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Abstract—Software systems often record important runtime
information in system logs for troubleshooting purposes. There
have been many studies that use log data to construct machine
learning models for detecting system anomalies. Through our
empirical study, we find that existing log-based anomaly detec-
tion approaches are significantly affected by log parsing errors
that are introduced by 1) OOV (out-of-vocabulary) words, and
2) semantic misunderstandings. The log parsing errors could
cause the loss of important information for anomaly detection.
To address the limitations of existing methods, we propose
NeuralLog, a novel log-based anomaly detection approach that
does not require log parsing. NeuralLog extracts the semantic
meaning of raw log messages and represents them as semantic
vectors. These representation vectors are then used to detect
anomalies through a Transformer-based classification model,
which can capture the contextual information from log sequences.
Our experimental results show that the proposed approach can
effectively understand the semantic meaning of log messages and
achieve accurate anomaly detection results. Overall, NeuralLog
achieves F1-scores greater than 0.95 on four public datasets,
outperforming the existing approaches.

Index Terms—Anomaly Detection, Log Analysis, Log Parsing,
Deep Learning

I. INTRODUCTION

High availability and reliability are essential for large-
scale software-intensive systems [1], [2]. With the increasing
complexity and scale of systems, anomalies have become
inevitable. A small problem in the system could lead to perfor-
mance degradation, data corruption, and even a significant loss
of customers and revenue. Anomaly detection is, therefore,
necessary for the quality assurance of complex software-
intensive systems.

Software-intensive systems often generate console logs to
record system states and critical events at runtime. Engineers
can utilize log data to understand the system status, detect
the anomalies, and identify the root causes. As the amount
of logs could be huge, anomaly detection based on manual
analysis of logs is time-consuming and error-prone. Over
the years, many data-driven methods have been proposed to
automatically detect anomalies by analyzing log data [3], [4],
[5], [6], [7], [8], [9]. Machine learning-based methods (such
as Logistic Regression [10], Support Vector Machine [6],
Invariant Mining [11]) extract log events and adopt supervised
or unsupervised learning to detect the occurrences of system
anomalies.

Recently, some deep learning-based approaches have been
proposed. For example, LogRobust [8] and LogAnomaly [12]
adopt Word2vec model [13] to obtain embedding vectors of
log events, then applied an LSTM model to detect anomalies.

†Hongyu Zhang is the corresponding author.

However, the existing approaches rely on log parsing to
preprocess semi-structured log data. Log parsers remove the
variable part from log messages and retain the constant part
to obtain log events. To investigate the inaccuracy of log
parsing, we have performed an empirical study on real-world
log data. We find that existing log parsers produce a noticeable
number of parsing errors, which directly downgrade anomaly
detection performance. The log parsing errors are mainly due
to the following two reasons: 1) The logging statements could
frequently change during software evolution, resulting in new
log events that were not seen in training data; 2) Valuable
information could be lost while parsing log messages into log
events, which may lead to misunderstanding of the semantic
meaning of log messages. Our empirical study also finds
that the log parsing errors can affect the follow-up anomaly
detection task and decrease the detection accuracy.

To overcome the above-mentioned limitations of existing
approaches, we propose NeuralLog, a novel anomaly de-
tection approach, which can achieve effective and efficient
anomaly detection on real-world datasets. Unlike the existing
approaches, NeuralLog does not rely on any log parsing, thus
preventing the loss of information due to log parsing errors.
Each log message is directly transformed into a semantic vec-
tor, which is capable of capturing both semantic information
embedded in log messages and the relationship between log
messages. Then, taking a sequence of semantic vectors as
input, a Transformer-based classification model is applied to
detect anomalies. The Transformer-based model with multi-
head self-attention mechanism [14] can learn the contextual
information from the log sequences in the form of vector
representations. As a result, NeuralLog is effective for log-
based anomaly detection.

We have evaluated the proposed approach using four public
datasets. The experimental results show that NeuralLog can
understand the semantic meaning of log data and adequately
handle OOV words. It achieves high F1-scores (all greater
than 0.95) for anomaly detection and outperforms the existing
log-based anomaly detection approaches.

The main contributions of this paper are as follows:
1) We perform an empirical study of log parsing errors.

We find that existing log-based anomaly detection ap-
proaches are adversely affected by the log parsing errors
introduced by the OOV words and semantic misunder-
standing.

2) We propose NeuralLog, a novel deep learning-based
approach that can detect system anomalies without log
parsing. NeuralLog utilizes BERT, a widely-used pre-
trained language representation, to encode the semantic
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meaning of log messages.
3) We have evaluated NeuralLog using public datasets.

The results confirm the effectiveness of NeuralLog for
representing log messages and detecting anomalies.

II. BACKGROUND

A. Log Data

Large and complex software-intensive systems often pro-
duce a large amount of log data for troubleshooting purposes
during system operation. Log data records the system’s events
and internal states during runtime. By analyzing logs, oper-
ators can better understand systems’ status and diagnose the
system when a failure occurs.

  

Fig. 1. An Example of HDFS Logs and Parsed Results

Figure 1 shows a snippet of raw logs generated by HDFS
(Hadoop Distributed File System). The raw log messages
are semi-structured texts, which contain header and content.
The header is determined by the logging framework and
includes information such as timestamp, verbosity level (e.g.,
WARN/INFO), and component [15]. The log content consists
of a constant part (keywords that reveal the event template)
and a variable part (parameters that carry dynamic runtime
information). Log parsing automatically converts each log
message into a specific event template by removing parameters
and keeping the keywords. The log events can be grouped into
log sequences (i.e., series of log events that record specific
execution flows) according to sessions or fixed/sliding time
windows [16].

B. Log Parsing Methods

Log parsing automatically converts each log message into a
specific event template by removing parameters and keeping
the keywords. For example, the log template “∗ Served block
∗ to ∗” can be extracted from the first log message in Figure
1. Here, “∗” denotes the position of a parameter.

There are many log parsing techniques, including frequent
pattern mining [17], [18], [19], clustering [20], [21], [22],
language modeling [23], heuristics [24], [25], [26], etc. The
heuristics-based approaches make use of the characteristics
of logs and have been found to perform better than other
techniques in terms of accuracy and time efficiency [15].
In this study, we evaluate four top-ranked parsers include

Drain [24], AEL [25], IPLoM [26] and Spell [27]. They
utilize the characteristics of tokens (e.g., occurrences, po-
sition, relation, etc.) and special structures (e.g., a tree) to
represent log messages and extract common templates. Drain
applies a fixed-depth tree structure to represent log messages
and extracts common templates effectively. Spell utilizes the
longest common subsequence algorithm to parse logs in a
stream manner. AEL separates log messages into multiple
groups by comparing the occurrences between constants and
variables. IPLoM employs an iterative partitioning strategy,
which partitions log messages into groups by message length,
token position, and mapping relation. These log parsers are
widely used in existing studies and have proven their efficiency
on real-world datasets [15], [16], [28], [29].

C. Log-based Anomaly Detection

Over the years, many log-based anomaly detection ap-
proaches have been proposed. Some of them are based on
unsupervised learning methods, which require only unlabeled
data to train. For example, Xu et al. [7] employed Princi-
pal Component Analysis (PCA) to generate two subspaces
(normal space and anomaly space) of log count vectors. If
a log sequence has its log count vector far from the normal
space, it is considered an anomaly. IM [11] and ADR [4]
discover the linear relationships among log events from log
count vectors. Those log sequences that violate the relationship
are considered anomalies. There are also many supervised
anomaly detection approaches. For example, [30], [6], [10]
represent log sequences as log count vectors, then applied
Support Vector Machine (SVM), Logistic Regression (LR),
and Decision Tree algorithm to detect anomalies, respectively.
These approaches have many common characteristics. They all
require a log parser to preprocess and extract log templates
from log messages. Then, the occurrences of log templates
are counted, resulting in log count vectors. Finally, a machine
learning model is constructed to detect anomalies. Figure 2
shows an example of log sequence and log count vectors from
log templatesproduced within Drain [24].

 

 

  

Log Sequence #3 

1 * Served block * to * 

2 * Served block * to * 

3 * Got exception while serving * to * 

…  
 

Log Sequence #2 

1 * Served block * to * 

2 * Served block * to * 

3 * Got exception while serving * to * 

…  
 

Log Sequence #1 

 
 

Count Vector #3 

[4, 2, 0, …, 3] 

 

Count Vector #2 

[4, 2, 0, …, 3] 

 

Count Vector #1 

 

Fig. 2. An Example of Log Sequence, and Log Count Vector

In recent years, many deep learning-based models have
been proposed to analyze log data and detect anomalies [5],
[12], [8]. For example, DeepLog [5] first applies the Spell
[27] parser to extract log templates. Then, it leverages the
indexes of log templates and inputs them to an LSTM model
to predict the next log templates. Finally, DeepLog detects
anomalies by determining whether or not the incoming log
templates are unexpected. LogAnomaly [12] uses log count
vector to detect the anomalies reflected by anomalous log
event numbers. It proposes a synonyms and antonyms based



method to represent the words in log templates. LogRobust [8]
incorporates a pre-trained Word2vec model, namely FastText
[31], and combines with TF-IDF weight [32] for learning the
representation vectors of log templates, which are generated
by Drain [24]. Then, these vectors input an Attention-based
Bi-LSTM model to detect anomalies. Due to the imperfection
of log parsing, the above methods tend to the lose semantic
meaning of log messages, thus leading to inaccurate detection
results.

III. AN EMPIRICAL STUDY OF LOG PARSING ERRORS

In this section, we describe an empirical study on the
problem of existing log parsers and their impact on log-
based anomaly detection. We use two public datasets in our
study, namely Blue Gene/L (BGL) [33], [34] and Thunderbird
[33], [34]. The datasets are collected between 2004 and 2006
from real-world supercomputing systems [33] and consist of
14,672,653 log messages in total, among which 353,394 log
messages are manually labeled as anomalies.

A. Log Parsing Errors Introduced by OOV Words

During development and maintenance, developers can add
new log statements to source code and modify the content of
existing log statements. Besides, runtime information can be
added to log messages as parameters to record system status.
As a consequence, new words, i.e., out-of-vocabulary (OOV)
words, frequently appear in log data. For example, for a log
message “memory manager address parity error” in BGL,
if the word “parity” did not appear in historical logs, it is
an OOV word. To determine OOV words, we first sort log
messages by the timestamps of logs and leverage the front
P% (according to the timestamps of logs) as the training data
and the rest as the testing data. Then, we split each training log
message into a set of tokens by the whitespace character and
build a vocabulary from these tokens. OOV words are those
words in testing data that do not exist in the vocabulary. In
this section, we increase the percentages of training data from
20% to 80%. Then we calculate the proportion of OOV words
in all the splits.

To facilitate understanding, we use the BGL data at the
60/40 splitting (the first 60% of the BGL dataset is used for
training, and the rest is for testing) to explain in detail the
analysis of OOV words. The training set contains 153,786
unique words, and the testing set contains 384,730 unique
words. Among the unique words in the testing set, 362,123
words (94.12%) are unseen in the training set. These OOV
words only concentrate in a small subset of logs (i.e., 8.51%
of the testing set, which is 160,403 out of 1,885,398 log
messages). These OOV words result in 1,304 unseen log
events (i.e., log templates with OOV words) in the testing
set, accounting for 86.59% of the total number of log events
in the testing set.

Figure 3 shows the percentages of OOV words in testing
data when the percentages of training data increase from
20% to 80% on BGL and Thunderbird datasets. On the BGL
dataset, there are always more than 80% of words in the testing

set that are unseen in the training set. On the Thunderbird
dataset, with the growth of training data, the proportion of
OOV words in the testing set is gradually decreasing. However,
when we use 80% Thunderbird logs to train the model, we still
find 30.4% of OOV words in the testing set.
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Fig. 3. Analysis of OOV words in log messages in public datasets

Next, we evaluate the number of log messages (log lines)
and log templates that contain OOV words. The percentage of
log messages containing OOV words is shown in Figure 4(a).
It can be seen that the percentage of log messages containing
OOV words in the testing set of both BGL and Thunderbird
datasets is small. When we use 80% logs to train the model,
we find only 6.7% and 1.7% log messages containing OOV
words in the testing set of the BGL and Thunderbird dataset,
respectively.
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(a) Log messages with OOV words
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(b) Log templates with OOV words

Fig. 4. Analysis of log with OOV words

Figure 4(b) shows the percentages of log templates (pro-
duced by Drain [24]) that contains OOV words on BGL
and Thunderbird datasets, as the percentage of training data
increases from 20% to 80%. We observe that all testing sets
have log templates with OOV words, even when trained with
80% of the data. The proportion of log templates containing
OOV words on the BGL dataset is always more than 80%, no
matter how much data is used for training. The percentage of
templates containing OOV words on the Thunderbird dataset
decreases with the growth of training data, but still, more than
60% when 80% of data is trained.

The results show that a small number of log messages
containing OOV words can produce many unseen log events
in the testing set. There are three main reasons for this finding:



• Many log events only appear during a specific period [5].
For example, there are 842 events that only appear in the
last 20% of logs, in the 80/20 splitting.

• The distribution of log events is imbalanced. For exam-
ple, the event “generating ∗” appears in 1,706,751 log
messages (35.95% of the dataset), while others such as
“memory manager ∗ buffer ∗” only appear less than 100
times.

• OOV words can cause log parsing errors and lead to many
extra log events. These extra log events usually appear a
few times but still make up a majority of log templates.
For example, 1,165 log events only appear once in the
BGL dataset.

Our finding indicates that anomaly detection methods based
only on log events could lead to many inaccurate detection
results. For example, SVM [30] and LR [6], which transform
log sequences into log count vectors, cannot take new log
events as input because the dimension of log count vectors
is fixed (i.e., the number of original log events). Moreover,
DeepLog [5], using the indexes of log templates to predict
the next log event, considers all new log events as anomalies
because they cannot be predicted by the model.

B. Log Parsing Errors Introduced by Semantic Misunder-
standing

We identify two main cases of parsing errors that are
introduced by semantic misunderstanding:

• Case 1: Misidentifying parameters as keywords.
• Case 2: Misidentifying keywords as parameters.

      Case 1: 

 

 

 

 

       Case 2: 

 

 

 

 

 

 

 

  

- Parsing results: 
L3 ecc status register: 00200000             → L3 ecc status register: * 
L3 global control register: 0x001249f0  → L3 * control register: * 
- Ground truth Log Template: 
L3 * * register: * 

 

- Parsing results: 
machine check enable       →     machine check ∗ 
machine check interrupt   →     machine check ∗ 
- Ground truth Log Templates: 
machine check enable 
machine check interrupt 

 

Fig. 5. Examples of Log Parsing Error (Drain)

For Case 1, the parameters in log messages are misidentified
as keywords and included in the log templates produced by the
log parsers, thus leading to many extra log events. We compare
the parsed template of each log message with the ground truth
of the BGL dataset. If a template contains more keywords than
the ground truth, it is considered wrongly parsed and an extra
log event. The two log messages in Case 1 in Figure 5 only
refer to one log template but are parsed into two different log
templates. Figure 6 shows the percentages of extra log events
produced by the four log parsers on two datasets. For example,
there are about 80% extra log events on the BGL dataset and
72% extra log events on the Thunderbird dataset using Drain.
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Fig. 6. Percentages of extra log events produced by four log parsers

For Case 2, some essential keywords in log messages
could be removed after log parsing, resulting in different log
messages being parsed into one log event. Figure 5 shows an
example of this case. Two different log messages are parsed
into the same log event “machine check ∗”. However, one
indicates a normal behavior (i.e. “machine check enable”),
while the other indicates a system anomaly (i.e., “machine
check interrupt”). The errors of this type make the detection
model difficult to distinguish between normal or abnormal
logs based only on log events. Figure 7 shows examples of
Case 2 parsing errors introduced by the four log parsers. Each
example shows one normal log and one abnormal log which
are parsed into the same log event. Valuable information such
as the reason for login failure (i.e., Figure 7(a)) is missing
from log events and leads to many wrong detection results.

�

�

�

�

- Anomaly: ciod: LOGIN chdir(/p/gb1/stel-
la/RAPTOR/2183) failed: Input/output error
- Normal: ciod: LOGIN chdir(/home/berts-
ch2/src/bgl hello) failed: Permission denied
- Parsed event: ciod: LOGIN ∗ failed: ∗ ∗

(a) Errors introduced by Drain

�

�

�

�

- Anomaly: mptscsih: ioc0: attempting task
abort! (sc=00000101bfc7a480)
- Normal: mptscsih: ioc0: task abort: SUC-
CESS (sc=00000101bfc7a480)
- Parsed event: mptscsih ioc0 ∗ ∗ ∗ sc ∗

(b) Errors introduced by Spell

�

�

�

�

- Anomaly: floating point unavailable inter-
rupt
- Normal: floating point instr. enabled.....1

- Parsed event: floating point ∗ ∗
(c) Errors introduced by AEL

�

�

�

�

- Anomaly: ciod: Error creating node map
from file map.dat: No child processes
- Normal: ciod: Error creating node map
from file map.dat: Bad file descriptor
- Parsed event: ciod Error creating node map
from file ∗ ∗ ∗ ∗
(d) Errors introduced by IPLoM

Fig. 7. Examples of Valuable Information Removed by Log Parser

Table I shows examples of wrongly parsed log templates by
the Drain parser [24]. For instance, on the BGL dataset, there
are 6,541 log messages that have the template “floating point
∗ ∗”. However, only log messages in the form of “floating
point unavailable interrupt” are labeled as anomalies, while
others (such as “floating point instr. enabled” or “floating
point alignment exceptions”) indicate normal system behavior.
Similarly, Drain also produces 899 log messages that have the
log templates indicating both normal and abnormal states on
the Thunderbird dataset.

We also observe similar results for other log parsers. On
BGL, the numbers of misidentified log messages produced
by Spell, AEL, and IPLoM are 58,228, 20,154, and 31,298,



respectively. On Thunderbird, the numbers of misidentified
log messages produced by Spell, AEL, and IPLoM are 3,851,
1,463, and 5,687, respectively.

TABLE I
EXAMPLES OF LOG PARSING ERRORS INTRODUCED BY DRAIN

#Anom. Log Template Occu.

BGL 348,460

floating point ∗ ∗ 6,541
machine check ∗ 6,594
ciod: Error creating node map from file ∗ ∗ ∗ ∗ 2,952
ciod: LOGIN ∗ failed: ∗ ∗ 1,289

Thunderbird 4,934 mptscsih: ioc0: attempting ∗ ∗ ∗ 771
EXT3-fs error (device ∗ ∗ ∗ ∗ ∗ aborted) 121
Out of Memory: Killed process ∗ ∗ 7

Note: #Anom. denotes the number of anomalies. Occu. denotes the number
of occurrences of the log template.

C. The Impact of Log Parsing Errors on Anomaly Detection

The existing approaches share a common process: they all
utilize a log parser to parse the log messages into log events
(i.e., the templates of log messages), construct log sequences,
and then build unsupervised or supervised machine learning
models to detect anomalies. The existing approaches can be
adversely affected by the log parsing errors introduced by the
OOV words and semantic misunderstanding.

In this section, we evaluate the impact of log parsing errors
on two representative anomaly detection methods SVM-based
method [30], and LogRobust [8]. SVM represents those ML-
based approaches that use the log count vectors as input.
LogRobust represents recent DL-based approaches that utilize
the semantic vectors of log templates as input. They both
use a log parser to generate a set of log events. SVM-
based method [30] represents log sequences as log count
vectors and then constructs a hyperplane to separate normal
and abnormal samples in a high-dimension space. LogRobust
[8] incorporates a pre-trained Word2vec model [31] to learn
the semantic vectors of log templates instead of counting
log events’ occurrences. Using the Word2vec model allows
LogRobust to discover the semantic relationship between log
events and handle the instability of log data.

Figure 8 shows the results of the SVM-based method and
LogRobust with four different log parsers (i.e., Drain [24],
Spell [27], AEL [25], and IPLoM [26]). We observe that
the performance of current anomaly detection methods is
affected by the accuracy of log parsing, and different log
parsers could lead to different results. SVM achieves better
results when using Drain [24] and AEL [25] since these
parsers produce a smaller amount of inaccurate log events,
as discussed in Section III-B. Figure 8(a) and Figure 8(c)
show that SVM with Drain achieves an F1-score of 0.46 and
0.50 on BGL and Thunderbird datasets, respectively. While
SVM with Spell only produces F1-scores of 0.29 on the
BGL dataset and 0.17 on the Thunderbird dataset. LogRobust
can achieve better results than SVM since LogRobust can
identify unstable log events with similar semantic meaning
through semantic vectorization. Still, LogRobust suffers from
the log parsing errors caused by semantic misunderstanding
(see Section III-B) and achieves F1-scores of less than 0.8 on
both datasets.
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(b) LogRobust on BGL
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(c) SVM on Thunderbird
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(d) LogRobust on Thunderbird

Fig. 8. Results of anomaly detection with different log parsers on BGL and
Thunderbird datasets

Next, we manually fix the errors produced by log parsing
methods on the BGL dataset, then apply SVM and LogRobust
to confirm whether or not the accuracy of anomaly detection
methods is improved if log parsing performs more accurately.
We leverage the ground truth log templates for the BGL dataset
from [35]. For each wrongly parsed log message, we match it
with the most similar log template in the ground truth. After
the fixing process, the outputs produced by the log parser are
actually the ground truth. Also, the outputs of different log
parsers are the same after fixing (as they are all the same
as the ground truth). Figure 9 shows the accuracy (measured
in terms of F-measure) of each individual parser before and
after fixing the log parsing errors. We can see that both SVM
and LogRobust perform better when the log parsing errors are
fixed (on average, 25% improvement for LogRobust and 29%
improvement for SVM).

Drain Spell AEL IPLoM
0

0.2

0.4

0.6

0.8

1

0.46

0.29

0.47 0.46

0.54 0.54 0.54 0.54

F-
m

ea
su

re

Before After

(a) Accuracy of SVM

Drain Spell AEL IPLoM
0

0.2

0.4

0.6

0.8

1

0.76 0.75 0.74
0.67

0.91 0.91 0.91 0.91

F-
m

ea
su

re

Before After

(b) Accuracy of LogRobust

Fig. 9. The accuracy of anomaly detection before and after fixing the log
parsing errors on the BGL dataset

Overall, the results show that log parsing accuracy affects
the performance of anomaly detection. Existing log parsing
methods cannot handle well the OOV words in new logs,



thus losing semantic information while detecting anomalies.
Furthermore, current log parsing methods could produce er-
rors due to semantic misunderstanding. Therefore, existing
anomaly detection methods that leverage log events are unable
to achieve satisfying results due to the imperfections of log
parsing methods.

IV. NEURALLOG: LOG-BASED ANOMALY DETECTION
WITHOUT LOG PARSING

To overcome the limitation of existing approaches, we
propose NeuralLog, a new log-based anomaly detection ap-
proach that directly uses raw log messages to detect anomalies.
The overview of the proposed approach is shown in Figure
10. Overall, NeuralLog consists of three steps: preprocessing
(Section IV-A), neural representation (Section IV-B), and
transformer-based classification (Section IV-C). The first step
is log preprocessing. After that, each log message is encoded
into a semantic vector by using BERT. In this way, our
approach can prevent the loss of valuable information from log
messages. Finally, we leverage the Transformer [14] model to
detect the anomalies. 
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𝑖. 081109 205931 13 INFO dfs.DataBlockScanner: 

Verification succeeded for blk_4980916519894289 
… 

Contents 
… 
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verification succeeded for  
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Remove number, 
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2. Neural Representation 

Contents 
… 

𝑖. info dfs datablockscanner  

verification succeeded for  

… 

Semantic Vectors 
… 

𝑥𝑖. [-0.160, -0.590, 0.206, 

0.166, ...]  
… 

WordPiece Tokenization 

BERT Encoder 

 

 

3. Transformer-based Classification 

(𝑥1, 𝑥2, … , 𝑥𝑛) 

Transformer 

Encoder 

Anomaly? 

Pooling & Dropout 

Linear 

Softmax 

(𝑝1, 𝑝2, … , 𝑝𝑛) 

Positional 
Embeddings 

Train Predict 

Fig. 10. An Overview of NeuralLog

A. Preprocessing

Preprocessing log data is the first step for building our
model. In this step, we first tokenize a log message into
a set of word tokens. We use common delimiters in the
logging system (i.e., white space, colon, comma, etc.) to split
a log message. Then, every capital letter is converted to a
lower letter, and we remove all non-character tokens from the
word set. These non-characters contain operators, punctuation
marks, and number digits. This type of tokens is removed
since it usually represents variables in the log message and
is not informative. As an example, the raw log message
“081109 205931 13 INFO dfs.DataBlockScanner: Verification
succeeded for blk -4980916519894289629” is first split into a
set of words based on common delimiters. Then non-character

tokens are excluded from the set. Finally, a set of words {info,
dfs, datablockscanner, verification, succeeded} is obtained.

B. Neural Representation

Each log message records a system event with its header
and message content. The message header contains fields
determined by the logging framework, such as component and
verbosity level. The message content written by developers
reflects a specific state of the system. Existing methods usually
analyze only message content and remove other information.
In this paper, NeuralLog uses all textual information such
as verbosity, component, and content to extract the semantic
meaning of log messages. In order to reserve semantic in-
formation and capture relationships among existing and new
log messages, the representation phase tries to represent log
messages in the vector format.

1) Subword Tokenization: Tokenization can be considered
as the first step to handle OOV words. In our work, we adopt
the WordPiece tokenization [36], [37], which is widely used
in many recent language modeling studies [38], [39], [40].

WordPiece includes all the characters and symbols into
its base vocabulary first. Instead of relying on the frequency
of the pairs, WordPiece chooses the one that maximizes the
training data’s likelihood. It trains a language model starting
from the base vocabulary and picks the pair with the highest
likelihood. This pair is added to the vocabulary, and the
language model is again trained on the new vocabulary. These
steps are repeated until the desired vocabulary is reached. For
example, the rare word “datablockscanner” is split into more
frequent subwords: {“data”, “block”, “scan”, “ner”}. In this
way, the number of OOV words is reduced and their meanings
are captured.

The reason we choose WordPiece is that it can effectively
handle the OOV words and reduce the vocabulary size. Com-
pared with other tokenization (chunking) approaches, Word-
Piece is more effective. For example, space/stemming/camel
case based tokenization strategies can lead to many OOV
words and a big vocabulary [41].

2) Log Message Representation: After preprocessing and
tokenization, NeuralLog transforms each log message into a
set of words and subwords. Conventionally, words of log con-
tent are further transformed into vectors by using Word2Vec
[42], then the representation vector of each sentence would
be calculated based on the word vectors. However, Word2Vec
produces the same embedding for the same word. In many
cases, a word can have different meanings based on its
position and context. BERT [38] is a recent deep learning
representation model that has been pre-trained on a huge
natural language corpus. In our work, we employ the feature
extraction function of pre-trained BERT to obtain the semantic
meaning of log messages.

More specifically, after tokenizing, the set of words and
subwords is passed to the BERT model and encoded into
a vector representation with a fixed dimension. NeuralLog
utilizes the BERT base model [43] that contains 12-layers of
transformer encoder and 768-hidden units of each transformer.



Each layer generates embeddings for each subword in a log
message. We use the word embeddings generated by the last
encoder layer of BERT in our work. Then, the embedding of a
log message is calculated as the average of its corresponding
word embeddings. As any word that does not occur in the
vocabulary (i.e., OOV words) is broken down into subwords,
BERT can learn the representation vector of those OOV
words based on the meaning of subword collections. Besides,
the positional embedding layer allows BERT to capture the
representation of a word based on its context in a log mes-
sage. BERT also contains self-attention mechanisms that can
effectively measure the importance of each word in a sentence.

C. Transformer-based Classification

To better understand the semantics of logs, we adopt
the transformer model [14], which has been introduced
to overcome the limitations of RNN-based models. Taking
the semantic vectors of log messages as input (i.e. X =
{x1, x2, . . . , xn}), we use a transformer encoder-based model
for anomaly detection. In this section, we briefly describe
the proposed transformer-based classification model, which
contains Positional Encoding and Transformer Encoder.

a) Positional Encoding: The order of a log sequence
conveys important information for the anomaly detection
task. BERT encoder represents a log message into a fixed-
dimensional vector where log messages with similar meanings
are closer to each other. However, those vectors do not
contain the relative position information of log messages in
a log sequence. Therefore, a sinusoidal encoder is applied to
generate an embedding pi using sin and cos functions for each
position i in the log sequence X [14]. Then, pi is added to the
semantic vector xi at position i, and xi + pi will be used to
feed the transformer-based model (see Figure 10 (Step 3)). In
this way, the model can learn the relative position information
of each log message in the sequence and can distinguish log
messages at different positions.

b) Transformer Encoder: This model is based on the
transformer architecture [14], which contains self-attention
layers followed by position-wise feed-forward layers. Given
an input X = {x1, x2, . . . , xn}, the positional embeddings are
added before it enters into the transformer. In the transformer
module, multi-head attention layers calculate the attention
score matrices for each log message with different attention
patterns. The attention score is calculated by training the query
and key matrices of the attention layers. Different attention
patterns are obtained with multi-head self-attention layers,
which enable the model to consider which attention score
is significant. The inter-layer features are connected into a
feed-forward network, which contains two fully connected
layers in order to reach the combination of different attention
scores. Then, the output of the transformer model is fed into
the pooling, dropout, and a fully connected layer. The class
probabilities, which identify normal/abnormal log sequences,
are calculated using the softmax classifier. The architecture of
the classification model is shown in Figure 10 (Step 3).

D. Anomaly Detection

Following the above steps, we can train a transformer-based
model for log-based anomaly detection. When a set of new log
messages arrives, NeuralLog firstly conducts preprocessing.
Then it transforms the new log messages into semantic vectors.
The log sequence, represented as a list of semantic vectors,
is fed into the trained model. Finally, the transformer-based
model can predict whether this log sequence is anomalous or
not.

V. EVALUATION

A. Experimental Design

1) Research Questions: In this section, we evaluate our ap-
proach by answering the following research questions (RQs):

RQ1: How effective is NeuralLog in log-based anomaly
detection?

RQ2: How effective is NeuralLog in understanding the
semantic meaning of log data?

RQ3: How effective is NeuralLog under different settings?
2) Datasets: In this paper, we evaluate NeuralLog on four

public datasets [44], namely HDFS, Blue Gene/L, Thunder-
bird, and Spirit. HDFS dataset [34], [7] contains 11,175,629
log messages collected from a Hadoop Distributed File System
on the Amazon EC2 platform. Each session identified by block
ID in the HDFS dataset is labeled as normal or abnormal. BGL
dataset [33], [34] contains 4,747,963 log messages collected
from the Blue Gene/L supercomputer at Lawrence Livermore
National Labs. Thunderbird and Spirit datasets [33] were col-
lected from two real-world supercomputers at Sandia National
Labs. Each log message in these datasets was manually labeled
as anomalous or not. In this experiment, we leverage 10
million continuous log messages from the Thunderbird dataset,
and 1GB log messages from the Spirit dataset, which were also
used in prior work [45]. The details of the datasets are shown
in Table II.

TABLE II
THE DETAILS OF LOG DATASETS

Category Size #Messages #Anomalies

HDFS Distributed system 1.5 G 11,175,629 16,838
Blue Gene /L Supercomputer 743 M 4,747,963 348,460
Thunderbird Supercomputer 1.4 G 10,000,000 4,934

Spirit Supercomputer 1.0 G 7,983,345 768,142

3) Implementation and Environment: In our experiments,
NeuralLog has one layer of the transformer encoder. The
number of attention heads is 12, and the size of the feed-
forward network that takes the output of the multi-head self-
attention mechanism is 2048. The Transformer-based model
of NeuralLog is trained using AdamW optimizer [46] with
the initial learning rate of 3e− 4. We set the mini-batch size
and the dropout rate to 64 and 0.1, respectively. We use the
cross-entropy as the loss function. We train the Transformer-
based model for a maximum of 20 epochs and perform early
stopping for five consecutive iterations.



We implement NeuralLog with Python 3.6 and Keras tool-
box and conduct experiments on a server with Windows Server
2012 R2, Intel Xeon E5-2609 CPU, 128GB RAM, and an
NVIDIA Tesla K40c.

4) Evaluation Metrics: To measure the effectiveness of
NeuralLog in anomaly detection, we use the Precision, Recall,
and F1-Score metrics. We calculate these metrics as follows:

• Precision: the percentage of correctly detected abnor-
mal log sequences amongst all detected abnormal log
sequences by the model. Precision = TP

TP+FP .
• Recall: the percentage of log sequences that are correctly

identified as anomalies over all real anomalies.
Recall = TP

TP+FN .
• F1-Score: the harmonic mean of Precision and Recall.

F1− score = 2∗Precision∗Recall
Precision+Recall

TP (True Positive) is the number of abnormal log sequences
the are correctly detected by the model. FP (False Positive) is
the number of normal log sequences that are wrongly identified
as anomalies. FN (False Negative) is the number of abnormal
log sequences that are not detected by the model.

B. RQ1: How effective is NeuralLog?

This RQ evaluates whether or not NeuralLog can work
effectively on public log datasets. For the HDFS dataset, we
construct log sequences by correlating log messages with the
same block ID, as the data is labeled by blocks. Then, we
randomly select 80% of log sequences for training, and the
rest of the dataset is used for testing. For BGL, Thunderbird,
and Spirit datasets, we first sort the log messages by time.
Then, we leverage the first 80% (according to the timestamps
of logs) log messages as the training set and the rest 20%
as the testing set. This design ensures that the testing data
contains new log messages previously unseen in the training
set. Following the previous work [47], [12], we apply a sliding
window with a length of 20 messages and a step size of 1
message to construct log sequences.

TABLE III
RESULTS OF DIFFERENT METHODS ON PUBLIC DATASETS

Dataset LR SVM IM LogRobust Log2Vec NeuralLog

P 0.99 0.99 1.00 0.98 0.94 0.96
HDFS R 0.92 0.94 0.88 1.00 0.94 1.00

F1 0.96 0.96 0.94 0.99 0.94 0.98

P 0.13 0.97 0.13 0.62 0.80 0.98
BGL R 0.93 0.30 0.30 0.96 0.98 0.98

F1 0.23 0.46 0.18 0.75 0.88 0.98

Thunder-
bird

P 0.46 0.34 - 0.61 0.74 0.93
R 0.91 0.91 - 0.78 0.94 1.00
F1 0.61 0.50 - 0.68 0.84 0.96

P 0.89 0.88 - 0.97 0.91 0.98
Spirit R 0.96 1.00 - 0.94 0.96 0.96

F1 0.92 0.93 - 0.95 0.95 0.97

’-’ denotes timeout (30 hours), P denotes Precision, R denotes Recall, and
F1 is the F1-score.

We compare the results of NeuralLog and five existing ap-
proaches, including Support Vector Machine-based approach
(SVM) [6], Logistic Regression-based approach (LR) [10],
Invariant Mining (IM) [11], LogRobust [8], and Log2Vec

[48]. Traditional approaches, such as SVM, LR, and IM,
transform the log sequences into log count vectors, then build
unsupervised or supervised machine learning models to detect
anomalies. In our work, we utilize Drain [24] to generate the
log events for SVM, LR, and IM. LogRobust incorporates a
pre-trained Word2vec model [31] to learn the representations
vector of log templates instead of counting the occurrences
of log events. LogRobust then leverages an Attention-based
Bi-LSTM to learn and detect anomalies. Log2Vec [48] accu-
rately extracts the semantic and syntax information from log
messages and leverages the Deeplog [5] model to improve
the accuracy of anomaly detection. We do not compare with
DeepLog [5] because previous studies already showed that
Log2Vec outperforms DeepLog [48]. Note that there are some
other recent state-of-the-art methods such as LogAnomaly
[12]. However, LogAnomaly [12] has no publicly available
implementation and requires operators’ domain knowledge
(to manually add domain-specific synonyms and antonyms).
Therefore, it is not experimentally compared in this paper.

The comparison results are shown in Table III. Overall,
NeuralLog achieves the best results on BGL, Thunderbird, and
Spirit datasets and comparable results on the HDFS dataset.
It is worth noting that the recall value achieved by NeuralLog
on the HDFS dataset is 1.00, which means that NeuralLog
can identify all anomalies captured by the dataset with high
precision. NeuralLog achieves the best F1-score of 0.98 on
the BGL dataset, 0.96 on the Thunderbird dataset, and 0.97
on the Spirit data.

As discussed in Section II-C, existing approaches (including
SVM, Decision Tree, and LR) are heavily affected by the
accuracy of log parsing. Besides, these approaches cannot
capture the semantic information of log messages. Therefore,
these approaches perform poorly on BGL and Thunderbird
datasets when the log parsing is inaccurate. They can achieve
a high F1-Score on the Spirit dataset since the parsing error
rate is only 0.1% for this dataset.

LogRobust [8], which encodes log templates into semantic
vectors using the FastText pre-trained model [31], cannot
work well on 2 out of 4 datasets. LogRobust shows a
lower F1-Score of 0.75 and 0.68 on BGL and Thunderbird
datasets, respectively. The main reason is that LogRobust
utilizes the Drain log parser [24] to obtain log templates.
As aforementioned in Section III-C, the Drain parser could
inaccurately parse a noticeable number of log messages on
BGL and Thunderbird datasets. Log2Vec [48] transforms raw
log messages into semantic vectors, thus can avoid errors from
log parsers. Besides, Log2Vec also adopts MIMICK [49], an
approach of inducing word embedding from character-level
features to handle OOV words to improve anomaly detection
performance. However, it is hard to extract contextual infor-
mation from characters to form meaningful words [50], [51],
[52]. Therefore, Log2Vec could not effectively handle some
domain-specific words, such as technical terms or entity names
[50], [51], [52]. Consequently, compared to NeuralLog that
uses subword-level feature to handle OOV words, Log2Vec
achieves lower F1-scores on BGL and Thunderbird datasets



(0.88 and 0.84, respectively).
We also evaluate the time efficiency of NeuralLog on the

four datasets. On average, it takes NeuralLog 14.3 minutes per
dataset to encode all log messages and 5.2 minutes to train a
detection model (20 epochs). The average time of the anomaly
detection phase is 3.1 milliseconds per log sequence. Baseline
methods that require log parsing take 102 minutes on average
for preprocessing. Log2Vec spends an average of 314 minutes
in the preprocessing phase. SVM and LR models can finish
training within 0.5∼0.7 minutes. LogRobust and Log2Vec can
train a detection model in an average of 2.2 and 13.1 minutes,
respectively. In the detection phase, it takes LogRobust 0.2
milliseconds per log sequence, and it is 26.3 milliseconds for
Log2Vec. NeuralLog can scale to large datasets. For example,
NeuralLog is able to handle the HDFS dataset, which contains
11,175,629 log messages. It took NeuraLog 19.7 minutes for
preprocessing, 7.2 minutes for training, and 0.6 minutes for
testing to perform the experiment for this RQ on the HDFS
dataset.

In summary, the experimental results confirm that Neural-
Log can work effectively and efficiently for log-based anomaly
detection.

C. RQ2: How effective is NeuralLog in understanding the
semantic meaning of log data?

In this section, we evaluate the ability of NeuralLog to
capture the semantic meaning of log messages. To this end,
we examine the effectiveness of the encoding component that
represents log messages as semantic vectors and the subword
tokenization component that handles OOV words.

In NeuralLog, we preprocess the raw log messages and
directly encode the preprocessed log messages into semantic
vectors. We compare NeuralLog with two variants:

• NeuralLog-Index: the indexes of log templates, obtained
by Drain [24], are simply encoded into numeric vectors
and passed to the Transformer model for anomaly detec-
tion. The rest of NeuralLog is kept the same.

• NeuralLog-Template: we utilize BERT to encode the
log templates produced by the Drain [24] into semantic
vectors. We then feed these semantic vectors to the
Transformer model for anomaly detection. The rest of
NeuralLog is kept the same.

Table IV shows the results of two variants of NeuralLog. We
can see that, on HDFS and Spirit dataset, these two variants
can achieve high F1-scores. The reason is that log parsers
perform well on these datasets. We find that the parsing error
rate on the Spirit dataset is only 0.1%. Besides, the HDFS
system records relatively simple operations with only 29 event
types, making log parsers easy to analyze. In contrast, the
results of the variants on BGL and Thunderbird datasets are
greatly affected by log parsing methods because they cannot
precisely represent the meaning of log messages, especially
when using the indexes of log templates. For example, the
model using log templates’ indexes and template embeddings
only achieve F1-scores of 0.46 and 0.90 on the BGL dataset,

which are much lower than the 0.98 F1-score achieved by
NeuralLog (which uses raw log messages).

TABLE IV
RESULTS OF DIFFERENT REPRESENTATION METHODS

Dataset Metric NeuralLog-
Index

NeuralLog-
Template NeuralLog

Precision 0.93 0.93 0.96
HDFS Recall 1.00 1.00 1.00

F1-Score 0.96 0.96 0.98

Precision 0.98 0.92 0.98
BGL Recall 0.30 0.88 0.98

F1-Score 0.46 0.90 0.98

Precision 0.58 0.89 0.93
Thunderbird Recall 0.98 0.91 1.00

F1-Score 0.73 0.90 0.96

Precision 0.96 0.93 0.98
Spirit Recall 0.95 0.95 0.96

F1-Score 0.95 0.94 0.97

We next evaluate whether or not NeuralLog can effectively
handle OOV words. NeuralLog utilizes WordPiece [36], [37]
to split an OOV word into a set of subwords and then extracts
the embedding of the OOV words based on its subwords. We
compare NeuralLog with two variants:

• NeuralLog-Word2Vec: We use a pre-trained Word2vec
model [31] to generate the embeddings of log messages.
Those words that do not exist in the vocabulary are
removed from log messages. Then, embedding vectors
are passed to the Transformer model to detect anomalies.

• NeuralLog-NoWordPiece: We exclude WordPiece tok-
enizer from the model (see Figure 10). Log messages,
after preprocessing, are directly input to the BERT model
to obtain the semantic vectors. These vectors are then
input to the Transformer model for anomaly detection. In
this way, OOV words that do not exist in the vocabulary
will be removed instead of broken down into subwords.

The experimental results are shown in Table V. NeuralLog
achieves the best performance since it utilizes WordPiece
[36], [37] to tokenize an OOV word into a set of subwords.
Therefore, the meaning of an unseen word is kept by its sub-
words. Both variants achieve lower F1-scores than NeuralLog
since they rely on a fixed-size vocabulary and cannot handle
the OOV words. For example, on the Thunderbird dataset,
F1-scores achieved by NeuralLog-Word2Vec and NeuralLog-
NoWordPiece are 0.80 and 0.90, respectively, which are much
lower than the F1-score of 0.96 achieved by NeuralLog.

In summary, our results show that NeuralLog can effec-
tively represent the semantic meaning of log messages. Since
NeuralLog uses raw log messages (after preprocessing) for
anomaly detection, the problem of inaccurate log parsing
can be avoided. The results also show that NeuralLog can
effectively learn the meaning of OOV words.

D. RQ3: Effectiveness of NeuralLog under different settings
NeuralLog utilizes BERT [38] as a pre-trained language

representation to understand the semantic meaning of log mes-
sages. In this RQ, we would like to evaluate the performance



TABLE V
RESULTS OF HANDLING OOV WORDS

Dataset Metric NeuralLog-
Word2Vec

NeuralLog-
NoWordPiece NeuralLog

Precision 0.94 0.94 0.96
HDFS Recall 0.93 1.00 1.00

F1-Score 0.94 0.97 0.98

Precision 0.94 0.93 0.98
BGL Recall 0.88 0.96 0.98

F1-Score 0.91 0.96 0.98

Precision 0.80 0.90 0.93
Thunderbird Recall 0.80 0.89 1.00

F1-Score 0.80 0.90 0.96

Precision 0.94 0.93 0.98
Spirit Recall 0.92 0.80 0.96

F1-Score 0.93 0.86 0.97

of NeuralLog with different pre-trained language models. We
replace the BERT model in NeuralLog with GPT2 [53] and
Roberta [54], and then perform experiments to evaluate the
performance of log-based anomaly detection. For GPT2 and
Roberta encoders, we use their base model with 12 layers,
12 attention heads, and 768 hidden units. Table VI shows the
results. We observe that these three pre-trained models can all
understand the semantic meaning of log messages and achieve
promising results. Overall, the performance of BERT is higher
than that of GPT2 and Roberta.

TABLE VI
RESULTS OF DIFFERENT PRE-TRAINED MODELS

Dataset Metric BERT [38] GPT2 [53] RoBERTa [54]

Precision 0.96 0.95 0.85
HDFS Recall 1.00 1.00 1.00

F1-Score 0.98 0.97 0.92

Precision 0.98 0.95 0.95
BGL Recall 0.98 0.99 0.90

F1-Score 0.98 0.97 0.93

Precision 0.93 0.85 0.78
Thunderbird Recall 1.00 0.91 1.00

F1-Score 0.96 0.88 0.88

Precision 0.98 0.88 0.84
Spirit Recall 0.96 0.95 0.90

F1-Score 0.97 0.91 0.87

The number of attention heads and the feed-forward net-
work size are two major hyperparameters of the Transformer
model used in NeuralLog. To evaluate the impact of these
parameters on detection accuracy, we vary their values and
perform experiments on the four datasets. The resulting F1-
scores are shown in Figure 11. We observe that reducing
the number of attention heads and feed-forward network size
can slightly hurt the performance of NeuralLog. For example,
NeuralLog achieves F1-scores ranging from 0.96 to 0.98 when
using 12 attention heads. These results are higher than those
obtained by using only one attention head (0.88 - 0.93).
Similarly, F1-scores achieved by a larger feed-forward network
are usually better. Overall, the Transformer model achieves
promising results with different hyperparameter values (most
F1-scores are above 0.90). We observe that the performance
is best when the number of attention heads is between 4 and
12, and the feed-forward network size is from 512 to 2048.
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Fig. 11. Results of different hyperparameter settings

VI. DISCUSSION

A. Why does NeuralLog Work?

There are three main reasons that make NeuralLog perform
better than the related approaches. First, NeuralLog directly
uses raw log messages instead of using a log parser in
preprocessing. Since there is no loss of information from
log messages, NeuralLog can precisely learn the semantic
representation of log messages, compared to other approaches
that depend on log parsing. Second, NeuralLog leverages
BERT [38] and WordPiece [36], [37] to capture the meaning of
OOV words at the subword level. Moreover, the transformer-
based classification model can also improve the performance
of anomaly detection. The transformer utilized by NeuralLog
can learn different sequence patterns in log messages and
determine which patterns are more relevant to anomalies.

Our study has demonstrated the effectiveness of Neural-
Log for anomaly detection. However, NeuralLog still has
limitations. Our approach is based on the learning of the
semantic meanings of log messages. Given a log message,
we first remove those words that contain numbers and special
characters. However, in some cases, the removed words may
carry important information, such as node ID, task ID, IP
address, or exit code. These information could be useful for
anomaly detection in certain scenarios. In our future work, we
will encode more log-related information and investigate their
impact on log-based anomaly detection.

B. Threats to Validity

We have identified the following major threats to validity.
Subject datasets. In this work, we use datasets collected

from the distributed system (i.e., HDFS) and supercomputer
(including BGL, Thunderbird, and Spirit). Although these
datasets all come from real-world systems and contain millions
of logs, the number of subject systems is still limited and do
not cover all the domains. In the future, we will evaluate the
proposed approach on more datasets collected from a wide
variety of systems.

Tool comparison. In our evaluation, we compared our
results with those of related approaches (i.e., SVM, LR, IM,
LogRobust, and Log2Vec). We adopt the implementation of
SVM, LR, and IM-based methods provided by Loglizer [55].
We adopt the implementation of LogRobust and Log2Vec



provided by their authors. We apply the default parameters
and settings (e.g., sliding window size, step size, etc.) used in
the previous work [28], [48], [8]. Still, the correctness of these
implementations could be a threat. To reduce this threat, we
make sure that the implementation of related work can produce
similar results as those reported in the original papers.

Noises in labeling. Our experiments are based on four
public datasets that are widely used by related work [47],
[4], [12], [56], [28]. These datasets are manually inspected
and labeled by engineers. Therefore, data noise (false posi-
tive/negatives) may be introduced during the manual labeling
process. Although we believe the amount of noise is small
(if it exists), we will investigate the data quality issue in our
future work.

VII. RELATED WORK

A. Log Parsing Errors

The log parsing accuracy highly influences the performance
of log mining [16]. Log parsers could produce inconsistent
results depend on the preprocessing step and the set of
parameters [16], [15]. The preprocessing step can further
improve log parsing accuracy [16] and despite the simplicity,
it still requires some additional manual work [15]. Zhu et al.
[15] benchmarked 13 automated log parsers on a total of 16
datasets. They found that Drain [24] is the most accurate log
parser, which attains high accuracy on 9 out of 16 datasets. The
other top-ranked log parsers include IPLoM [26], AEL [25]
and Spell [27]. They also found that some model parameters
need to be tuned manually, and some models did not scale
well with the volume of logs. He et al [16] evaluated four
widely used log parsers, including SLCT [57], IPLoM [26],
LKE [58] and LogSig [20].

In practice, new types of logs always appear [12], as OOV
words can be added to log templates and lead to many extra
log events, which will confuse the downstream tasks. Zhang
et al. [8] indicated that log data is unstable, meaning that
new log events often appear due to software evolution at its
lifetime. Their empirical study on a Microsoft online service
system shows that up to 30.3% logs are changed in the
latest version. In our work, we perform an empirical study
of the log parsing errors caused by the OOV problem and
semantic misunderstanding, and investigate their impact on the
performance of anomaly detection.

B. Log Representations

As described in Section II, most of the existing log-based
anomaly detection approaches use log parsers to obtain log
events and represent log messages as log events. Therefore,
the existing approaches suffer from the OOV problem and the
inaccurate log parsing. Recently, deep learning-based models
have been adopted into log-based anomaly detection. DeepLog
[5] applies Spell [27] to extract log events, then each log
event is assigned with an index. Since DeepLog represents log
messages as the indexes of log templates, it cannot prevent
semantic information loss and could produce many wrong
detection results [47], [48]. LogRobust [8] leverages Drain

[24] to obtain log templates, then encodes these templates
using the FastText [31] framework combined with TF-IDF
[32] weight. LogAnomaly [12] applies FT-Tree [59] to parse
log messages to templates, then proposes template2Vec to
encode these templates based on Word2Vec [42]. SwissLog
[47] obtains the semantic information of log messages af-
ter parsing log messages using a dictionary-based approach.
Due to imperfect log parsing, these methods could fail to
capture the semantic meaning of log messages and produce
incorrect results. Log2Vec [48] transforms raw log messages
into semantic vectors. As it utilizes character-level features,
it could not effectively handle some domain-specific words
[50], [51], [52]. Besides, Log2Vec adopts word2vec-based
model that ignores the contextual information in sentences
[47], thus it cannot fully understand the semantic meaning of
log messages. Nedelkoski et al. [56] proposed Logsy, which
is a classification-based method to learn log representations
in a way to distinguish between normal data from the target
system and anomaly samples from auxiliary log datasets. It
does not provide mechanism for handling OOV words in log
messages either.

To overcome the limitations of existing methods, we pro-
pose NeuralLog, a deep learning-based anomaly detection
approach using raw log data. NeuralLog utilizes WordPiece
tokenization to effectively handle OOV words that constantly
appear in log messages. It also leverages BERT, a widely
used pre-trained language representation, to understand the
semantic meaning and capture the contextual information
of raw log messages. Combined with a Transformer-based
classification model, NeuralLog achieves high accuracy on
anomaly detection. Furthermore, we only use log data from
the target systems and do not require any auxiliary data.

VIII. CONCLUSION

Log-based anomaly detection is important for improving
the availability and reliability of large-scale software systems.
Our empirical study shows that existing approaches suffer
from inaccurate log parsing and cannot handle OOV words
well. To overcome the limitations introduced by log parsing,
in this paper, we propose NeuralLog, a log-based anomaly
detection approach that does not require log parsing. Our
approach employs BERT encoder to capture the semantic
meaning of raw log messages. To better capture contextual
information from log sequences, we construct a Transformer-
based classification model. We have evaluated the proposed
approach using four public datasets. The experimental results
show that NeuralLog is effective and efficient for log-based
anomaly detection.

Our source code and experimental data are publicly avail-
able at https://github.com/vanhoanglepsa/NeuralLog.
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A. Bouziane, “A systematic literature review on automated log ab-
straction techniques,” Information and Software Technology, vol. 122,
p. 106276, 2020.

[30] Y. Liang, Y. Zhang, H. Xiong, and R. Sahoo, “Failure prediction in ibm
bluegene/l event logs,” in Seventh IEEE International Conference on
Data Mining (ICDM 2007). IEEE, 2007, pp. 583–588.

[31] A. Joulin, E. Grave, P. Bojanowski, M. Douze, H. Jégou, and T. Mikolov,
“Fasttext. zip: Compressing text classification models,” arXiv preprint
arXiv:1612.03651, 2016.

[32] G. Salton and C. Buckley, “Term-weighting approaches in automatic
text retrieval,” Information processing & management, vol. 24, no. 5,
pp. 513–523, 1988.

[33] A. Oliner and J. Stearley, “What supercomputers say: A study of five
system logs,” in 37th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN’07). IEEE, 2007, pp. 575–
584.

[34] S. He, J. Zhu, P. He, and M. R. Lyu, “Loghub: a large collection of
system log datasets towards automated log analytics,” arXiv preprint
arXiv:2008.06448, 2020.

[35] (2021) Logpai. [Online]. Available: https://github.com/logpai/logparser
[36] M. Schuster and K. Nakajima, “Japanese and korean voice search,” in

2012 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). IEEE, 2012, pp. 5149–5152.

[37] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey,
M. Krikun, Y. Cao, Q. Gao, K. Macherey et al., “Google’s neural
machine translation system: Bridging the gap between human and
machine translation,” arXiv preprint arXiv:1609.08144, 2016.

[38] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[39] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, “Distilbert, a distilled
version of bert: smaller, faster, cheaper and lighter,” arXiv preprint
arXiv:1910.01108, 2019.

[40] K. Clark, M.-T. Luong, Q. V. Le, and C. D. Manning, “Electra: Pre-
training text encoders as discriminators rather than generators,” arXiv
preprint arXiv:2003.10555, 2020.

[41] R.-M. Karampatsis, H. Babii, R. Robbes, C. Sutton, and A. Janes, “Big
code!= big vocabulary: Open-vocabulary models for source code,” in
2020 IEEE/ACM 42nd International Conference on Software Engineer-
ing (ICSE). IEEE, 2020, pp. 1073–1085.

[42] Q. Le and T. Mikolov, “Distributed representations of sentences and
documents,” in International conference on machine learning. PMLR,
2014, pp. 1188–1196.

[43] (2021) Bert pretrained models. [Online]. Available: https://github.com/
google-research/bert

[44] (2021) Loghub. [Online]. Available: https://github.com/logpai/loghub

https://github.com/logpai/logparser
https://github.com/google-research/bert
https://github.com/google-research/bert
https://github.com/logpai/loghub


[45] K. Yao, H. Li, W. Shang, and A. E. Hassan, “A study of the performance
of general compressors on log files,” Empirical Software Engineering,
vol. 25, no. 5, pp. 3043–3085, 2020.

[46] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,”
arXiv preprint arXiv:1711.05101, 2017.

[47] X. Li, P. Chen, L. Jing, Z. He, and G. Yu, “Swisslog: Robust and unified
deep learning based log anomaly detection for diverse faults,” in 2020
IEEE 31st International Symposium on Software Reliability Engineering
(ISSRE). IEEE, 2020, pp. 92–103.

[48] W. Meng, Y. Liu, Y. Huang, S. Zhang, F. Zaiter, B. Chen, and D. Pei,
“A semantic-aware representation framework for online log analysis,” in
2020 29th International Conference on Computer Communications and
Networks (ICCCN). IEEE, 2020, pp. 1–7.

[49] Y. Pinter, R. Guthrie, and J. Eisenstein, “Mimicking word embeddings
using subword rnns,” arXiv preprint arXiv:1707.06961, 2017.

[50] S. Sasaki, J. Suzuki, and K. Inui, “Subword-based compact reconstruc-
tion of word embeddings,” in Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short
Papers), 2019, pp. 3498–3508.

[51] J. Zhao, S. Mudgal, and Y. Liang, “Generalizing word embeddings using
bag of subwords,” arXiv preprint arXiv:1809.04259, 2018.

[52] Z. Hu, T. Chen, K.-W. Chang, and Y. Sun, “Few-shot representation
learning for out-of-vocabulary words,” arXiv preprint arXiv:1907.00505,
2019.

[53] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,
“Language models are unsupervised multitask learners,” OpenAI blog,
vol. 1, no. 8, p. 9, 2019.

[54] A. Conneau, K. Khandelwal, N. Goyal, V. Chaudhary, G. Wenzek,
F. Guzmán, E. Grave, M. Ott, L. Zettlemoyer, and V. Stoyanov, “Unsu-
pervised cross-lingual representation learning at scale,” arXiv preprint
arXiv:1911.02116, 2019.

[55] (2021) Loglizer. [Online]. Available: https://github.com/logpai/loglizer
[56] S. Nedelkoski, J. Bogatinovski, A. Acker, J. Cardoso, and O. Kao, “Self-

attentive classification-based anomaly detection in unstructured logs,”
arXiv preprint arXiv:2008.09340, 2020.

[57] R. Vaarandi, “A data clustering algorithm for mining patterns from event
logs,” in Proceedings of the 3rd IEEE Workshop on IP Operations &
Management (IPOM 2003)(IEEE Cat. No. 03EX764). Ieee, 2003, pp.
119–126.

[58] Q. Fu, J.-G. Lou, Y. Wang, and J. Li, “Execution anomaly detection
in distributed systems through unstructured log analysis,” in 2009 ninth
IEEE international conference on data mining. IEEE, 2009, pp. 149–
158.

[59] S. Zhang, W. Meng, J. Bu, S. Yang, Y. Liu, D. Pei, J. Xu, Y. Chen,
H. Dong, X. Qu et al., “Syslog processing for switch failure diagnosis
and prediction in datacenter networks,” in 2017 IEEE/ACM 25th Inter-
national Symposium on Quality of Service (IWQoS). IEEE, 2017, pp.
1–10.

https://github.com/logpai/loglizer

	I Introduction
	II Background
	II-A Log Data
	II-B Log Parsing Methods
	II-C Log-based Anomaly Detection

	III An Empirical Study of Log Parsing Errors
	III-A Log Parsing Errors Introduced by OOV Words
	III-B Log Parsing Errors Introduced by Semantic Misunderstanding
	III-C The Impact of Log Parsing Errors on Anomaly Detection

	IV NeuralLog: Log-based Anomaly Detection Without Log Parsing
	IV-A Preprocessing
	IV-B Neural Representation
	IV-B1 Subword Tokenization
	IV-B2 Log Message Representation

	IV-C Transformer-based Classification
	IV-D Anomaly Detection

	V Evaluation
	V-A Experimental Design
	V-A1 Research Questions
	V-A2 Datasets
	V-A3 Implementation and Environment
	V-A4 Evaluation Metrics

	V-B RQ1: How effective is NeuralLog?
	V-C RQ2: How effective is NeuralLog in understanding the semantic meaning of log data?
	V-D RQ3: Effectiveness of NeuralLog under different settings

	VI Discussion
	VI-A Why does NeuralLog Work?
	VI-B Threats to Validity

	VII Related Work
	VII-A Log Parsing Errors
	VII-B Log Representations

	VIII Conclusion
	References

