17]

[18]

REFERENCES

Vlad Acretoaie, Harald Storrle, and Daniel Striilber. VMTL: a language
for end-user model transformation. Software & Systems Modeling,
17(4):1139-1167, 2018.

Abdullah M. Alshangiti, Reiko Heckel, and Tamim Ahmed Khan.
Learning minimal and maximal rules from observations of graph
transformations. Electronic Communication of the European Association
of Software Science and Technology, 47, 2012.

Thorsten Arendt, Enrico Biermann, Stefan Jurack, Christian Krause, and
Gabriele Taentzer. Henshin: Advanced concepts and tools for in-place
EMF model transformations. In International Conference on Model
Driven Engineering Languages and Systems (MODELS), pages 121-135.
Springer, 2010.

Thorsten Arendt and Gabriele Taentzer. A tool environment for quality
assurance based on the Eclipse Modeling Framework. In International
Conference on Automated Software Engineering (ASE), volume 20, pages
141-184. IEEE/ACM, 2013.

Iman Avazpour, John Grundy, and Lars Grunske. Specifying model
transformations by direct manipulation using concrete visual notations
and interactive recommendations. Journal of Visual Languages and
Computing, 28:195-211, 2015.

Islem Baki and Houari Sahraoui. Multi-step learning and adaptive
search for learning complex model transformations from examples. ACM
Transactions on Software Engineering and Methodology, 25(3):1-36,
2016.

Zsolt Balanyi and Rudolf Ferenc. Mining design patterns from c++
source code. In International Conference on Software Maintenance
(ICSM), pages 305-314. IEEE, IEEE, 2003.

Ameni ben Fadhel, Marouane Kessentini, Philip Langer, and Manuel
Wimmer. Search-based detection of high-level model changes. In
International Conference on Software Maintenance (ICSM), pages 212—
221, 2012.

Karima Berramla., El Abbassia Deba., Jiechen Wu., Houari Sahraoui.,
and Abou Benyamina. Model transformation by example with statistical
machine translation. In International Conference on Model-Driven
Engineering and Software Development (MODELSWARD), pages 76-83.
INSTICC, SciTePress, 2020.

Enrico Biermann, Claudia Ermel, and Gabriecle Taentzer. Formal
foundation of consistent EMF model transformations by algebraic graph
transformation. Software and Systems Modeling, 11(2):227-250, 2012.
Petra Brosch, Philip Langer, Martina Seidl, Konrad Wieland, Manuel
Wimmer, Gerti Kappel, Werner Retschitzegger, and Wieland Schwinger.
An example is worth a thousend words: composite operation modeling
by-example. In International Conference on Model Driven Engineering
Languages and Systems (MODELS), volume 5795, pages 271-285, 2009.
Alexandru Burdusel, Steffen Zschaler, and Daniel Strilber. MDEOp-
timiser: A search based model engineering tool. In International
Conference on Model Driven Engineering Languages and Systems
(MODELS): Companion Proceedings, pages 12—16, 2018.

Diane J Cook and Lawrence B Holder. Mining graph data. John Wiley
& Sons, 2006.

Jason Dagit and Matthew J. Sottile. Identifying change patterns in
software history. CoRR, abs/1307.1719, 2013.

Surnjani Djoko. Substructure discovery using minimum description
length principle and background knowledge. Proceedings of the National
Conference on Artificial Intelligence, 2:1442, 1994,

Jing Dong, Yajing Zhao, and Tu Peng. A review of design pattern
mining techniques. International Journal of Software Engineering and
Knowledge Engineering, 19(06):823-855, 2009.

Chihab eddine Mokaddem, Houari Sahraoui, and Eugene Syriani.
Recommending model refactoring rules from refactoring examples.
International Conference on Model Driven Engineering Languages and
Systems (MODELS), pages 257-266, 2018.

Hartmut Ehrig, Ulrike Prange, and Gabriele Taentzer. Fundamental theory
for typed attributed graph transformation. Lecture Notes in Computer

[19]

(20]

[21]

[22]

[23]

[24]

[25]

[26]

(27]

(28]

[29]

[30]

(31]

[32]

[33]

(34]

(35]

[36]

(371

(38]

Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 3256:161-177, 2004.

Karsten Ehrig, Claudia Ermel, Stefan Hinsgen, and Gabriele Taentzer.
Generation of visual editors as eclipse plug-ins. In International
Conference on Automated Software Engineering (ASE), pages 134—-143,
2005.

Rudolf Ferenc, Arpad Beszedes, Lajos Fulop, and Janos Lele. Design
pattern mining enhanced by machine learning. In International Confer-
ence on Software Maintenance (ICSM), pages 295-304. IEEE, IEEE,
2005.

Sinem Getir, Lars Grunske, André van Hoorn, Timo Kehrer, Yannic
Noller, and Matthias Tichy. Supporting semi-automatic co-evolution of
architecture and fault tree models. Journal of Systems and Software,
142:115-135, 2018.

Adnane Ghannem, Marouane Kessentini, Mohammad Salah Hamdi, and
Ghizlane El Boussaidi. Model refactoring by example: A multi-objective
search based software engineering approach. Journal of Software:
Evolution and Process, 30(4):1-20, 2018.

Peter D Griinwald and Abhijit Grunwald. The minimum description
length principle. MIT press, Cambridge, MA, USA, 2007.

Abel Hegediis, Akos Horvath, Istvan Rath, Moisés Castelo Branco, and
Déniel Varré. Quick fix generation for DSMLs. In Symposium on Visual
Languages and Human-Centric Computing (VL/HCC), pages 17-24,
2011.

Markus Herrmannsdoerfer, Sander Vermolen, and Guido Wachsmuth. An
extensive catalog of operators for the coupled evolution of metamodels
and models. In Software Language Engineering, pages 163—-182. ACM,
2010.

Katrin Holldobler, Bernhard Rumpe, and Ingo Weisemoller. Systemati-
cally deriving domain-specific transformation languages. In International
Conference on Model Driven Engineering Languages and Systems
(MODELS), pages 136-145. ACM/IEEE, 2015.

No Magic Inc. MagicDraw hompage. https://www.nomagic.com/products/
magicdraw,

Chuntao Jiang, Frans Coenen, and Michele Zito. A survey of frequent
subgraph mining algorithms. Knowledge Engineering Review, 28(1):75—
105, 2013.

Nafiseh Kahani, Mojtaba Bagherzadeh, James R Cordy, Juergen Dingel,
and Daniel Varr6. Survey and classification of model transformation
tools. Software & Systems Modeling, 18(4):2361-2397, 2019.

Gerti Kappel, Philip Langer, Werner Retschitzegger, Wieland Schwinger,
and Manuel Wimmer. Model transformation by-example: a survey of
the first wave. In Conceptual Modelling and Its Theoretical Foundations
- Essays Dedicated to Bernhard Thalheim on the Occasion of His 60th
Birthday, volume 7260 LNCS, pages 197-215, 2012.

Timo Kehrer. Calculation and propagation of model changes based
on user-level edit operations : a foundation for version and variant
management in model-driven engineering. PhD thesis, University of
Siegen, 2015.

Timo Kehrer, Abdullah M Alshangiti, and Reiko Heckel. Automatic
inference of rule-based specifications of complex in-place model transfor-
mations. In International Conference on Model Transformations (ICMT),
pages 92-107, 2017.

Timo Kehrer, Udo Kelter, Manuel Ohrndorf, and Tim Sollbach. Under-
standing model evolution through semantically lifting model differences
with SiLift. In International Conference on Software Maintenance (ICSM),
pages 638-641. IEEE, 2012.

Timo Kehrer, Udo Kelter, and Gabriele Taentzer. A rule-based
approach to the semantic lifting of model differences in the context
of model versioning. In International Conference on Automated Software
Engineering (ASE), pages 163—-172. ACM/IEEE, 2011.

Timo Kehrer, Gabriele Taentzer, Michaela Rindt, and Udo Kelter.
Automatically deriving the specification of model editing operations from
meta-models. In International Conference on Model Transformations
(ICMT), volume 9765, pages 173-188, 2016.

Nikhil S. Ketkar, Lawrence B. Holder, and Diane J. Cook. Subdue. pages
71-76, 2005.

Djamel Eddine Khelladi, Regina Hebig, Reda Bendraou, Jacques Robin,
and Marie-Pierre Gervais. Detecting complex changes and refactorings
during (meta)model evolution. Information Systems, 62:220-241, 2016.
Maximilian Koegel, Jonas Helming, and Stephan Seyboth. Operation-
based conflict detection and resolution. In ICSE Workshop on Comparison
and Versioning of Software Models, pages 43-48. IEEE, 2009.

https://www.nomagic.com/products/magicdraw
https://www.nomagic.com/products/magicdraw

[39

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50

[51]

[52]

[53]

[54]

[55]

[56]

(571

Stefan Kogel, Raffaela Groner, and Matthias Tichy. Automatic change
recommendation of models and meta models based on change histories.
In Proceedings of the 10th Workshop on Models and Evolution co-located
with International Conference on Model Driven Engineering Languages
and Systems (MODELS), volume 1706, pages 14-19. ACM/IEEE, 2016.
Dimitrios S Kolovos, Davide Di Ruscio, Alfonso Pierantonio, and Richard
Paige. Different Models for Model Matching: An analysis of approaches
to support model differencing. In ICSE Workshop on Comparison and
Versioning of Software Models, pages 1-6. IEEE, 2009.

Dimitrios S Kolovos, Louis M Rose, Saad Bin Abid, Richard F Paige,
Fiona AC Polack, and Goetz Botterweck. Taming EMF and GMF
using model transformation. In International Conference on Model
Driven Engineering Languages and Systems (MODELS), pages 211-225.
Springer, 2010.

Philip Langer, Manuel Wimmer, Petra Brosch, Markus Herrmannsdorfer,
Martina Seidl, Konrad Wieland, and Gerti Kappel. A posteriori operation
detection in evolving software models. Journal of Systems and Software,
86(2):551-566, 2013.

Matias Martinez, Laurence Duchien, and Martin Monperrus. Automat-
ically extracting instances of code change patterns with AST analysis.
In International Conference on Software Maintenance (ICSM), pages
388-391. IEEE, 2013.

Steffen Mazanek and Mark Minas. Generating correctness-preserving
editing operations for diagram editors. Electronic Communication of the
European Association of Software Science and Technology, 18, 2009.
Tom Mens and Pieter Van Gorp. A taxonomy of model transformation.
Electronic Notes in Theoretical Computer Science, 152(1-2):125-142,
2006.

Hoan Anh Nguyen, Tien N. Nguyen, Danny Dig, Son Nguyen, Hieu Tran,
and Michael Hilton. Graph-based mining of in-the-wild, fine-grained,
semantic code change patterns. In Joanne M. Atlee, Tevfik Bultan, and
Jon Whittle, editors, International Conference on Software Engineering
(ICSE), pages 819-830. IEEE / ACM, 2019.

Siegfried Nijssen and Joost N. Kok. The Gaston tool for frequent
subgraph mining. Electronic Notes in Theoretical Computer Science,
127(1):77-87, 2005.

Manuel Ohrndorf, Christopher Pietsch, Udo Kelter, and Timo Kehrer.
ReVision: a tool for history-based model repair recommendations. In
International Conference on Software Engineering (ICSE): Companion
Proceedings, volume 30, pages 105-108. ACM, 2018.

Murat Oruc, Fuat Akal, and Hayri Sever. Detecting design patterns
in object-oriented design models by using a graph mining approach.
In International Conference in Software Engineering Research and
Innovation (CONISOFT), pages 115-121. IEEE, 2016.

Pit Pietsch, Hamed Shariat Yazdi, and Udo Kelter. Generating realistic
test models for model processing tools. In International Conference on
Automated Software Engineering (ASE), pages 620-623. IEEE, IEEE,
2011.

Michael Polanyi. Personal knowledge: Towards a post critical philosophy.
University of Chicago Press, 1958.

Alberto Rodrigues Da Silva. Model-driven engineering: A survey
supported by the unified conceptual model. Computer Languages, Systems
and Structures, 43:139-155, 2015.

Louis M. Rose, Markus Herrmannsdoerfer, Steffen Mazanek, Pieter Van
Gorp, Sebastian Buchwald, Tassilo Horn, Elina Kalnina, Andreas Koch,
Kevin Lano, Bernhard Schitz, and Manuel Wimmer. Graph and model
transformation tools for model migration - Empirical results from the
transformation tool contest. Software & Systems Modeling, 13(1):323—
359, 2014.

Hajer Saada, Marianne Huchard, Michel Liquiere, and Clémentine Nebut.
Learning model transformation patterns using graph generalization. In
International Conference on Concept Lattices and Their Applications,
volume 1252, pages 11-22, 2014.

Maik Schmidt and Tilman Gloetzner. Constructing difference tools for
models using the SiDiff framework. In International Conference on
Software Engineering (ICSE): Companion Proceedings, pages 947-948,
2008.

Gunnar Schroder, Maik Thiele, and Wolfgang Lehner. Setting goals
and choosing metrics for recommender system evaluations. In UCER-
STI2@ Conference on Recommender Systems (RecSys), volume 23,
page 53. ACM, 2011.

Shane Sendall and Wojtek Kozaczynski. Model transformation: The
heart and soul of model-driven software development. /EEE Software,

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

20(5):42—-45, 2003.

Michael Shermer. Patternicity: Finding meaningful patterns in meaning-
less noise. Scientific American, 299(5):48, 2008.

Janet Siegmund, Norbert Siegmund, and Sven Apel. Views on internal
and external validity in empirical software engineering. In International
Conference on Software Engineering (ICSE), volume 1, pages 9-19.
IEEE, 2015.

Matthew Stephan and James R Cordy. A survey of model comparison
approaches and applications. In International Conference on Model-
Driven Engineering and Software Development (MODELSWARD), pages
265-277, 2013.

Yu Sun, Jeff Gray, and Jules White. MT-Scribe : An end-user approach
to automate software model evolution. In International Conference on
Software Engineering (ICSE), volume 1, pages 980-982, 2011.
Gabriele Taentzer, André Crema, René Schmutzler, and Claudia Er-
mel. Generating domain-specific model editors with complex editing
commands. In Applications of Graph Transformations with Industrial
Relevance (AGTIVE), pages 98—103. Springer, 2007.

Arie Van Deursen, Eelco Visser, and Jos Warmer. Model-driven software
evolution: A research agenda. Technical Report Series TUD-SERG-2007-
006., 7:33, 2007.

Daniel Varré. Model transformation by example. In International
Conference on Model Driven Engineering Languages and Systems
(MODELS), volume 4199 LNCS, pages 410-424. Springer Berlin
Heidelberg, 2006.

Pascal Welke, Florian Seiffarth, Michael Kamp, and Stefan Wrobel.
HOPS: Probabilistic subtree mining for small and large graphs. In
Conference on Knowledge Discovery (KDD), pages 1275-1284. ACM,
2020.

Yijun Yu, Thein Than Tun, and Bashar Nuseibeh. Specifying and
detecting meaningful changes in programs. In International Conference
on Automated Software Engineering (ASE), pages 273-282. IEEE, 2011.

	I Introduction
	II Motivation: An Industrial Scenario
	III Background
	III-A Graph theory
	III-B Frequent Subgraph Mining
	III-C Model Transformations and Edit Operations

	IV Approach
	V Evaluation
	V-A Research Questions
	V-B Experiments
	V-C Discussion
	V-C1 Reasons for non-optimal results
	V-C2 Qualitative results
	V-C3 Result summary

	VI Limitations and Threats to Validity
	VI-A Limitations
	VI-B Threats to validity

	VII Related Work
	VIII Conclusion and Outlook

