
COMEX: A Tool for Generating Customized Source
Code Representations

Debeshee Das∗§, Noble Saji Mathews∗§, Alex Mathai†,
Srikanth Tamilselvam†, Kranthi Sedamaki∗, Sridhar Chimalakonda∗ and Atul Kumar†

∗ Indian Institute of Technology Tirupati, India
† IBM Research, India

{debesheedas, elbonleon, alexmathai98, srikanthtamilselvam, skranthi4444, sridhar.chimalakonda, atulkumar}@gmail.com

Abstract—Learning effective representations of source code
is critical for any Machine Learning for Software Engineering
(ML4SE) system. Inspired by natural language processing, large
language models (LLMs) like Codex and CodeGen treat code as
generic sequences of text and are trained on huge corpora of code
data, achieving state of the art performance on several software
engineering (SE) tasks. However, valid source code, unlike natural
language, follows a strict structure and pattern governed by
the underlying grammar of the programming language. Current
LLMs do not exploit this property of the source code as they treat
code like a sequence of tokens and overlook key structural and
semantic properties of code that can be extracted from code-views
like the Control Flow Graph (CFG), Data Flow Graph (DFG),
Abstract Syntax Tree (AST), etc. Unfortunately, the process of
generating and integrating code-views for every programming
language is cumbersome and time consuming. To overcome this
barrier, we propose our tool COMEX - a framework that allows
researchers and developers to create and combine multiple code-
views which can be used by machine learning (ML) models for
various SE tasks. Some salient features of our tool are: (i) it works
directly on source code (which need not be compilable), (ii) it
currently supports Java and C#, (iii) it can analyze both method-
level snippets and program-level snippets by using both intra-
procedural and inter-procedural analysis, and (iv) it is easily
extendable to other languages as it is built on tree-sitter - a widely
used incremental parser that supports over 40 languages. We
believe this easy-to-use code-view generation and customization
tool will give impetus to research in source code representation
learning methods and ML4SE. The demonstration of our tool
can be found at https://youtu.be/GER6U87FVbU.

Index Terms—Representation Learning, Static Analysis

I. INTRODUCTION

Source code representation learning is the task of effectively
capturing useful syntactic and semantic information embedded
in source code [1]. It forms the backbone of ML pipelines for
various SE tasks such as code classification, bug prediction,
code clone detection and code summarization. Therefore,
representing source code for use in ML models, with minimal
loss of important information is an active research area [2]. It
is important to note that source code is different from natural
language as it follows an unambiguous structure and pattern,
usually adhering to a strict underlying grammar. Hence, while
creating representations for source code, it is important to
infuse information from this unique structural aspect. To
address this, many works including GraphCodeBERT [3] and

§Authors have contributed equally

GREAT [4] have explored leveraging code-views as a means to
learn source code representations. Unfortunately, the process
of generating code-views for multiple programming languages
and customizing them for various SE tasks is often a time
consuming process.

Most available tools are (a) positioned for analysis on com-
piled or compilable code (and not incomplete or uncompilable
source code), (b) are specific for a single language, and (c) are
not able to support both intra-procedural and inter-procedural
analysis. To address these concerns, we propose COMEX - a
framework that (a) works directly on source code to generate
and combine multiple code-views, (b) supports Java and C#
(with planned support for other languages) and (c) works
for both method-level and program-level snippets using intra-
procedural and inter-procedural analysis. Since it is based on a
single parser package (tree-sitter1), it can be extended to new
languages without additional dependencies.

As of today, most state-of-the-art models like CodeGen
[5] and Codex [6] treat source code like free flowing text.
Though this assumption helps simplify the required data pre-
processing, it loses out on many structural aspects of code.
Recently, works like NSG [7] have shown the benefits of
using code structure. NSG leverages weak supervision using a
syntax tree to generate full-length syntactically valid method
bodies. Their results showcase that using this technique, even
a small model (63 million parameters) can outperform LLMs
like Codex (12 billion parameters). To fuel research on similar
grounds, we hope that with this package, we have lowered the
entry barrier for researchers to easily integrate and leverage
code-views while learning source code representations.

II. RELATED WORK

Several ML4SE works leverage code-views such as the
AST [8], the CFG [9], the DFG [3], and their combinations
(CDFG [10]), to learn better code representations and improve
performance on downstream SE tasks [3]. Unfortunately, most
available tools that create such views are specific to a single
language. SOOT [11], a popular static analysis tool for Java,
requires the input Java code to be compilable and for all
definitions to be available. But many existing research datasets
are mostly method-level datasets with incomplete snippets

1https://tree-sitter.github.io/tree-sitter/

ar
X

iv
:2

30
7.

04
69

3v
1 

 [
cs

.S
E

] 
 1

0 
Ju

l 2
02

3

https://youtu.be/GER6U87FVbU
https://tree-sitter.github.io/tree-sitter/


Fig. 1. Architecture of COMEX

and definitions [12], [13]. Although python graphs [14], a
framework for generating program graphs for Python, provides
a composite “program graph” with combined information
from various typical code-views, it does not provide users
the flexibility to combine, reduce or customize the typical
code-views as supported by COMEX. Joern is an open-source
static analysis tool often used as a source for intermediate
graph representations of code [15]–[19] with support for Java,
Python, C, C++, etc., providing code-views without a means to
customize, combine, or easily extend to other languages. It has
limited support for inter-procedural control-flow and data-flow
analysis, and for interactive exploration and visualization2.
COMEX overcomes these limitations by providing support
for generation of code-views through static code analysis
even for non-compilable code both at function and program
level, supporting out-of-the-box composition of views and
easy extension to new languages without introducing further
language-specific parser dependencies.

III. THE COMEX PACKAGE

COMEX is open-sourced3 and also made available as a
Python package4. Additionally, we have exposed a command-
line-interface that allows users to conveniently specify the
input code-snippet, output format types (dot,json,png) and any
required customizations or combinations of different code-
views. An overview of COMEX is depicted in Fig. 1. As can
be seen, COMEX starts with a code snippet and user-defined

2https://galois.com/blog/2022/08/mate-interactive-program-analysis-with-
code-property-graphs/

3https://github.com/IBM/tree-sitter-codeviews
4https://pypi.org/project/comex/

configuration as input. The snippet is then passed through a
tree-sitter parser to generate a concrete syntax tree (CST).
An enhanced symbol table is created by processing the CST,
and both of these together are used to create a CFG. Using
the CFG, we implement reaching definition analysis (RDA) to
generate the DFG. It is important to note that for CFG and
DFG we implement both intra-procedural and inter-procedural
analysis. In what follows, we elaborate on the details of the
different code-views that we make available through COMEX.

A. Abstract Syntax Tree

We generate an AST by filtering some of the CST nodes
provided by tree-sitter. Trivial nodes such as semicolons (;)
and braces ({,}) are dropped, while non-trivial nodes such
as field access or method invocation are retained. We also
provide customizations for the AST like (i) a collapsed AST
and (ii) a minimized AST. A ‘collapsed AST’ is one where all
occurrences of the same variable are collapsed into one node.
Whereas, in a ‘minimized AST’, certain node types can be
‘blacklisted’ based on the purpose of the code representation.
The rationale behind these customizations is to provide smaller
ASTs without losing out on critical information. This results
in fewer AST nodes, thus reducing graph sizes which helps
make Graph Neural Network (GNN) [20] approaches to source
code representation learning computationally tractable.

B. Control-Flow Graph

Statement-level control-flow - Using the tree-sitter gener-
ated CST and the enhanced symbol table, we proceed to create
our CFG code-view. A typical CFG consists of a network of
basic blocks, where each block is a set of instructions that

https://galois.com/blog/2022/08/mate-interactive-program-analysis-with-code-property-graphs/
https://galois.com/blog/2022/08/mate-interactive-program-analysis-with-code-property-graphs/
https://github.com/IBM/tree-sitter-codeviews
https://pypi.org/project/comex/


Fig. 2. Statement-level CFG+DFG generated by COMEX for a code snippet with multiple functions showing inter-procedural control-flow and data-flow

execute sequentially with no intermediate control jump. Hence,
constructing a CFG is usually a two-step process, where we
first identify the basic blocks and then determine the control-
flow edges between them. However, in COMEX, we choose
to produce a statement-level CFG that maps the control-
flow between statements (and not blocks). This is useful for
certain ML-based approaches and for generating the DFG as
elaborated in (§III-C). The CFG for both Java and C# is a
statement-level approximation of control-flow.

Inter-procedural control-flow - We support inter-procedural
control-flow by statically analyzing all class definitions, object
reference declarations, abstraction and inheritance specifica-
tions, method and constructor signatures and overloading. Fig.
2 shows a code snippet with two class definitions, ClassA (A)
and ClassB (B), apart from the Main class (C). The CFG
edges are highlighted in red. The diagram depicts the change
of control-flow during object instantiation to the corresponding
class definition via “constructor call” edges D (29 → 1)
and E (30 → 6). As an explicit constructor is available
for ClassB, the control flows through the constructor before
returning to the site of instantiation via the “class return” edge
F (8 → 30) . In case of method or constructor overloading, the
function signatures are compared to determine the control-flow
edges. When methods are called on object references, they
are linked with the corresponding definition by matching the
function signatures and available static references within the
corresponding class. Nested function calls are also handled by
tracking and mapping back all statically available signatures

of function calls and their definitions.

C. Data-Flow Graph

Using the CFG generated in (§III-B), we perform data-flow
analysis to create our DFG code-view. One of the fundamen-
tal techniques in data-flow analysis is Reaching Definition
Analysis (RDA) where we identify the set of definitions that
may reach a program point, i.e., the definitions that may
affect the value of a variable at that point. A statement-
level DFG is then generated using this information. Using the
RDA-based implementation addresses many of the significant
drawbacks that we found in the data-flow extraction logic
used by GraphCodeBERT [3] such as lack of inter-procedural
analysis, incorrect handling of scope information as well as
data-flow thorough loops. It should be noted that the RDA-
based analysis is inherently more computationally expensive.

In addition to method level analysis, we also support an out-
of-the-box program-level DFG via a two-phase RDA. The first
phase is the typical RDA algorithm for each method, followed
by another iteration of RDA that also takes into consider-
ation the inter-procedural control-flow. This implementation
helps track changes made to variables that are passed as
parameters via method invocations. This is only performed
for non-primitive data-types since primitive data-types are
passed by value in Java and C#. A full-blown alias analysis,
which precisely determines all possible aliasing relationships
can be challenging and computationally expensive. We hence
support a partial alias analysis technique that approximates the



possible memory references in a program. We also provide
two additional data-flow relations - “LastDef” and “LastUse”.
Enabling “LastDef” results in edges that link between re-
definitions of variables as well as edges between declarations
and definitions of variables. Similarly, “LastUse” links the
current use of a variable to the last program point where it
was read. These relationships help add more edges in those
method-level snippets that mainly use global variables which
are not defined in the method body.

D. Combinations and Customizations

In addition to generating code-views, COMEX can also com-
bine and customize multiple code-views into a single graph.
For example, a combination of CFG and DFG would generate
the two code-views separately and then combine them based
on unique node identifiers as shown in Fig. 2. Additionally, as
we used just one parser package, we are able to implement this
feature using a single module (CombinedDriver) that works
seamlessly across all languages. COMEX is currently capable
of generating over 15 different customized representations5.

IV. DISCUSSION AND LIMITATIONS

COMEX was tested for robustness by generating and validat-
ing the code-views obtained on the large datasets popularly
used for benchmarking ML-based SE tasks (CodeNet [21],
CodeSearchNet [12] and [22]). Many of these datapoints have
missing definitions and are not compilable, but their code-
views were successfully generated as long as they were free
of syntax errors. However, we are unable to provide a very
accurate alias analysis that usually works only for compilable
code because we support non-compilable input code snippets.
Instead we provide a partial alias analysis. Among the afore-
mentioned datasets, only [22] has C# datapoints which is why
we expect our implementation of Java code-views to be more
robust than our C# implementation.

V. CONCLUSION AND FUTURE WORK

In source code representation learning research, there are
many notable works that exploit code-specific properties like
control-flow, data-flow, read-write dependencies, etc., in ad-
dition to treating code as regular natural language text. To
this end, we believe that COMEX will enable researchers and
developers in this domain to extract and customize structural
information from code-views for new methods of represen-
tation learning. COMEX provides a framework which can be
extended to support more code-views and their combinations
and can be easily extended to many other popular languages
like Python and C++ which can spur research in ML4SE and
effective source code representation learning.

REFERENCES

[1] M. Allamanis, M. Brockschmidt, and M. Khademi, “Learning to repre-
sent programs with graphs,” arXiv preprint arXiv:1711.00740, 2017.

5Please refer to List-Of-Views.pdf in the repository for a complete list

[2] M. Allamanis, E. T. Barr, P. Devanbu, and C. Sutton, “A
survey of machine learning for big code and naturalness,” ACM
Comput. Surv., vol. 51, no. 4, jul 2018. [Online]. Available:
https://doi.org/10.1145/3212695

[3] D. Guo, S. Ren, S. Lu, Z. Feng, D. Tang, S. Liu, L. Zhou, N. Duan,
A. Svyatkovskiy, S. Fu et al., “Graphcodebert: Pre-training code repre-
sentations with data flow,” arXiv preprint arXiv:2009.08366, 2020.

[4] V. J. Hellendoorn, P. Maniatis, R. Singh, C. Sutton, and D. Bieber,
“Global relational models of source code,” 2020. [Online]. Available:
https://openreview.net/forum?id=B1lnbRNtwr

[5] E. Nijkamp, B. Pang, H. Hayashi, L. Tu, H. Wang, Y. Zhou, S. Savarese,
and C. Xiong, “Codegen: An open large language model for code with
multi-turn program synthesis,” 2023.

[6] M. Chen, J. Tworek, H. Jun et al., “Evaluating large language models
trained on code,” 2021.

[7] R. Mukherjee, Y. Wen, D. Chaudhari, T. W. Reps, S. Chaudhuri, and
C. Jermaine, “Neural program generation modulo static analysis,” 2021.

[8] D. Johnson, H. Larochelle, and D. Tarlow, “Learning graph structure
with a finite-state automaton layer,” Advances in Neural Information
Processing Systems, vol. 33, pp. 3082–3093, 2020.

[9] D. Bieber, R. Goel, D. Zheng, H. Larochelle, and D. Tarlow, “Static
prediction of runtime errors by learning to execute programs with
external resource descriptions,” 2022.

[10] S. Vasudevan, W. J. Jiang, D. Bieber, R. Singh, C. R. Ho, C. Sutton et al.,
“Learning semantic representations to verify hardware designs,” Ad-
vances in Neural Information Processing Systems, vol. 34, pp. 23 491–
23 504, 2021.

[11] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundaresan,
“Soot - a java bytecode optimization framework,” in Proceedings of the
1999 Conference of the Centre for Advanced Studies on Collaborative
Research, ser. CASCON ’99. IBM Press, 1999, p. 13.

[12] H. Husain, H.-H. Wu, T. Gazit, M. Allamanis, and M. Brockschmidt,
“Codesearchnet challenge: Evaluating the state of semantic code
search,” 2019. [Online]. Available: https://arxiv.org/abs/1909.09436

[13] J. Svajlenko, J. F. Islam, I. Keivanloo, C. K. Roy, and M. M. Mia,
“Towards a big data curated benchmark of inter-project code clones,”
in 2014 IEEE International Conference on Software Maintenance and
Evolution. IEEE, 2014, pp. 476–480.

[14] D. Bieber, K. Shi, P. Maniatis, C. Sutton, V. Hellendoorn, D. Johnson,
and D. Tarlow, “A library for representing python programs as graphs
for machine learning,” arXiv preprint arXiv:2208.07461, 2022.

[15] Y. Zhou, S. Liu, J. Siow, X. Du, and Y. Liu, “Devign: Effective vul-
nerability identification by learning comprehensive program semantics
via graph neural networks,” Advances in neural information processing
systems, vol. 32, 2019.

[16] B. Alsulami, E. Dauber, R. Harang, S. Mancoridis, and R. Greenstadt,
“Source code authorship attribution using long short-term memory
based networks,” in Computer Security–ESORICS 2017: 22nd European
Symposium on Research in Computer Security, Oslo, Norway, September
11-15, 2017, Proceedings, Part I 22. Springer, 2017, pp. 65–82.

[17] Z. Li, D. Zou, S. Xu, H. Jin, H. Qi, and J. Hu, “Vulpecker: an auto-
mated vulnerability detection system based on code similarity analysis,”
in Proceedings of the 32nd annual conference on computer security
applications, 2016, pp. 201–213.

[18] E. Dauber, A. Caliskan, R. Harang, and R. Greenstadt, “Git blame
who? stylistic authorship attribution of small, incomplete source code
fragments,” in Proceedings of the 40th International Conference on
Software Engineering: Companion Proceeedings, 2018, pp. 356–357.

[19] A. Machiry, N. Redini, E. Camellini, C. Kruegel, and G. Vigna, “Spider:
Enabling fast patch propagation in related software repositories,” in 2020
IEEE Symposium on Security and Privacy (SP). IEEE, 2020, pp. 1562–
1579.

[20] T. Long, Y. Xie, X. Chen, W. Zhang, Q. Cao, and Y. Yu, “Multi-view
graph representation for programming language processing: An investi-
gation into algorithm detection,” arXiv preprint arXiv:2202.12481, 2022.

[21] IBM, “Project codenet,” https://developer.ibm.com/data/
project-codenet/, 2021, accessed: 2022-06-10.

[22] A. T. Nguyen, T. T. Nguyen, and T. N. Nguyen, “Divide-and-conquer
approach for multi-phase statistical migration for source code (t),” in
2015 30th IEEE/ACM International Conference on Automated Software
Engineering (ASE), 2015, pp. 585–596.

https://github.com/IBM/tree-sitter-codeviews/blob/main/List_Of_Views.pdf
https://doi.org/10.1145/3212695
https://openreview.net/forum?id=B1lnbRNtwr
https://arxiv.org/abs/1909.09436
https://developer.ibm.com/data/project-codenet/
https://developer.ibm.com/data/project-codenet/

	Introduction
	Related Work
	The COMEX Package
	Abstract Syntax Tree
	Control-Flow Graph
	Data-Flow Graph
	Combinations and Customizations

	Discussion and Limitations
	Conclusion and Future work
	References

