
Hot Patching Hot Fixes: Reflection and Perspectives

Carol Hanna
Department of Computer Science

University College London
London, United Kingdom
carol.hanna.21@ucl.ac.uk

Justyna Petke
Department of Computer Science

University College London
London, United Kingdom

j.petke@ucl.ac.uk

Abstract—With our reliance on software continuously increas-
ing, it is of utmost importance that it be reliable. However,
complete prevention of bugs in live systems is unfortunately
an impossible task due to time constraints, incomplete testing,
and developers not having knowledge of the full stack. As
a result, mitigating risks for systems in production through
hot patching and hot fixing has become an integral part of
software development. In this paper, we first give an overview
of the terminology used in the literature for research on this
topic. Subsequently, we build upon these findings and present
our vision for an automated framework for predicting and
mitigating critical software issues at runtime. Our framework
combines hot patching and hot fixing research from multiple
fields, in particular: software defect and vulnerability prediction,
automated test generation and repair, as well as runtime patching.
We hope that our vision inspires research collaboration between
the different communities.

Index Terms—Software Engineering, Software maintenance,
Predictive maintenance, Prediction methods, Repair

I. INTRODUCTION

Ensuring that deployed software is completely bug-free is
almost always infeasible. Program verification is an unde-
cidable problem [1], and deployment of software verification
techniques comes with many challenges [2], [3]. In practice,
software bugs are thus typically discovered through testing [4].
However, as quoted by Dijkstra, testing is incomplete and
can only show the presence not the absence of bugs [5].
Moreover, even when bugs are discovered prior to deployment,
developers do not always have time to fix them due to tight
release deadlines. Post-production bugs are very costly to
enterprises [6] as they affect system availability and robust-
ness. In user-facing systems, this may damage the enterprise’s
reputation. Therefore, when discovered, these types of bugs
are of the highest importance to all stakeholders.

To understand the space of research that tackles such
critical bugs, we started with a literature survey. We used two
keywords commonly used to refer to the software engineering
activity of patching critical, post-production bugs: “hot fix”
and “hot patch”. In doing so, we quickly noticed that the def-
initions in existing work are inconsistent which has diverged
the research on the topic into two distinctly different fields.

This work was supported by EPSRC grant EP/P023991/1. For the purpose
of open access, the author(s) has applied a Creative Commons Attribution
(CC BY) license to any Accepted Manuscript version arising.

The first focuses on the time-criticality aspect of patching the
bug in the definition, leading the work down the path of how
this patching process can be more efficient [7]–[9]. The second
category delves into helping developers integrate changes
dynamically, at runtime, without causing downtime to the
deployed system [10]–[12]. This second set of papers focuses
more on binary-level patching and its dynamic propagation
into live systems. This split between the definitions creates a
separation between the research that aligns with each. We thus
provide a taxonomy of all of the definitions found and reflect
on how associated research could drive future work.

Our survey of literature on hot patching and hot fixing
revealed research in different silos. Existing works focus on
either the detection of software defects and vulnerabilities,
their mitigation, or the propagation of the patches onto a live
system. Moreover, they only target a specific type of software
issue (e.g., security vulnerability) or end system (e.g., kernel
vs. application specific). We pose that research on hot patching
and hot fixing can be represented in a unified framework, with
an ultimate goal of creating an end-to-end automated solution
that fully automates the process of predicting and mitigating
issues in post-production software.

To realise our vision, we draw inspiration from several fields
which until now have been somewhat orthogonal such as soft-
ware testing [13], defect and vulnerability prediction [14] [15],
automated program repair [16], binary analysis [17], data
mining [18], and runtime patching [19]. Combing predictive
modeling with automated program repair specifically has
started to receive attention in the last few years with Nowack et
al. [20] proposing tooling for predicting and fixing bugs within
Java programs. Most recently Harman [21] posed that existing
techniques should be explored for the “hot fix problem”, i.e,
the need to discover and deploy fixes in real time. We aim to
address this problem.

Drawing upon results of our survey on hot patching and hot
fixing, we propose a fully automated and extensible framework
(Figure 1) that predicts critical software issues, provides
mitigation solutions in the form of a patch, which is then
applied to the software system at runtime. We outline how
each of the components can be realised.

By clarifiying terminology on hot patching and hot fixing,
and presenting a unified framework, we hope to inspire new



research directions and idea pollination between the different
communities. The challenges will come from fitting the com-
ponents from the different research fields together and do so in
a scalable way. Our ultimate goal is realisation of the presented
framework to increase reliability of production software.

II. SURVEY METHODOLOGY

To gather information on patching critical issues, that typ-
ically bypass the planned software release schedule, we con-
ducted a literature survey using a primary search on two key-
words: “hot patch” and “hot fix”. The search was conducted
over four popular computer science search engines: IEEE
Xplore, ACM Digital Library, ScienceDirect, and the DBLP
Computer Science Bibiliography. We found 547 search results
for “hot fix” and 475 results for “hot patch”, with 136 relevant
to patching software. The scope that we used for relevancy
encapsulated all conferences, workshops, and journal papers as
well as PhD theses published by 21/2/2023. Overall, we found
21 definitions for “hot fix” and 14 definitions for “hot patch”in
our searches, in 33 distinct papers. We present these in the next
section, pointing out differences and commonalities.

III. HOT PATCH OR HOT FIX? TERMINOLOGY EVOLUTION

Our survey revealed that the origin of the terms “hot patch”
and “hot fix” is unclear. It seems that originally the term hot in
“hot patch” was intended to mean the liveness of the system in
which the patch was being deployed. Given this, hot patching
would mean patch deployment into running systems. However,
this more literal definition began to shift in different directions
that reflect the different stakeholders’ perspectives regarding
hot patching activities. More specifically, for software devel-
opers, when a code change needs to be integrated into a live
system, it must be a critical time-sensitive change. This is
because otherwise it would simply be developed within the
planned software release cycle. This is what we hypothesise
created a split into two different definitions, described below,
which we see in the literature today.

The first definition is what you may traditionally think of
when a hot patch is mentioned in a conversation: a patch for
a time-critical bug. This patch is usually small and temporary
and needs to be deployed quickly to mitigate specific critical
bugs. The second category addresses the dynamic property
needed to integrate patches during program’s runtime. Re-
search in the second category focuses on binary modifications
to live programs, most commonly using techniques such as
binary quilting [22]. The majority of research in this area is
in the security and vulnerability mitigation domain. Finally, we
found some field-specific definitions which place hot patching
within a very specific context.

Our review revealed that the majority of “hot fix” terminol-
ogy addresses the first category of definitions which targets
the criticality element of this patching process. Whereas “hot
patch” is a term more widely used to address the dynamic
quality. However, there were some inconsistencies with this as
well, i.e., Popovici et al. [23] refer to a hot-fix as “an extension
applied to a running application server to modify the behavior

of a large number of running components” and Limoncelli [24]
refers to hot patches as those that target deployed high-priority
bugs. Thus, we will be using the term hot fix in Section III-A.
hot patch in Section III-B, and the term syntax as it appears
in the specific paper for Section III-C.

A. Criticality Definition

Definitions that address hot fixes solely as those that remedy
pressing bugs that need immediate attention capture four dif-
ferent properties: patch size, patch permanency, bug criticality,
and production status of the target system. The consensus
across all definitions that address the patch size property is that
a hot fix must be small in size as opposed to a service pack or a
full new software version release [25] [26] [27] [28] [29] [30].
Casco [31] specifies that a hot fix must address one specific
issue. Gupta et al. [32] mentions that it must be limited to
either one or two. Agarwal and Garg [33] and Stanger [34]’s
definitions leave this more ambiguous, stating that a hot fix
targets multiple issues. Hot fixes are intended to be deployed
temporarily while a permanent patch is being developed [35].
This is due to the time criticality element which limits the
patch from being extensively tested before its integration into
the system. Moreover, the intent of the patch is generally
to mitigate the symptom of the critical bug rather than fully
resolving its root cause as that would be more time-consuming
and might even require some system redesign. While the
criticality of the bug that the hot fix addresses is a property
that is implied in this category of definitions, it’s not always
explicitly stated. While some definitions mention that hot fixes
are deployed to systems in production [24] [36], this property
is not always directly conveyed. Karale et al. [37] note that
hot fixes don’t need to always be released publicly. Finally,
Bailey [38] regards hot fixes as Microsoft patches not included
in the standard service pack.

To sum up, the majority of the literature in this category re-
gards a hot fix as a small, temporary improvement to a specific
critical issue in a deployed system. The following definition
from the software security domain captures this well:

“A hotfix is a small patch file, generally targeted to one
or two specific issues. Hotfixes are usually developed and
released in a short timeframe, with less testing than is
done for service packs”(Gupta et al. [32])

B. Run-time Definition

The second major category of definitions found re-
gards hot patches as the patching of software dynami-
cally [39] [10] [11] [40] [41] [42] [43]. This is especially
prevalent for systems that have high availability requirements
and require bug patches to be injected during runtime without
having to reboot the system. An interesting contradiction that
we found here is regarding the size of the patch. As previously
explained, the first category of definitions highlights that hot
patches must be small in size and specifically target a limited
number of bugs. However, in the context of the dynamic



definition, Popovici et al. [23] define a hot patch as an upgrade
that modifies a large number of components in a server during
runtime. Russinovich et al. [12] detail limitations of this
technique, e.g., that it only supports function-level updates.

We found the following definition of a hot patch to best
encapsulate the most common usage of the term in the
literature, as described above:

“Hot-patching consists of applying a patch to running
software without requiring that the software or system be
restarted.” (Reffett and Fleck [40])

C. Domain-Specific Definition

Additionally, depending on the domain of the research,
some work provides field-specific definitions. Han et al. [44]
define hot-fix from the perspective of an RNN-based speech
recognition system where they expect a query’s results to be
only minimally affected by a hot patch. Hargrave’s Commu-
nications dictionary [45] describes hot fixes as migrating disk
sectors within the LAN. In the domain of operating systems
specifically, hot patching is defined as deploying patches
within the kernel dynamically [46]. In the context of software
testing, Chen et al. [47] regard a hotfix as an implementation
in which a code section is wrapped so that during execution
the program can be updated to the buggy version. Hotfixes
have also been defined in the domain of information retrieval.
Here, the top items are shuffled and then ranked based on
feedback from user clicks [48]. For firmware, hot-patching is
the ability to patch firmware to a device while maintaining the
availability of the system [49]. Finally, Illes-Seifert et al. [50]
look at hotfixes from a different lens where they consider an
update to be a hotfix if it was integrated within the first 5%
of time between two consecutive version releases.

Chen et al. [51], provide a definition that combines both
of the aforementioned definition categories of time-sensitivity
and during runtime integration. Although their paper focuses
on security vulnerability patching and their definition is bound
within that scope, it does capture and summarize all of the
properties found in previous definitions.

IV. VISION FOR AN END-TO-END AUTOMATED SOLUTION

Our survey of the literature revealed that the terms “hot
patch” and “hot fix” have been used in different contexts in
different domains. This conclusion incited us to propose a
unified framework that we hope will foster collaboration and
the flow of ideas between the different research fields.

Our vision entails a fully-automated end-to-end framework
for the treatment of software vulnerabilities and defects (which
we refer to as risks here for brevity) in post-production sys-
tems. We present it in Figure 1. The framework is composed
of three major parts: detection of software risks that need to
be mitigated, mitigation techniques to generate patches for
those risks, and finally propagation of the patches into the
system during runtime.

Fig. 1. End-to-end Framework for Software Risk Detection & Mitigation

In the following sections, we will present each of the
modules and detail their function within the framework. We
expand on relevant work that could be utilised in realizing
each of the components, making the implementation of the
framework given the currently available techniques in the
literature feasible. The framework is extensible and allows for
the addition of new modules as well as for modules to combine
multiple techniques to achieve their intended goal.

A. Defect Prediction

When a critical bug is discovered through a failure in the
live system or through reports by users, developers have a very
limited time to generate a patch. The longer it takes for a patch
to get deployed, the more monetary and reputational damage
gets caused to the enterprise. The goal of our framework
is to minimise that window as much as possible. One way
of doing so is integrating a defect prediction module that
scans the system and foresees likely defective code snippets.
Multiple techniques already exist for defect prediction [14].
These predicted code snippets can then become the target for
more extensive testing. If the testing then reveals the defect,
patch generation efforts can be directed towards it to hot patch
the system before the defect manifests in production.

B. Automated Test Generation

The purpose of this module is to use to generate automated
tests for the code sections that the defect prediction module
foresees as defective. Once a code section is predicted to
be defective, we generate tests that reveal this defect, to aid
patch generation strategies (Section IV-H). We will use defect
prediction analysis to build an oracle for test generation. Sev-
eral automated test generation techniques already exist which
can be used in combination with each other to increase the
likelihood of revealing the defect [52]. Additionally, automated
hypertest generation [53] to detect security vulnerabilities can
be utilised here. Mesecan et al. [53] focus on information
leakage, though the techniques could be extended to detect
side-channel attacks, for instance.

C. Vulnerability Prediction

To be able to hot patch security weaknesses, software
developers must get ahead of the attackers in detecting the
system’s vulnerabilities. This will allow the developers to have



the time to generate the patch and deploy it. Thus, we see a
vulnerability prediction component as a part of our vision for
an end-to-end framework for hot patching live systems. There
is already abundant research on security vulnerability predic-
tion which can be utilised in making up this component [15].

Tunde-Onadele et al. [54] present a concrete example of
how vulnerability prediction can be integrated as tooling
for the context of hot patching security holes. Their work
presents an anomaly detection module that combines system
call tracing and an unsupervised machine learning algorithm
to detect vulnerability exploitation.

D. Vulnerability Extraction

Given the outputs of the vulnerability prediction module, we
need a component that correlates the predicted exploitation
with known vulnerabilities. This will allow us to automate
the patching of the security hole by applying the known
vulnerability patch to the predicted exploit. In continuation
of the work by Tunde-Onadele et al. [54] (Section IV-C), they
extract the most frequently appeared system calls during the
exploit period to identify the specific vulnerability. Mesecan
et al. [53] present a dynamic algorithm for information leak
localization guided by hypertests (to be generated in the
automated test generation module). Using this, information
leakage vulnerabilities can be extracted, to be mitigated in
the vulnerability remediation module.

E. Vulnerability Remediation

If the vulnerability extraction module was able to match
the exploit with a known vulnerability, then the remediation
of the vulnerability becomes easy to automate. We simply
need a module to automate the application of the released
update that patches this vulnerability. For instance, Bard et
al. [55] present a framework that can automatically insert
vulnerability mitigations.

F. Ad-hoc Test Generation

The main purpose of this component is to ease the reproduc-
tion of the bug in the development environment. This module
is inspired by Saieva et al. [56]. In their work, they replay the
inputs from the production environment while accounting for
non-determinism. Once a patch is generated, this component
can behave as a second layer of verification for checking
whether the generated patch does indeed mitigate the symptom
as it was observed in the production environment.

G. Log Analysis

The log analysis module processes the crash logs from
the production environment (most commonly from the users
themselves, but in non-user-facing systems this is not al-
ways true). Crash logs are hard to decipher manually, so a
component like this will help in two ways. Firstly, it will
parse the log, which will make it easier for the software
developers to make sense of the crash and thus meet the
criticality requirement for generating a hot patch manually if
needed more quickly. Secondly, it will aid in the automation

of producing the patch as its output can inform the patch
generation module. Existing work can inspire this component,
such as “The Crash Analyzer” [7] which aggregates crash logs,
mines crash patterns, and generates reproducible scenarios.

H. Patch Generation

For optimised efficacy and effectiveness, the patch genera-
tion component would combine multiple automated program
repair techniques. Current approaches in automated program
repair can be categorised into three types: constraint-based,
learning-based, and heuristic-based techniques [57]. The com-
bination of these repair strategies would complement each
other as each strategy has its strengths and weaknesses. The
test-based techniques will be able to successfully integrate
here due to the automated test generation component that we
include in the framework (recall Section IV-B).

As per the definition of a hot patch, the generated patches
are meant to be temporary. The purpose of a hot patch is to
mitigate the symptoms of the defect temporarily while a more
permanent patch is being developed. The reason for this is
the time criticality element which prevents developers from
having the time to fix the root cause of the issue or the time
to extensively test the patch.

An example that would work well in this module to
temporarily mitigate failure symptoms is genetic-based pro-
gram repair [58] [59] [60]. With increasing abilities of large-
language models [61], these can be used for quick patch
generation, which will be verified with testing. Another idea
that can be adopted here is the work by Gomez et al. [7]. They
describe a high-level patch generator similarly but specifically
present the “Patcher” module which takes system traces (out-
puts of a module similar to the log analysis component from
Section IV-G) and wraps try-catch blocks around suspicious
methods as a temporary fix.

I. Dynamic Patch Propagation

Once an acceptable patch is generated, we must be able to
deploy it into the system dynamically. The way to propagate
the patch will depend on the type of system that we are de-
ploying into. Various techniques for different types of systems
exist [19], e.g. Gómez et al. [7] use Dexpler [62] and the
Vulmetis [63] tooling which converts patches into hot patches
using weakest precondition reasoning.

J. Binary Patch Decomposition

One of the major risks of hot patching specifically and
software upgrades generally is breaking functionality due to
incompatibility [56]. Thus, the purpose of this module is to
alleviate this friction. The binary decomposition algorithm [56]
makes this possible by breaking down the patch into its
building blocks. Developers will include metadata with the
patch that details the dependencies of the patch between
versions, allowing partial deployment of the patch into the
live system if necessary.



V. CONCLUSIONS

In this paper, we discuss the crucial task in the software
engineering life cycle of alleviating the symptoms of software
problems in live systems. We find that there are contradictions
in terminology in the literature on this topic. Thus, we begin
by providing a taxonomy of the coined terms for this task,
hot patch and hot fix, to clarify these inconsistencies and help
drive research in the area forward. This paper presents our
vision for a novel framework that encapsulates the automated
detection of critical software issues in the system through the
prediction of functional defects and security vulnerabilities,
automating their mitigation through patch generation, as well
as automating the propagation of these patches to systems
in production. Our research agenda aggregates existing work
from different software engineering fields which we hope
will facilitate collaboration between the communities and
encourage new research directions. In our future work, we
plan to begin realizing this framework.

REFERENCES

[1] A. Nilizadeh and G. T. Leavens, “Be realistic: Automated program repair
is a combination of undecidable problems,” Proceedings - International
Workshop on Automated Program Repair, APR 2022, pp. 31–32, 2022.

[2] V. D’Silva, D. Kroening, and G. Weissenbacher, “A survey of automated
techniques for formal software verification,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 27,
pp. 1165–1178, 2008.

[3] C. Calcagno, D. Distefano, J. Dubreil, D. Gabi, P. Hooimeijer, M. Luca,
P. W. O’Hearn, I. Papakonstantinou, J. Purbrick, and D. Rodriguez,
“Moving fast with software verification,” in NASA Formal Methods -
7th International Symposium, NFM 2015, Pasadena, CA, USA, April
27-29, 2015, Proceedings (K. Havelund, G. J. Holzmann, and R. Joshi,
eds.), vol. 9058 of LNCS, pp. 3–11, Springer, 2015.

[4] A. Dasso and A. Funes, “Verification, validation and testing in software
engineering,” Verification, Validation and Testing in Software Engineer-
ing, pp. 1–428, 2006.

[5] E. W. Dijkstra, “Notes on structured programming,” in NATO Software
Engineering Conference, 1969.

[6] C. Jones, O. Bonsignour, and J. Subramanyam, The Economics of
Software Quality. Addison-Wesley, 2011.

[7] M. Gómez, B. Adams, W. Maalej, M. Monperrus, and R. Rouvoy, “App
store 2.0: From crowdsourced information to actionable feedback in
mobile ecosystems,” IEEE Software, vol. 34, pp. 81–89, 2017.

[8] X. Zhang, Y. Xu, S. Qin, S. He, B. Qiao, Z. Li, H. Zhang, X. Li,
Y. Dang, Q. Lin, M. Chintalapati, S. Rajmohan, and D. Zhang, “Onion:
Identifying incident-indicating logs for cloud systems,” ESEC/FSE 2021
- Proceedings of the 29th ACM Joint Meeting European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, vol. 21, pp. 1253–1263, 2021.

[9] J. Tucek, S. Lu, C. Huang, S. Xanthos, and Y. Zhou, “Triage: Diagnosing
production run failures at the user’s site,” Operating Systems Review
(ACM), pp. 131–144, 2007.

[10] F. Araujo and T. Taylor, “Improving cybersecurity hygiene through
jit patching,” ESEC/FSE 2020 - Proceedings of the 28th ACM Joint
Meeting European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, pp. 1421–1432, 2020.

[11] L. Zhou, F. Zhang, J. Liao, Z. Ning, J. Xiao, K. Leach, W. Weimer, and
G. Wang, “Kshot: Live kernel patching with smm and sgx,” Proceedings
- 50th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks, DSN 2020, pp. 1–13, 2020.

[12] M. Russinovich, N. Govindaraju, M. Raghuraman, D. Hepkin,
J. Schwartz, and A. Kishan, “Virtual machine preserving host updates
for zero day patching in public cloud,” EuroSys 2021 - Proceedings of
the 16th European Conference on Computer Systems, vol. 21, pp. 114–
129, 2021.

[13] T. Hynninen, J. Kasurinen, A. Knutas, and O. Taipale, “Software testing:
Survey of the industry practices,” 2018 41st International Convention
on Information and Communication Technology, Electronics and Micro-
electronics, MIPRO 2018 - Proceedings, pp. 1449–1454, 2018.

[14] M. K. Thota, F. H. Shajin, and P. Rajesh, “Survey on software defect
prediction techniques,” International Journal of Applied Science and
Engineering, vol. 17, pp. 331–344, 2020.

[15] Z. Shen and S. Chen, “A survey of automatic software vulnerability
detection, program repair, and defect prediction techniques,” Security
and Communication Networks, 2020.

[16] C. L. Goues, M. Pradel, and A. Roychoudhury, “Automated program
repair,” Communications of the ACM, vol. 62, pp. 56–65, 2019.

[17] Z. Liu, C. Chen, A. Ejaz, D. Liu, and J. Zhang, “Automated binary
analysis: A survey,” in Algorithms and Architectures for Parallel Pro-
cessing - 22nd International Conference, ICA3PP 2022, Copenhagen,
Denmark, October 10-12, 2022, Proceedings (W. Meng, R. Lu, G. Min,
and J. Vaidya, eds.), vol. 13777 of Lecture Notes in Computer Science,
pp. 392–411, Springer, 2022.

[18] M. K. Gupta and P. Chandra, “A comprehensive survey of data mining,”
International Journal of Information Technology (Singapore), vol. 12,
pp. 1243–1257, 2020.

[19] C. Islam, V. Prokhorenko, and M. A. Babar, “Runtime software patch-
ing: Taxonomy, survey and future directions,” Journal of Systems and
Software, vol. 200, 2022.

[20] V. Nowack, D. Bowes, S. Counsell, T. Hall, S. Haraldsson, E. Winter,
and J. Woodward, “Exploiting fault localisation for efficient program
repair,” Proceedings of the 2020 Genetic and Evolutionary Computation
Conference Companion, pp. 311–312, 2020.

[21] M. Harman, “Scaling genetic improvement and automated program re-
pair,” in 3rd IEEE/ACM International Workshop on Automated Program
Repair, APR@ICSE 2022, Pittsburgh, PA, USA, May 19, 2022, pp. 1–7,
IEEE, 2022.

[22] A. Saieva and G. Kaiser, “Binary quilting to generate patched executa-
bles without compilation,” FEAST 2020 - Proceedings of the 2020 ACM
Workshop on Forming an Ecosystem Around Software Transformation,
pp. 3–8, 2020.

[23] A. Popovici, G. Alonso, and T. R. Gross, “Just-in-time aspects: efficient
dynamic weaving for java,” in Proceedings of the 2nd International
Conference on Aspect-Oriented Software Development, AOSD 2003,
Boston, Massachusetts, USA, March 17-21, 2003 (W. G. Griswold and
M. Aksit, eds.), pp. 100–109, ACM, 2003.

[24] T. A. Limoncelli, “The small batches principle,” Queue, vol. 14, 2016.
[25] A. Truelove, E. S. de Almeida, and I. Ahmed, “We’ll fix it in post: What

do bug fixes in video game update notes tell us?,” in 43rd IEEE/ACM
International Conference on Software Engineering, ICSE 2021, Madrid,
Spain, 22-30 May 2021, pp. 736–747, IEEE, 2021.

[26] R. Pierce, “Parallel design and development for documentation projects,”
Communication Design Quarterly Review, vol. 6, pp. 6–8, 2005.

[27] K. S. Trivedi, R. Mansharamani, D. S. Kim, M. Grottke, and M. Nam-
biar, “Recovery from failures due to mandelbugs in it systems,” Pro-
ceedings of IEEE Pacific Rim International Symposium on Dependable
Computing, PRDC, pp. 224–233, 2011.

[28] T. Aurisch and A. Jacke, “Handling vulnerabilities with mobile agents
in order to consider the delay and disruption tolerant characteristic of
military networks,” 2018 International Conference on Military Commu-
nications and Information Systems, ICMCIS 2018, pp. 1–7, 2018.

[29] N. Kerzazi, “Branching strategies based on social networks,” 2013
1st International Workshop on Release Engineering, RELENG 2013 -
Proceedings, pp. 25–28, 2013.

[30] F. Daniel, E. Arvid, and H. Roland, “How mobile app design overhauls
can be disastrous in terms of user perception,” ACM Transactions on
Social Computing, vol. 3, pp. 1–21, 2020.

[31] S. Casco, “Securing windows and iis,” Hack Proofing ColdFusion,
pp. 261–336, 2002.

[32] M. Gupta, S. Banerjee, M. Agrawal, and H. R. Rao, “Security anal-
ysis of internet technology components enabling globally distributed
workplaces-a framework,” ACM Transactions on Internet Technology
(TOIT), vol. 8, 2008.

[33] A. Agarwal and N. K. Garg, “Effective test strategy model for ensuring
ftr of hot-fix,” in ICROIT 2014 - Proceedings of the 2014 International
Conference on Reliability, Optimization and Information Technology,
pp. 40–43, IEEE Computer Society, 2014.



[34] J. Stanger, “Securing Windows 2000 advanced server and Red Hat Linux
6 for e-mail services,” E-Mail Virus Protection Handbook, pp. 295–332,
2000.

[35] J. Xing, Y. Qiu, K. F. Hsu, H. Liu, M. Kadosh, A. Lo, A. Akella,
T. Anderson, A. Krishnamurthy, T. S. Ng, and A. Chen, “A vision for
runtime programmable networks,” HotNets 2021 - Proceedings of the
20th ACM Workshop on Hot Topics in Networks, pp. 91–98, 2021.

[36] M. Vögler, J. M. Schleicher, C. Inzinger, and S. Dustdar, “A scalable
framework for provisioning large-scale iot deployments,” ACM Trans-
actions on Internet Technology (TOIT), vol. 16, 2016.

[37] S. V. Karale and V. Kaushal, “An automation framework for configu-
ration management to reduce manual intervention,” ACM International
Conference Proceeding Series, vol. 12-13-August-2016, 2016.

[38] C. Bailey, “Configuring windows 2000 without active directory,” Assem-
bly, vol. 44, p. 79, 2001.

[39] N. Weichbrodt, T. B. G. J. Heinemann, T. B. G. L. Almstedt, R. Kapitza,
T. B. Germany, J. Heinemann, L. Almstedt, and P.-L. Aublin, “Sgx-dl:
Dynamic loading and hot-patching for secure applications: Experience
paper,” Middleware 2021 - Proceedings of the 22nd International
Middleware Conference, pp. 91–103, 2021.

[40] C. Reffett and D. Fleck, “Securing applications with dyninst,” 2015
IEEE International Symposium on Technologies for Homeland Security,
HST 2015, 2015.

[41] S. Biedermann, S. Katzenbeisser, and J. Szefer, “Hot-hardening: Getting
more out of your security settings,” ACM International Conference
Proceeding Series, vol. 2014-December, pp. 6–15, 2014.

[42] E. M. Rudd, A. Rozsa, M. Günther, and T. E. Boult, “A survey of stealth
malware attacks, mitigation measures, and steps toward autonomous
open world solutions,” IEEE Communications Surveys and Tutorials,
vol. 19, pp. 1145–1172, 2017.

[43] Y. Shao, R. Wang, X. Chen, A. M. Azab, and Z. M. Mao, “A lightweight
framework for fine-grained lifecycle control of android applications,”
Proceedings of the 14th EuroSys Conference 2019, vol. 19, 2019.

[44] S. Han, D. Baby, and V. Mendelev, “Residual adapters for targeted
updates in rnn-transducer based speech recognition system,” in IEEE
Spoken Language Technology Workshop, SLT 2022, Doha, Qatar, Jan-
uary 9-12, 2023, pp. 160–166, IEEE, 2022.

[45] F. Hargrave, Hargrave’s Communications Dictionary. IEEE, 2010.
[46] A. K. Sood, S. Zeadally, and R. Bansal, “Exploiting trust: Stealthy

attacks through socioware and insider threats,” IEEE Systems Journal,
vol. 11, pp. 415–426, 2017.

[47] K. Chen, Y. Li, Y. Chen, C. Fan, Z. Hu, and W. Yang, “Glib: Towards
automated test oracle for graphically-rich applications,” ESEC/FSE 2021
- Proceedings of the 29th ACM Joint Meeting European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, vol. 21, pp. 1093–1104, 2021.

[48] H. Oosterhuis and M. D. D. Rijke, “Robust generalization and safe
query-specializationin counterfactual learning to rank,” The Web Con-
ference 2021 - Proceedings of the World Wide Web Conference, WWW
2021, pp. 158–170, 2021.

[49] C. Farnell, E. Soria, J. Jackson, and H. A. Mantooth, “Cyber protection
of grid-connected devices through embedded online security,” 2021
IEEE Design Methodologies Conference, DMC 2021, 2021.

[50] T. Illes-Seifert and B. Paech, “Exploring the relationship of a file’s
history and its fault-proneness: An empirical study,” Proceedings -
Testing: Academic and Industrial Conference Practice and Research
Techniques, TAIC PART 2008, pp. 13–22, 2008.

[51] Y. Chen, Y. Li, L. Lu, Y. Lin, H. Vijayakumar, Z. Wang, and X. Ou,
“Instaguard: Instantly deployable hot-patches for vulnerable system
programs on android,” in 25th Annual Network and Distributed System
Security Symposium, NDSS 2018, San Diego, California, USA, February
18-21, 2018, The Internet Society, 2018.

[52] G. Candea and P. Godefroid, “Automated software test generation: Some
challenges, solutions, and recent advances,” Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), vol. 10000, pp. 505–531, 2019.

[53] I. Mesecan, D. Blackwell, D. Clark, M. B. Cohen, and J. Petke,
“Hypergi: Automated detection and repair of information flow leakage,”
in 36th IEEE/ACM International Conference on Automated Software
Engineering, ASE 2021, Melbourne, Australia, November 15-19, 2021,
pp. 1358–1362, IEEE, 2021.

[54] O. Tunde-Onadele, Y. Lin, J. He, and X. Gu, “Toward just-in-time
patching for containerized applications,” in Proceedings of the 7th
Annual Symposium on Hot Topics in the Science of Security, HotSoS

2020, Lawrence, Kansas, USA, September 22-24, 2020 (P. Alexander,
D. Davidson, and B. Choi, eds.), pp. 30:1–30:2, ACM, 2020.

[55] J. Bard, S. Jacobs, and Y. Vizel, “Automatic and incremental repair for
speculative information leaks.” https://arxiv.org/abs/2305.10092, 2023.

[56] A. Saieva and G. Kaiser, “Update with care: Testing candidate bug fixes
and integrating selective updates through binary rewriting,” Journal of
Systems and Software, vol. 191, p. 111381, 2022.

[57] C. L. Goues, M. Pradel, and A. Roychoudhury, “Automated program
repair,” Communications of the ACM, 2019.

[58] C. L. Goues, T. V. Nguyen, S. Forrest, and W. Weimer, “Genprog: A
generic method for automatic software repair,” IEEE Transactions on
Software Engineering, vol. 38, pp. 54–72, 2012.

[59] Y. Yuan and W. Banzhaf, “Arja: Automated repair of java programs via
multi-objective genetic programming,” IEEE Transactions on Software
Engineering, 2018.

[60] M. Motwani, M. Soto, Y. Brun, R. Just, and C. L. Goues, “Quality of
automated program repair on real-world defects,” IEEE Transactions on
Software Engineering, vol. 48, pp. 637–661, 2022.

[61] D. Sobania, M. Briesch, C. Hanna, and J. Petke, “An analysis of the au-
tomatic bug fixing performance of chatgpt,” in IEEE/ACM International
Workshop on Automated Program Repair, 2023.

[62] A. Bartel, J. Klein, M. Monperrus, and Y. L. Traon, “Dexpler: Con-
verting android dalvik bytecode to jimple for static analysis with soot,”
Proceedings of the ACM SIGPLAN International Workshop on State of
the Art in Java Program Analysis, SOAP 2012, pp. 27–38, 2012.

[63] Z. Xu, Y. Zhang, L. Zheng, L. Xia, C. Bao, Z. Wang, and Y. Liu, “Auto-
matic hot patch generation for android kernels,” in 29th USENIX Security
Symposium, USENIX Security 2020, August 12-14, 2020 (S. Capkun and
F. Roesner, eds.), pp. 2397–2414, USENIX Association, 2020.


	Introduction
	Survey Methodology
	Hot Patch or Hot Fix? Terminology Evolution
	Criticality Definition
	Run-time Definition
	Domain-Specific Definition

	Vision for an End-to-End Automated Solution
	Defect Prediction
	Automated Test Generation
	Vulnerability Prediction
	Vulnerability Extraction
	Vulnerability Remediation
	Ad-hoc Test Generation
	Log Analysis
	Patch Generation
	Dynamic Patch Propagation
	Binary Patch Decomposition

	Conclusions
	References

