
Tackling Flaky Tests: Understanding the Problem
and Providing Practical Solutions

Martin Gruber
BMW Group and University of Passau

Munich, Germany

Martin.GR.Gruber@bmw.de

Abstract—Non-deterministically behaving tests impede soft-
ware development as they hamper regression testing, destroy
trust, and waste resources. This phenomenon, also called test
flakiness, has received increasing attention over the past years.
The multitude of both peer-reviewed literature and online blog
articles touching the issue illustrates that flaky tests are deemed
both a relevant research topic and a serious problem in everyday
business. A major shortcoming of existing work aiming to
mitigate test flakiness is its limited applicability, since many of
the proposed tools are highly relying on specific ecosystems. This
issue also reflects on various attempts to investigate flaky tests:
Using mostly similar sets of open-source Java projects, many
studies are unable to generalize their findings to projects laying
beyond this scope. On top of that, a holistic understanding of
test flakiness also suffers from a lack of analyses focusing on
the developers’ perspective, since most existing studies take a
code-centric approach.

With my work, I want to close these gaps: I plan to create
an overarching and widely applicable framework that empowers
developers to tackle flaky tests through existing and novel tech-
niques and enables researchers to swiftly deploy and evaluate new
approaches. As a starting point, I am studying test flakiness from
previously unconsidered angles: I widen the scope of observation
investigating flakiness beyond the realm of the Java ecosystem,
while also capturing the practitioners’ opinion. By adding to
the understanding of the phenomenon I not only hope to close
existing research gaps, but to retrieve a clear vision of how
research on test flakiness can create value for developers working
in the field.

Index Terms—Flaky Test; Flakiness; Non-determinism

I. MOTIVATION AND STATE-OF-THE-ART

Tests that behave non-deterministically hinder software

development, especially as they undermine regression testing:

Executing tests after every code change exposes regressions

earlier and eases the debugging process since incremental

testing allows us to infer that the transition of a test case from

passing to failing is caused by the most recent code change.

This technique is based on the assumption that all tests deliver

deterministic outcomes, which is not true for flaky tests, that

pass and fail on the same code under test (CUT) due to reasons

such as network fluctuations or concurrency related issues.
Having flaky tests in their test suite causes developers to

lose trust in testing since the failures they have to investigate

are not caused by recent code changes, but either sporadically

manifesting bugs or tests making wrong assumptions about the

product or the execution environment. Besides eroding trust

and causing frustration, flaky tests also increase both human

and computational resource costs and delay test feedback.

While these commonly stated effects of flakiness have not

been systematically quantified yet, studies showed that even

a few flaky tests can cause builds to fail frequently [1] and

receive more crash reports [2]. So far, 15 different causes of

test flakiness have been identified [3]–[6] with most, but not all,

non-deterministic behavior originating from the test code [1],

[3], [4]. The majority of flaky tests have been found to be

already flaky in the commit in which the test was introduced [3],

[7], [8]. Practitioners report flakiness to be far more common

among larger and more resource intensive tests [9] and less

common in simple and small test cases [8], which might be

caused by larger tests using features such as networking and

multi-threading [10], that reportedly cause flakiness. Apart

from mining software repositories, recent work also investigates

human factors [4], [8], however, perceptional analyses remain

vastly underrepresented compared to code based studies.

Similar to bugs, flakiness is considered a problem that cannot

be eradicated completely [11], [12]. To mitigate the issue,

multiple approaches have been proposed that try to detect

flaky tests using fewer reruns [13], [14] or find their root

causes [15], [16]. Some tools aim at detecting and eradicating

certain types of flakiness like order-dependencies [17], [18]

and async wait [1], while others try to simulate the impacts

of flakiness on other bug fixing techniques [19] showing its

disastrous effects on fault localization and patch generation [20]–

[22]. A major shortcoming of most existing tools is their limited

applicability with many of them relying on specific languages,

build-, test-, or instrumentation-frameworks.

II. PLANNED CONTRIBUTIONS

Studying related work, I see two main gaps in existing

literature: First, to truly understand the problems caused by

flaky tests, we need broader investigations studying flakiness

in different technology stacks, from a more developer-focused

perspective also considering industrial applications. Second, to

truly help developers in dealing with flaky tests, we need to

create widely and easily applicable tools which are not limited

to a specific ecosystem. In the following sections I discuss

both challenges in detail and how I plan to approach them.

A. Understanding Flakiness

When it comes to studying flaky tests, we almost turn a

blind eye on the developer’s opinion with most studies taking

a code-centric approach mining software repositories while not

1095

2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE)

Work licensed under Creative Commons Attribution 4.0 License. https://creativecommons.org/licenses/by/4.0/
DOI 10.1109/ASE51524.2021.00109

20
21

 3
6t

h
IE

EE
/A

C
M

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 A

ut
om

at
ed

 S
of

tw
ar

e
En

gi
ne

er
in

g
(A

SE
) |

 9
78

-1
-6

65
4-

03
37

-5
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
A

SE
51

52
4.

20
21

.9
67

87
01

harvesting the insights laying in the perceptional component.

This is especially surprising since one of the most agreed

upon impacts of flaky tests is losing trust in testing, which is

a purely perceptional consequence. Furthermore, there is an

imbalance regarding the ecosystems that are being considered,

specifically, I see a tendency towards open-source Java projects

with proprietary and industrial projects as well as projects

using other languages being underrepresented.

To overcome these limitations and better understand the

problem of test flakiness, I view it from both a technical angle,

looking beyond the scope of previous studies, and a perceptional

angle, firstly quantifying key properties of flaky tests using

a representative industrial survey. In our recent work [6],

we investigated flakiness in Python, a previously untouched

area. We searched for flaky tests in public Python repositories

measuring their prevalence, causes and degree. While we found

flakiness to be equally prevalent in Python as it is in Java,

its causes were much different as we encountered more order

dependency, network and randomness related flakiness than

prior studies. We also discovered infrastructure flakiness as a

prominent cause of non-deterministic test outcomes.

Furthermore, we are currently conducting a survey among

professional software developers and testers, asking them about

their view on test flakiness. Specifically, we want to know

more about the causes and consequences of flaky tests, the

mitigation strategies that developers currently apply, and the

wishes they have towards researchers and tool developers. To

paint a holistic picture that captures both the general opinion

on test flakiness and the detailed view from within a specific

domain, we conduct our study on two groups: One, which is a

global sample of professional software developers and testers

working in various companies, industries, and countries and

one consisting of developers from a large automotive OEM.

Through this survey, we hope to provide directions for future

research in order to be of value to practitioners in the field.

B. A Guiding Framework

Another shortcoming of existing work on flakiness is that

most tools proposed to identify, analyze, and mitigate flaky

tests strongly rely on specific build-, test-, or instrumentation-

frameworks, thereby highly restricting their applicability. This

does not only limit the practical value of these applications, it

also hurts the generalizability of the evaluations conducted on

them. Zheng et al. [23] support this claim, stating that no unified

benchmark has been established to verify the effectiveness of

flaky test detection and fixing technologies.

To overcome this limitation, I plan to build a generic

framework that provides common interfaces for techniques

addressing flaky tests. Such a framework will improve the

comparability, generalizability and reproducibility of existing

approaches. Furthermore, we hope that it will guide, ease and

foster the development of future techniques. Lastly, it will

lower the adoption threshold and enable practitioners to benefit

from recent advancements in research.

To create a language-agnostic and universally applicable

framework, we need to minimize the assumptions we make

about the target system as well as the resources and access

rights we require. Therefore, I plan to limit the framework

to only depend on information that can be retrieved easily

without requiring the usage of ecosystem-exclusive features or

expensive operations. Examples for such commonly available

artifacts are test outcomes, coverage, version control history,

source code, or test execution logs.

C. Widely Applicable Detection and Root Causing Techniques
Building on the framework I want to answer two core

questions: (1) Given a test case, is it flaky? (2) Given a flaky test,

what is the cause of its flakiness? I deem these questions most

central since being able to answer them in an accurate, efficient

and automated fashion would enable a variety of other, more

sophisticated responses to test flakiness such as quantification

of flakiness, prioritization of issues, or test quarantining.
1) Detecting Flaky Tests: The prerequisite for any such

analysis or action against flaky tests is knowing if a test is

actually flaky. While classifying a single test run as flaky or

non-flaky might be trivial for a skilled developer, the sheer

size of many test suites and number of executions per day

make this task infeasible for humans. The most common way

to determine if a failing test is flaky or actually broken is to

rerun it. However, this is neither always possible (e.g., for long-

running tests or expensive hardware tests), nor always suitable,

since many causes of flakiness have temporal effects (like

network outages) and will still exist in case of an immediate

rerun. Therefore, an accurate and efficient method to distinguish

flaky tests from non-flaky ones is needed. Existing approaches

for flakiness detection either target a specific build system [14],

[24] or have not been evaluated thoroughly [25], [26]. With

my work, I want to build classifiers that are able to detect flaky

tests based on features that can be extracted from existing test

executions without requiring additional reruns. The first and

most simple step will be trying to predict test flakiness only

based on former test outcomes.
2) Root Causing Flaky Tests: Having unveiled flaky tests, in

order to fix or mitigate them, developers need insights about the

causes of the tests’ non-deterministic behavior. Among others,

this includes the root cause of the flakiness (i.e. which of the

15 categories it belongs to), its origin (i.e. source code, test

code, test infrastructure) and, if applicable, its location inside

the code. Unfortunately, there are not many tools aiming at root

causing flaky tests and the one that does [15] depends on a C#

instrumentation framework limiting it to a niche use case. To

develop more widely applicable techniques, we plan to analyze

execution traces and logs to find patterns which are indicative

for specific types of flakiness that can help to automatically

narrow down the causes and locations of flakiness.

III. EVALUATION PLAN

Through my PhD position at BMW, I have the opportunity

to quantitatively evaluate the performance of my approaches

on large, industrial system and to work with their developers

receiving continuous feedback. Nevertheless, I will also be

looking at software systems of other origin to evaluate flakiness

detection and root causing techniques.

1096

REFERENCES

[1] W. Lam, K. Muşlu, H. Sajnani, and S. Thummalapenta, “A study on
the lifecycle of flaky tests,” in Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering, 2020, pp. 1471–1482.

[2] M. T. Rahman and P. C. Rigby, “The impact of failing, flaky, and high
failure tests on the number of crash reports associated with firefox builds,”
in Joint Meeting of the European Software Engineering Conference and
the Symposium on the Foundations of Software Engineering (ESEC/FSE).
ACM, 2018, pp. 857–862.

[3] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov, “An empirical analysis
of flaky tests,” in International Symposium on Foundations of Software
Engineering (FSE). ACM, 2014, pp. 643–653.

[4] M. Eck, F. Palomba, M. Castelluccio, and A. Bacchelli, “Understanding
flaky tests: The developer’s perspective,” in Joint Meeting of the European
Software Engineering Conference and the Symposium on the Foundations
of Software Engineering (ESEC/FSE). ACM, 2019, pp. 830–840.

[5] S. Thorve, C. Sreshtha, and N. Meng, “An empirical study of flaky tests
in android apps,” in International Conference on Software Maintenance
and Evolution (ICSME). IEEE Computer Society, 2018, pp. 534–538.

[6] M. Gruber, S. Lukasczyk, F. Kroiß, and G. Fraser, “An empirical study
of flaky tests in python,” in 2021 14th IEEE Conference on Software
Testing, Verification and Validation (ICST). IEEE, 2021, pp. 148–158.

[7] W. Lam, S. Winter, A. Wei, T. Xie, D. Marinov, and J. Bell, “A large-
scale longitudinal study of flaky tests,” Proceedings of the ACM on
Programming Languages, vol. 4, no. OOPSLA, pp. 1–29, 2020.

[8] A. Ahmad, O. Leifler, and K. Sandahl, “Empirical analysis of factors and
their effect on test flakiness-practitioners’ perceptions,” arXiv preprint
arXiv:1906.00673, 2019.

[9] J. Listfield, “Where do our flaky tests come from?” Apr. 2017. [Online].
Available: https://testing.googleblog.com/2017/04/where-do-our-flaky-
tests-come-from.html

[10] S. Stewart, “Test sizes,” Dec. 2010. [Online]. Available: https:
//testing.googleblog.com/2010/12/test-sizes.html

[11] J. Raine, “Reducing flaky builds by 18x,” Dec. 2020. [Online]. Available:
https://github.blog/2020-12-16-reducing-flaky-builds-by-18x/

[12] J. Micco, “Flaky tests at google and how we mitigate them,” 2016, ac-
cessed: 2020–10–19. [Online]. Available: https://testing.googleblog.com/
2016/05/flaky-tests-at-google-and-how-we.html

[13] W. Lam, R. Oei, A. Shi, D. Marinov, and T. Xie, “Idflakies: A framework
for detecting and partially classifying flaky tests,” in International
Conference on Software Testing, Verification and Validation (ICST).
IEEE, 2019, pp. 312–322.

[14] J. Bell, O. Legunsen, M. Hilton, L. Eloussi, T. Yung, and D. Marinov,
“Deflaker: Automatically detecting flaky tests,” in International Confer-
ence on Software Engineering (ICSE). ACM, 2018, pp. 433–444.

[15] W. Lam, P. Godefroid, S. Nath, A. Santhiar, and S. Thummalapenta, “Root
causing flaky tests in a large-scale industrial setting,” in International
Symposium on Software Testing and Analysis (ISSTA). ACM, 2019, pp.
101–111.

[16] D. C. Celal Ziftci, “De-flake your tests: Automatically locating root
causes of flaky tests in code at google,” in ICSME 2020-International
Conference on Software Maintenance and Evolution, 2020. [Online].
Available: https://www.youtube.com/watch?v=uMGWf0tFqjM

[17] A. Gambi, J. Bell, and A. Zeller, “Practical test dependency detection,”
in International Conference on Software Testing, Verification and
Validation (ICST). IEEE Computer Society, 2018, pp. 1–11.

[18] A. Shi, W. Lam, R. Oei, T. Xie, and D. Marinov, “ifixflakies: A framework
for automatically fixing order-dependent flaky tests,” in Joint Meeting
of the European Software Engineering Conference and the Symposium
on the Foundations of Software Engineering (ESEC/FSE). ACM, 2019,
pp. 545–555.

[19] M. Cordy, R. Rwemalika, M. Papadakis, and M. Harman, “Flakime:
Laboratory-controlled test flakiness impact assessment. A case study on
mutation testing and program repair,” CoRR, vol. abs/1912.03197, 2019.

[20] M. Martinez, T. Durieux, R. Sommerard, J. Xuan, and M. Monperrus,
“Automatic repair of real bugs in java: A large-scale experiment on the
defects4j dataset,” Empirical Software Engineering, vol. 22, no. 4, pp.
1936–1964, 2017.

[21] B. Vancsics, T. Gergely, and Á. Beszédes, “Simulating the effect of test
flakiness on fault localization effectiveness,” in 2020 IEEE Workshop
on Validation, Analysis and Evolution of Software Tests (VST). IEEE,
2020, pp. 28–35.

[22] Y. Qin, S. Wang, K. Liu, X. Mao, and T. F. Bissyandé, “On the impact
of flaky tests in automated program repair,” 2021.

[23] W. Zheng, G. Liu, M. Zhang, X. Chen, and W. Zhao, “Research progress
of flaky tests,” in 2021 IEEE International Conference on Software
Analysis, Evolution and Reengineering (SANER). IEEE, 2021, pp.
639–646.

[24] A. Alshammari, C. Morris, M. Hilton, and J. Bell, “Flakeflagger:
Predicting flakiness without rerunning tests,” in 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE). IEEE, 2021,
pp. 1572–1584.

[25] S. Liviu, “A machine learning solution for detecting
and mitigating flaky tests,” Oct. 2019. [Online]. Avail-
able: https://medium.com/fitbit-tech-blog/a-machine-learning-solution-
for-detecting-and-mitigating-flaky-tests-c5626ca7e853

[26] M. Machalica, W. Chmiel, S. Swierc, and R. Sakevych, “How
do you test your tests?” Dec. 2020. [Online]. Available: https:
//engineering.fb.com/2020/12/10/developer-tools/probabilistic-flakiness/

1097

