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Abstract—Metamorphic testing is a well-established testing
technique that has been successfully applied in various domains,
including testing deep learning models to assess their robustness
against data noise or malicious input. Currently, metamorphic
testing approaches for machine learning (ML) models focused
on image processing and object recognition tasks. Hence, these
approaches cannot be applied to ML targeting program analysis
tasks. In this paper, we extend metamorphic testing approaches for
ML models targeting software programs. We present LAMPION, a
novel testing framework that applies (semantics preserving) meta-
morphic transformations on the test datasets. LAMPION produces
new code snippets equivalent to the original test set but different
in their identifiers or syntactic structure. We evaluate LAMPION
against CodeBERT, a state-of-the-art ML model for Code-To-Text
tasks that creates Javadoc summaries for given Java methods.
Our results show that simple transformations significantly impact
the target model behavior, providing additional information on
the models reasoning apart from the classic performance metric.

I. INTRODUCTION

Artificial Intelligence (AI) has been applied to software en-

gineering (SE) to address many tasks, such as fault localization

[1], test-case generation [2], fuzzing [3] or optimizing meta-

parameters [4]. Recently, modern sequence-to-sequence deep

learning models have shown promising results sparking new

types of applications. Among them is the creation of code

from verbatim description (tex-to-code) [5], or generation of

documentation for source-code of previously unseen methods

(code-to-text) [6, 7]. Yet, we argue that it is not clear the extent
to which these models truly behave as intended, apart from

their reported accuracy. Hence, applying testing strategies for

ML-based program analysis solutions is critical.

In recent years, there has been great interest in Testing ML,

where the goal is indeed to go beyond assessing accuracy (see

the survey by Zhang et al. [8]). Many of the approaches have

been taken from classic software testing and have been adapted

for ML. One example is metamorphic testing, which is a well-

established technique that is considered a powerful approach

as it addresses the Oracle Problem [9] in test generation.

Metamorphic testing has been successfully used in ML [10, 11]

for image processing and object recognition. For example,

image rotation is an information-preserving transformation as it

alters the pixels in the image without changing its label (oracle).

In computer vision, a robust ML model must not provide

different predictions for the image altered with metamorphic

transformations. Hence, quantifying the number of transformed

images on which an ML model provides different answers

quantifies its robustness against different transformations.

While extensive research has been conducted on meta-

morphic testing for vision computing tasks [10–12], the

existing metamorphic transformations are domain-specific.

Consequently, they cannot be applied and do not hold for

different domains and types of data. In this paper, we extend
the concept of metamorphic testing to machine learning models
trained on and targeting source code.

We define a set of transformations that alter features of code

but yield the effectively equal program, such as introducing

if(true)-conditions or +0 behind integer expressions. Using

those, we modify the test-datapoints (programs) in order to

detect differences in the models’ predictions and metrics. We

expect that the models are robust towards some transformations

while others affect the metrics (negatively). The information

gained could help to evaluate existing models, compare them to

each other and provide suggestions and warnings for end-users

and researchers alike. With our research and tool, we contribute

on the following points:

1) Create a systematic approach, namely LAMPION, to

quantify the robustness of a source-code-based model

2) Enable researchers to compare the robustness of models

similarly to existing quality metrics

3) Groundwork for data augmentation in the field of ML4SE.

4) Empirically show the importance of robustness and testing

when referring to ML-based program analysis.

To the best of our knowledge, we are the first to propose

the use of metamorphic transformations for assessing ML-

based program analysis tools. Our initial experiments on

CodeBERT [5], a state-of-the-art ML model widely used in

the SE literature [13–16], demonstrate the feasibility of the

approach, and the type of lessons that can be learned from

applying LAMPION.

II. BACKGROUND AND RELATED WORK

Metamorphic testing is a technique based upon the concept

of metamorphic relations, which is a property-based technique

that exploits known equality of certain output values. Prominent

examples are programs that implement mathematical functions;

The sine function has a well-known metamorphic relation:

∀x ∈ R : sin(x) = sin(x + 2π). Testers can easily create

new test cases based on this relation and assess the program
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correctness. A broad view of metamorphic testing studies

and applications can be found in the survey by Segura et

al. [17]. While metamorphic testing has not been applied to

ML models for SE, metamorphic transformations and relations

are known in software engineering and are tightly coupled to

refactoring, program optimization, and linting. Metamorphic

transformations are also used for compiler optimization to

create more efficient code, using techniques like loop unrolling

or function inlining [18].

Metamorphic Testing for ML. Metamorphic testing has

been applied recently to machine learning, especially to

image-based object-detection tasks [11][10]. A metamorphic

transformation on images performs information-preserving
alternations on an image. For example, the image of a cat might

be mirrored, yet a classifier should still be able to recognize

it as such. Blurring or saturating of images [19] change the

data significantly; nevertheless, they are still easily classifiable

by humans. These transformed images can be used to access

robustness by generating more datapoints in the test set [11].

It can also be applied to generate more training data, which

can result in a more robust or precise model [12].

The existing literature focuses on MTs that are specific to

images and pixels. In this paper, we transplant the testing

methodology to a new domain, namely ML models designed

for program analysis. This requires defining new metamorphic

relations and transformations for our domain, which we

describe in Section III.

Adversarial attacks. Related work stems from Compton

et al. [20] that introduces randomization of variable-names

in the training dataset of a code2vec model for training data

augmentation. Their study shows that the model trained on the

augmented training dataset achieves slightly better accuracy

than the model trained on the original dataset which motivates

to systematically investigate for overfitting. Similarly, Yefet

et al. [21] prove that they can generate adversarial attacks

on Code2Vec-based classifiers by changing variable names or

introducing new variables. As this existing research motivates

to inspect identifier names, we include them into our approach

in addition to other transformations.

III. OUR FRAMEWORK: LAMPION

Overview. Figure 1 depicts the metamorphic testing ap-

proach, we named LAMPION, and designed for testing ML

models trained on source-code programs. LAMPION relies

on the MTs defined in the subsections below. Our approach

consists of three main steps. First, LAMPION takes as inputs a

pre-trained model and a program not used during the training

process (items 5 and 1 in Figure 1). It generates program

variants (item 4 ) by using the MTs (item 2 ) and based on a

given configuration file (item 3 ). The configuration specifies

the type of transformation applied and the number of repetitions

(order). Then, the original program and its equivalent variants

are fed to the pre-trained model. Finally, LAMPION compares

the outcome produced by the pre-trained model for the original

program (item 6 ) and its metamorphic variants (item 7 ). If

Figure 1. LAMPION— Metamorphic Testing Framework for ML-based
Program Analysis

there is no difference in the outcome, it means that the model

is robust to the MT. Otherwise, we found a weakness in the

model.

Metamorphic Relation for Programs. The first step is

to identify metamorphic relations for software programs,

which are the data points for ML-based program analysis.

Metamorphic relations (MRs) relate multiple programs that

differ in their structures (e.g., AST) but that are effectively

equivalent. As such, ML models should provide the very same

output (e.g., same label) for programs that are related to one

other according to an MR. Therefore, given a program P , we

use MRs to generate equivalent yet different programs P ′
1, . . . ,

P ′
k to test a given ML model under analysis.

In ML applications, the oracle function corresponds to

the labels that humans provide for a given program P . The

type of label for each program (data point) is task-dependent.

For example, in ML-based program documentation, the label

(oracle) is the natural language description developers write

for the program P .

We identify two types of metamorphic relations for programs

which are useful to test ML models for program analysis:

MR-1: Addition of uninformative code elements. Such a

code element (e.g., comments, un-used variables, etc.) does

not change the behavior of the target program P . As such,

the label (oracle) for P and its variants with MR-1 relation

remains the same.

MR-2: Replace a code element with another equivalent
element. Equivalent program elements (e.g., different variable

names) do not change the AST of the programs but the labels

of the nodes within the AST. Using different yet equivalent

elements does not change the behaviors of a program P either.

Metamorphic Transformations. Given the two MRs defined

above, we can define a set of metamorphic transformations
that satisfy our MRs. A metamorphic transformation (MT) is

a procedure that generates new programs P ′
1, . . . , P ′

k (follow-
up programs) starting from an input program P and using a

metamorphic relation. We have two constraints for MTs: First,

the oracle function must give the same output for the initial

program P and the transformed program f(P ). Second, P is

a valid input for the ML model, then f(P ) must be valid input

for the model too.
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Table I
OVERVIEW OF METAMORPHIC TRANSFORMATIONS FOR PROGRAMS

Transformation Short Description Estimated Effect Variations

if-true MT-IF Wrapping a random expression in an
if(true) statement

Structural Changes, introduction of con-
ditions, introduction of keywords

if-false-else

add-unused-
variable

MT-UV Add a random unused variable Introduction of names, introduction of
types

Full random and pseudo random names
(Postfix R & P), names looked up from
a dictionary or the program under test

rename-entity MT-RE Rename a class, method or variable Introduction of names, removal of
known names

For variables, classes and member-types
separate

lambda-identity MT-ID Wrap an expression in an identity-lambda
function (including function call)

Introduction of complex structure, intro-
duction of operators

-

delegation-method MT-
DM

extract an expression to a function, invoke
the function instead of the method

Structural changes, change of scope for
information, introduction of names

same as MT-UV

comment-
alternation

MT-CO Add,remove or move comments Introduction or removal of natural lan-
guage

Full or pseudo random comments gen-
erated

parameter-
introduction

MT-PI Introduce an unused parameter Change of method signature, introduc-
tion of names, introduction of types

same as MT-UV

whitespace-
alternation

MT-WS Add or remove whitespace Change of code-layout -

add-neutral-
element

MT-NE Add the neutral element to a primitively
typed expression

Change of structure, introduction of
tokens

Complex equivalent transformations
(e.g. replacing true with 01 == 1)

A summary of MTs is presented in Table I. They target

various features of the code, such as structure, tokens, and

identifier names. Different models are known to have constraints

by their design. For example, Code2Vec defines an AST-depth;

hence, the model is known to break when introducing many

redundant structure elements. Other models — especially deep

learning models like CodeBERT — do not specify the features

they target and were not previously inspected.

The presented table can be considered a starting point for

metamorphic transformations applied to ML-based program

analysis solutions.

IV. EMPIRICAL STUDY

We first want to assess whether the proposed MTs impact

the performance of machine learning models. In an ideal

case, ML models should not be affected by the metamorphic

transformations, i.e., the model is not sensitive to changes that

do not alter the code behavior. Hence, RQ1 should cover the

general impact of applying one single transformation at the

time, hereafter referred to as first-order MTs:

Research Question 1
To what extent do metamorphic transformations affect the

performance of ML models?

We also want to compare the different types of transfor-

mations w.r.t the benchmark. We may expect that different

transformations have different impacts on ML models. Further-

more, we aim to understand which model features are more

robust, e.g., whether name-changes affect the model more than

structural AST changes.

Research Question 2
To what extent do different types of MTs have a different

impact on the performance of ML models?

Benchmark. For an initial study, we picked CodeBERT [5],

particularly its downstream task of code-summarization. Code-

summarization should clarify what the model understands, and

the output can give clearer insights than cold metrics. We

trained a CodeBERT-Java Model as described in the official

repository by Microsoft [22], using the standard parameters

given in the readme. CodeBERT has been trained on 6

programming languages with a total of 8.3M datapoints (code

snippets) and achieves state-of-the-art results of an average

BLEU4-Score of 17.65 in the CodeSearchNet-challenge [23].

Methodology / Experiment Design. We developed a

metamorphic transformer for Java-Programs that works at the

source-code level. In addition, we need a (pretrained) model

and an existing benchmark that either consists of .java files or

provides sufficient pre- and post-processing to transform the

datapoints. To answer RQ1, we apply MTs to all datapoints

in the test set, resulting in a set of variant-code-snippets. We

then re-calculate the performance metrics for the variant-code

snippets (metamorphic test cases) as well as for the original

ones. We use the BLEU4-Score [24] as performance metric,

which is the standard metric used in code-to-text and text-to-

code generation tasks [16, 24]. The BLEU4-score is computed

by tokenizing the gold standard and the generated text into

n-grams, and comparing the resulting sets of n-grams. The

metric value ranges from 1.0 (perfect translation) to 0 (not

a single matching word or n-gram). In addition, we use the

Jaccard-distance to measure the percentage of words that differ

between the two Java-doc-comments generated by CodeBERT

before and after applying an MT. To assess the significance

of the differences in BLEU4-score achieved by the model

with and without metamorphic transformations, we use the

Wilcoxon rank-sum test [25]. We verified beforehand that the

achieved results follow a non-normal distribution by applying

the Shapiro-Wilkinson test [26]. We answer RQ2 by grouping

the existing results by type of MT. On the MT-groupings

we use the Friedman test [27] and the post-hoc Nemenyi

test [28]. The Friedman test tests for significant differences

among the different MTs in terms of their impact on the

BLEU4-score. Furthermore, we use the post-hoc Nemenyi test
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Figure 2. Overview of changes for first-order MTs

to perform a pairwise comparison. The Nemenyi test measures

the difference across the MTs by computing the average rank

of each treatment across all datapoints in the test set, where

the lowest rank is the most significant.

V. PRELIMINARY RESULTS

Results for RQ1. Figure 2 shows the histogram of deltas

in the BLEU4-Score produced by CodeBERT before and after

applying MTs. The Figure also shows the histogram of Jaccard

distance between the reference and the post-MT generated

JavaDoc. We observe that out of 72,989 produced JavaDoc

summaries, for 16,566 datapoints CodeBERT generated sum-

maries with a non-zero delta in BLEU-Score (22.6%). For

these 16,566 datapoints with changes, the average difference

in BLEU-Score is 0.06. Many summaries change when we

apply the MTs, but they perform comparably in terms of

BLEU-Scores to the unaltered; For example, both summaries

could miss the same number of keywords, just by different

tokens. More in detail, there are 52,838 Java methods in the

test set out of 72,989 with zero Jaccard distance. This results in

20,151 snippets that do not pass the metamorphic tests (27.6%).

Finally, the Wilcoxon rank-sum test revealed that there is a

statistically significant (p-value<0.01) difference in the BLEU-

Scores achieved by CodeBERT for the code snippets with

changes between pre- and post-transformations.

Results for RQ2. We applied the Friedman test and the post-

hoc Nemenyi procedure to analyze the impact of the different

MTs on the BLEU-Score. With a p-value<0.01, the Friedman

test indicates a statistical difference across the different types of

MTs. The results of the post-hoc Nemenyi test are reported in

Figure 3. From the ranking, we can see that the most impactful

transformations are MT-UVR and MT-UVP, while MT-IF and

MT-NE are the least impactful on the BLEU-Score. In terms

of significance, we can conclude that MT-UVP is statistically

more impactful than the other MTs.

VI. DISCUSSION

We presented an effective approach for testing the robustness

of a model towards metamorphic transformations on source

code. According to the empirical results, our approach is

capable of producing significant changes in the summaries

generated by CodeBERT, highlighting potential weaknesses

in the model as it does not satisfy metamorphic relations. In

Friedman: 0.000 (Ha: Different) 
 Critical distance: 0.088

Mean ranks

MT UVP  3.93
MT UVR  3.97

MT RER + MT UVR  3.98
MT REP + MT UVP  3.99

MT IF + MT NE  4.03
MT NE  4.04
MT IF  4.05

3.90 3.95 4.00 4.05 4.10

Figure 3. Results of the Friedman test and Nemenyi post-hoc procedure for
different MTs.

other words, slightly different variants of the same program can

lead to significantly different results. While in this paper we

focus on the Code-To-Text tasks of CodeBERT, we expect the

found implications to hold true for other down-stream tasks as

well. This can be considered a call-to-arms for researchers and

practitioners to test machine learning models trained on source

code using metamorphic testing in addition to the traditional

performance metric (e.g., accuracy). We envision that a handful

robustness-criteria are defined for the next generation of ML-

based program analysis solutions, documented and tested using

metamorphic transformations. We encourage reviewers of future

research to perform sanity checks on newly published models

and add robustness as a mandatory attribute of being SOTA.

LAMPION can also be used to increase the size of the test-set

by generating new program variants, without requiring human

labeling. This could be potentially beneficial for SE tasks where

labeling data is very expensive.

VII. CONCLUSION

This paper introduces metamorphic relations to test ML-

models program analysis solutions. Using this technology, our

objective is to gain further information on the model’s behavior

apart from the performance metric (e.g., accuracy). To achieve

this, we presented a generic approach (LAMPION) and applied

it in a case study on CodeBERT’s Code-To-Text tasks. To

evaluate the case study, we perform various statistical tests to

prove or disprove changes in the resulting performance metric.

Our approach and framework can empower experts and lay-

men alike to assess the robustness of their models and provide

additional tests on quality. We tried to keep the approach 1

lightweight in concept, 2 expendable in implementation (due

to plug-in MTs),

3 independent of the task (any language and quality metric).

While our initial implementation is in Java, we expect that

a re-implementation for any language is an easy task and the

statistical analysis can be reused for most experiments.

VIII. ONLINE RESOURCES

The code for a sample metamorphic transformer, the grid

experiment and the evaluation can be found on Github under

the Lampion repository1. The model,cleaned test-set and post-

transformation datasets can be found on SurfDrive2.

1https://github.com/ciselab/Lampion
2https://surfdrive.surf.nl/files/index.php/f/8713322177
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