
Bus Factor Explorer
Egor Klimov

JetBrains Research
Serbia

egor.klimov@jetbrains.com

Pouria Derakhshanfar
JetBrains Research

The Netherlands
pouria.derakhshanfar@jetbrains.com

Muhammad Umair Ahmed
Bilkent University

Türkiye
umair.ahmed@bilkent.edu.tr

Eray Tüzün
Bilkent University

Türkiye
eraytuzun@cs.bilkent.edu.tr

Nikolai Sviridov
JetBrains Research

Serbia
nikolai.sviridov@jetbrains.com

Vladimir Kovalenko
JetBrains Research
The Netherlands

vladimir.kovalenko@jetbrains.com

Abstract—Bus factor (BF) is a metric that tracks knowledge
distribution in a project. It is the minimal number of engineers
that have to leave for a project to stall. Despite the fact that
there are several algorithms for calculating the bus factor, only
a few tools allow easy calculation of bus factor and convenient
analysis of results for projects hosted on Git-based providers.

We introduce Bus Factor Explorer, a web application that
provides an interface and an API to compute, export, and explore
the Bus Factor metric via treemap visualization, simulation mode,
and chart editor. It supports repositories hosted on GitHub and
enables functionality to search repositories in the interface and
process many repositories at the same time. Our tool allows users
to identify the files and subsystems at risk of stalling in the event
of developer turnover by analyzing the VCS history.

The application and its source code are publicly avail-
able on GitHub at https://github.com/JetBrains-Research/
bus-factor-explorer. The demonstration video can be found on
YouTube: https://youtu.be/uIoV79N14z8

Index Terms—bus factor, truck factor, knowledge management,
intelligent collaboration tools

I. INTRODUCTION

Collaborative software development implies the division
of work between team members. This can lead to uneven
distribution of knowledge among team members. As a result,
the departure of a small group of engineers can result in loss
of expertise about parts of the project.

This risk can be reduced by assessing the level of distri-
bution of knowledge among team members. One way to do
this is to use the bus factor metric. As with other metrics
[1], clearly visualizing BF of projects is important to help end
users in understanding the assessment. Thereby, various tools
for BF visualization were introduced in previous studies [2]–
[4]. However, these tools are not always straightforward to
use: tool users need to manually clone the target repository
and then run additional scripts to analyze the VCS history.

This paper introduces a new, user-friendly, tool called Bus
Factor Explorer, for analyzing and visualizing bus factor infor-
mation. With our tool, practitioners can get BF information on
any project available on GitHub in a few clicks. In addition,
we designed Bus Factor Explorer to be used by developers
and researchers to visualize BF and create tools based on the

bus factor. Our tool has two major advantages over existing
ones. The first is the flexibility in visualization and accessing
data for further analysis. The second is a simulation mode
that allows the user to see how the potential departure of
contributors impacts the knowledge distribution. Bus Factor
Explorer visualizes how the departure affects contribution
scores and bus factor for the whole repository and its folders
and files.

We evaluate the effectiveness of Bus Factor Explorer by
analyzing 935 popular GitHub repositories. The results show
that our tool is capable of analyzing large repositories. For
example, our tool can analyze 12,000 commits in 25 seconds.

II. RELATED WORK

The research community has created several BF estimation
algorithms based on VCS history [4]–[9].

In most cases, the estimation consists of several steps. First,
the algorithm mines VCS history to assess the amount of
knowledge each engineer has for each file. Then, for each file,
the algorithm produces a list of engineers who are experts in
it, so that the departure of all engineers from the list leads
to abandonment of the file. Finally, the algorithm produces
the smallest set of engineers such that if all of them leave
the project, more than a certain share of the files will be
abandoned. The size of this set is considered the BF of the
project.

There only exist a few BF analysis tools with support
for visualization or data export [2]–[4]. All of them require
additional manual steps to prepare the working environment:
the users need to clone and process the repository (e.g., scan all
commits and store them into files or database using provided
scripts) before they can explore the BF data.

III. APPROACH

A. User scenarios

Software development team: team members can use this
tool to improve their software development process by analyz-
ing bus factor data. They can use the provided treemap view or
build their own chart to analyze the distribution of knowledge.

ar
X

iv
:2

40
3.

08
03

8v
1

 [
cs

.S
E

]
 1

2
M

ar
 2

02
4

https://github.com/JetBrains-Research/bus-factor-explorer
https://github.com/JetBrains-Research/bus-factor-explorer
https://youtu.be/uIoV79N14z8

Researcher: Bus Factor Explorer is a good starting point for
researchers to create new BF calculation algorithms or tools
based on the bus factor metric. Researchers can calculate the
bus factor using the built-in algorithm and export it in CSV and
JSON formats for further exploration. They can also explore
the data using the interactive chart editor.

B. Bus Factor Calculation

Our bus factor calculation algorithm is based on the study
by Jabrayilzade et al. [9], excluding meetings and reviews data.
We select this algorithm, because, in contrast with others, it
is based on the Degree of Authorship (DOA) formula that
assumes that knowledge from a contribution decays exponen-
tially and halves every five months. It is stated [9] that this
approach yields better estimates than the popular formula by
Avelino et al [4]. The top contributing authors are removed
iteratively until the current engineers’ knowledge covers less
than half of the files. The number of removed engineers is the
bus factor.

C. Visualization

Figure 1. Treemap report for the cpython repository

Figure 1 depicts how Bus Factor Explorer visualizes the
bus factor. The visualization is in the form of a treemap (1
in Figure 1) which shows the contents (files and folders) of
a parent folder. Each tile on the tree map represents a child
node. We use D3.js1 to implement the treemap.

The layout is generated using the squarify method from
D3.js. In our tool, the size of each tile represents the size (in
bytes) of the corresponding node. For this representation, we
use the logarithmic scale which is essential as the variance in
byte size of the nodes in most projects is very high. Without
normalization, smaller nodes (e.g., a few bytes) would appear
minuscule compared to their larger siblings (e.g., several MB
in size). The tiles are sorted in ascending order with respect
to their size in bytes.

The tiles are interactive. On hover, the full file name and
the bus factor value are displayed. A click on a folder node
centers the view on its contents. The application also updates
the view to show author contribution statistics for the clicked

1D3.js: https://d3js.org/

node (5 in Figure 1). The color of each tile in the treemap is
defined by its bus factor. There are 4 categories of bus factor
values (1): Not Applicable, Dangerous, Low, and OK. These
ranges and the colors are user-configurable (6 in Figure 1).

D. Simulation Mode

To see the effect of the potential departure of contributors
on the bus factor in the project, Bus Factor Explorer features a
simulation mode on top of the treemap view. In this mode, the
bus factor for the files and folders in a project is recalculated
after excluding one or more contributors of the user’s choice.
The original BF information is then compared with the new
values calculated after the exclusion. This relative change in
the bus factor is shown for each file and folder (Figure 2).

Figure 2. Simulation mode for the Linux Kernel repository

IV. IMPLEMENTATION

A. Overview and Design

Figure 3 represents the main workflow of the tool: com-
puting bus factor for GitHub repositories. The user can
search for a repository in the main page and submit a
ComputeBusFactorJob task (1 in Figure 3). After that,
the service clones the target repository to the working directory
(2 in Figure 3) and executes the algorithm (described in the
previous section) on the main branch of repository to compute
bus factor for each file.

To exclude bots from bus factor analysis, we load all
repository contributors with type “Bot” using GitHub REST
API and remove them from authors. All artifacts are stored on
the file system (3 in Figure 3). The result of the computation is
a file tree of the repository with additional information about
contributors and bus factor for each file.

To ignore inactive contributors, as suggested by Jabrayilzade
et al. [9], we only process commits and files for the last 1.5
years since the last commit, and mark old files as inactive.

Users can set the GitHub authentication token in the
GH_TOKEN environment variable. It can be used to access
their private repositories and to improve the API request rate.

https://d3js.org/

Task
HTTP
API Thread poolTask Queue

User

Bus Factor Explorer

ComputeBusFactorJob

Artifact
Storage

Clone repository from

GitHub and load bots

getStatistics

collect

Scan commits for last

1.5y and get statistics
Build repo tree

Enrich tree with bus
factor data using

statistics

Save bus

factor tree

{
 "name": "owner/repo",
 "path": ".",
 "bytes": 623831,
 "busFactorStatus": {
 "busFactor": 1
 },
 "users": [{
 "email": "johndoe@gmail.com",
 "authorship": 19.4671,
 "normalizedAuthorship": 1.0
 }],
 "children": [{
 "name": ".github",
 "path": ".github",
 "bytes": 2129,
 "busFactorStatus": {
 "busFactor": 1
 },
 "users": [
 ...
],
 "children": [
 ...
]
 }]
}

start

1

2 3

Figure 3. An overview of the tool workflow. The tool iterates commits for the last 1.5 years since the last commit and collects information about file
ownership. Next, it builds file tree for the repository. Then, the tree is enriched by the bus factor data.

The user is notified about all important steps of the analysis
via UI notifications. Job log is accessible during computation
and can be found in the “Jobs” page. As soon as job results
are accessible, the target repository appears on the main
page. Then, by pressing on the repository name, the user can
navigate to the visualization page.

B. How to explore Bus Factor data?

The visualization page contains built-in visualization with a
treemap chart (shown in Figure 1) (labeled 1) and additional
panels (2, 3, 4, 5, 6).

Clicking on folder nodes navigates the view into a folder.
The navigation panel on the top left can be used to move to
any folder on the current folder’s path. The color assigned to
each tile, based on its bus factor category, can be changed by
adjusting the corresponding color in the color legend panel on
the right. Additionally, the ranges corresponding to colors can
also be modified by the range slider below the color legend. A
list of contributors with their contribution percentages to the
current folder is also shown on the right side. If the current
folder has a bus factor of N , the top N names are listed.

A few additional panels contain actions to explore data.
Simulation Mode: This interface is activated by pressing
the Use Simulation Mode button on the Simulation Mode
panel. This panel includes a secondary treemap and a list of
contributors with their contribution percentage to the currently
visualized folder and its contents. Each contributor has a
checkbox next to their name. To view the effect of their
departure on the bus factor of the project and its files, the
user can uncheck the checkboxes next to contributor names.
This will trigger an update of the simulation treemap.

Explore Data: this panel contains buttons to work with the
bus factor data. One available option is to download the result
in JSON and CSV formats. JSON structure is shown on the
right side of Figure 3. Each row of the CSV file is a source
file and has the same properties as a JSON and a generated
ID and tree path. These features can help researchers create

other visualization and analysis tools based on the bus factor
data.

The second option is to use an interactive chart editor, based
on the Plotly2 chart editor. In this case, a CSV file with bus
factor data is used as a data source. Users can build different
types of charts, such as scatter, bar, and many others. Also,
Plotly provides data transformation capabilities and allows
to change chart style. After each modification, chart settings
are stored on disk, so that the same chart is available after
reloading the page. The chart can be downloaded as PNG file.
A treemap built with the Plotly editor is shown in Figure 4.

Figure 4. Treemap report for cpython repository built with interactive chart
editor

C. Distribution

The tool is distributed as a single Docker image, hosted
on GitHub Packages. This makes it possible to start it by a
single Docker command locally or on a remote machine. A
Docker Compose configuration with already analyzed projects
is present in the source code.

0 2000 4000 6000 8000 10000 12000
Number of commits in the last 1.5y

0

5

10

15

20

25

30

35

M
ed

ia
n

ca
lcu

la
tio

n
tim

e,
 se

c
Repository analysis time on the number of commits

Repository (935 points)

1000

2000

3000

4000

5000

6000

Re
po

sit
or

y
siz

e,
 M

B

Figure 5. Discovered dependency of repository analysis time on the number
of commits

Table I
DATA DESCRIPTION

Language Repos Commits Commits Size, MB Time, sec
(total) (median) (median) (median)

TypeScript 166 298,072 983 74.5 1.375
JavaScript 137 139,521 394 43.5 0.512
Python 128 182,847 719 41.5 0.994
Go 110 150,623 725 33.0 0.921
C++ 68 119,267 780 74.2 1.137
Total 935 1,416,562 727 60.8 1.017

V. EVALUATION

A. Perfomance evaluation on real-world projects

To evaluate the performance of Bus Factor Explorer, we
collected a dataset of 935 repositories using the GitHub
GraphQL API.3 We included repositories that have at least
100 commits over the past 1.5 years, are labeled with a
language, and occupy up to 10GB on disk (to keep the resource
consumption sane).

For each repository, we calculated the bus factor 10 times
using the tool API, and collected information about the execu-
tion time. We modified the code slightly to avoid cloning the
repository on each run. Figure 5 demonstrates the dependency
of the analysis time on the number of commits. The figure
suggests a linear dependency. Table I describes common infor-
mation about repositories in our dataset and shows information
about top 5 languages in it by count of repositories. It should
be noted that the algorithm running time did not exceed 36
seconds for projects with a large number of commits. The
peak consumption of RAM during the experiment was 1 GB.
The experiment was carried out on a laptop with an Apple
M1 Max processor (10 cores). The data and the code for the
evaluation are available in the EVALUATION directory of Bus
Factor Explorer repository.

2Editor panel for Plotly charts: https://github.com/plotly/react-chart-editor
3GraphQL API documentation: https://docs.github.com/en/graphql

B. Feedback and planned validation survey

As the next step, we are planning an extensive UX study
to answer the following research questions: (1) What specific
features, implemented in our tool, users find useful to measure
the risk and dependence of a team on individual team mem-
bers? (2) Are the features implemented in our tool easy to use?
(3) Do decision-makers find our tool helpful to measure the
risks and dependence of a team on individual team members?

Besides the UX study, we have added a feedback form
to the main page of the tool and got positive feedback
from colleagues who tried Bus Factor Explorer. Some of this
feedback was used to improve its UI and UX.

VI. CONCLUSION

In this paper, we introduce Bus Factor Explorer, a tool to
analyze bus factor information for projects hosted on GitHub.
It is a web-based tool, distributed by a single Docker image,
that consists of an interactive UI with data exploration and
repository search functionality and a backend responsible
for calculating the bus factor from VCS history. Calculation
results can be obtained in JSON and CSV formats. Interac-
tive features contain custom treemap visualization, simulation
mode, and chart editor for visual data analysis.

Software development teams can use Bus Factor Explorer
to improve their development process by analyzing the dis-
tribution of ownership of components among the developers.
Research teams can use our tool as a starting point to develop
new bus factor calculation algorithms or tools based on the
bus factor metric. To evaluate our tool, we computed the bus
factor of 935 popular repositories on GitHub. The results show
that our tool has a linear execution time dependency on the
count of commits and has good performance. The dataset and
results are attached with the source code of the tool.

As further work, we plan to conduct an extensive UX study,
improve the bus factor calculation algorithm and introduce the
ability to add new Git hosts such as JetBrains Space or GitLab.

VII. ACKNOWLEDGEMENTS

This study was partially supported by The Scientific and
Technological Research Council of Turkey (TUBITAK) 3501
program (ProjectNumber:121E584)

REFERENCES

[1] A. Unwin, “Why Is Data Visualization Important? What Is Important in
Data Visualization?” Harvard Data Science Review, vol. 2, no. 1, jan 31
2020, https://hdsr.mitpress.mit.edu/pub/zok97i7p.

[2] N. Almarimi, A. Ouni, M. Chouchen, and M. W. Mkaouer, “csDetector:
an open source tool for community smells detection,” in Proceedings
of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering,
2021, pp. 1560–1564.

[3] V. Cosentino, J. Canovas Izquierdo, and J. Cabot, “Assessing the bus
factor of git repositories,” 03 2015.

[4] G. Avelino, L. Passos, A. Hora, and M. Valente, “A novel approach for
estimating truck factors,” 05 2016, pp. 1–10.

[5] N. Zazworka, K. Stapel, E. Knauss, F. Shull, V. R. Basili, and K. Schnei-
der, “Are developers complying with the process: an xp study,” in Pro-
ceedings of the 2010 ACM-IEEE International Symposium on Empirical
Software Engineering and Measurement, 2010, pp. 1–10.

https://github.com/plotly/react-chart-editor
https://docs.github.com/en/graphql

[6] P. C. Rigby, Y. C. Zhu, S. M. Donadelli, and A. Mockus, “Quantifying and
mitigating turnover-induced knowledge loss: case studies of Chrome and
a project at Avaya,” in 2016 IEEE/ACM 38th International Conference
on Software Engineering (ICSE). IEEE, 2016, pp. 1006–1016.

[7] F. Ricca, A. Marchetto, and M. Torchiano, “On the difficulty of computing
the truck factor,” vol. 6759, 06 2011, pp. 337–351.

[8] V. Cosentino, J. Canovas Izquierdo, and J. Cabot, “Assessing the bus
factor of git repositories,” 03 2015.

[9] E. Jabrayilzade, M. Evtikhiev, E. Tuzun, and V. Kovalenko, “Bus factor
in practice,” in 2022 IEEE/ACM 44th International Conference on
Software Engineering: Software Engineering in Practice (ICSE-SEIP).
Los Alamitos, CA, USA: IEEE Computer Society, may 2022, pp.
97–106. [Online]. Available: https://doi.ieeecomputersociety.org/10.1109/
ICSE-SEIP55303.2022.9793985

https://doi.ieeecomputersociety.org/10.1109/ICSE-SEIP55303.2022.9793985
https://doi.ieeecomputersociety.org/10.1109/ICSE-SEIP55303.2022.9793985

	Introduction
	Related work
	Approach
	User scenarios
	Bus Factor Calculation
	Visualization
	Simulation Mode

	Implementation
	Overview and Design
	How to explore Bus Factor data?
	Distribution

	Evaluation
	Perfomance evaluation on real-world projects
	Feedback and planned validation survey

	Conclusion
	Acknowledgements
	References

