
Evolve the Model Universe of a System Universe
1st Tao Yue

Simula Research Laboratory
Oslo, Norway

tao@simula.no, 0000-0003-3262-5577

2nd Shaukat Ali
Simula Research Laboratory
Oslo Metropolitan University

Oslo, Norway
shaukat@simula.no, 0000-0002-9979-3519

Streszczenie—Uncertain, unpredictable, real-time, and life-
long evolution causes operational failures in intelligent software
systems, leading to significant damages, safety and security
hazards, and tragedies. To fully unleash such systems’ potential
and facilitate their wider adoption, ensuring the trustworthi-
ness of their decision-making under uncertainty is the prime
challenge. To overcome this challenge, an intelligent software
system and its operating environment should be continuously
monitored, tested, and refined during its lifetime operation.
Existing technologies, such as digital twins, can enable con-
tinuous synchronisation with such systems to reflect their
most up-to-date states. Such representations are often in the
form of prior-knowledge-based and machine-learning models,
together called ‘model universe’. In this paper, we present
our vision of combining techniques from software engineering,
evolutionary computation, and machine learning to support the
model universe evolution.
Index Terms—Model Universe, System Universe, Coevolu-
tion, Epigenetics, Machine Learning

I. Motivation

Intelligent software systems are transforming business,
life, and the global economy. Machine learning (ML)
techniques are often employed in such systems to enable
nontrivial autonomous decision-making under uncertain-
ties, thereby being intelligent [1]. Such systems are prone
to unforeseen situations in operation due to several factors,
including 1) various degrees of uncertainty in physical
environments and networks; 2) the probabilistic, non-
backwards-traceable nature of the inner workings of the
ML techniques employed; 3) unpredictable or design-time-
unknown operating environments; and 4) the systems’ own
continuous and lifelong learning/evolution.
Such uncertain, unpredictable, real-time, and lifelong
evolution causes operational failures in intelligent so-
ftware systems, leading to significant damages, safety
and security hazards, and tragedies. Hence, ensuring the
dependability of such systems at design and development
time alone is insufficient to ensure their dependability in
real-world operation. Current approaches (e.g., testing)
are insufficient before such systems are deployed since it is
impossible to know all the critical situations these systems
will experience in the real world. Some of these situations
appear only during their operations, and it is also hard (if
even possible) to predict when and why. To fully unleash

This work is supported by the Co-tester project (No. 314544)
funded by the Research Council of Norway.

intelligent software systems’ potential and facilitate their
wider adoption, ensuring the trustworthiness of their
decision-making under uncertainty is the prime challenge.
Hence, intelligent software systems should be continu-
ously monitored, tested, and refined with real-world data
to ensure they can gracefully handle all uncertain and
unknown situations during their lifetime. Current techno-
logies, such as digital twins (digital and live representa-
tions of systems), can enable continuous synchronisation
with the systems to reflect their most up-to-date states
[2]. Such representations are often in the form of prior-
knowledge-based and ML models (i.e., model universe).
The former is widely used to represent software systems;
however, such models have a limited capability to support
the runtime analyses, reasoning, validation, and validation
of intelligent software systems during their operations
in uncertain environments. This is simply because the
prior knowledge required to create these models is only
partially available and, in some cases, has yet to be
discovered. Even worse, soon after their creation, these
models become obsolete and useless. This obsolescence is
accelerated when ML techniques are employed since ML
models face performance degradation over time due to, for
example, data drift, and they must inevitably evolve when
more data becomes available during the operation of such
systems. To stay alive and, therefore, valid and functional,
the model universe must continuously evolve to faithfully
represent the system of interest and its environment (i.e.,
system universe).

II. Concept Formulation and State-of-the-art

We present the key concepts and their relationships in
Figure 1. In the rest of the section, we discuss them in
detail.
1) Model and system universes: A model is considered
an ‘informative representation of an object, person or sys-
tem’ [3]. System models are simplified representations of
reality’s essential or relevant entities and their properties
at particular points in time and/or space that form parti-
cular interests, importance, and concerns and serve specific
purposes. Models are prevailingly used in software/system
engineering and are often classified into two categories
regarding their construction: prior-knowledge-based and
data-driven models. The former comprises models such as

ar
X

iv
:2

30
9.

13
34

2v
1 

 [
cs

.S
E

] 
 2

3 
Se

p 
20

23



Rysunek 1. Concepts and their relations. A system universe (an
intelligent software system and its operating environment) is repre-
sented by its model universe (prior-knowledge-based and ML models
with intelligent capabilities).

3D models created with simulators (e.g., for virtual surgi-
cal planning), Simulink, and Systems Modeling Language
(SysML) models for model-based system engineering [4],
[5]; the latter mainly refers to ML models, e.g., AlexNet
for image classification [6] and YOLO for object detection
[7].
The model universe of a system universe provides the
proper basis for reasoning about the system universe and
enables decision makings of all kinds. Here, we use the
term ‘universe’ to emphasise that our universe is 95%
unknown [8]; similarly, the system and model universes
contain many unknowns. Furthermore, knowing the uni-
verse is about understanding its formation and evolution,
and such an understanding is essential for building a
theory based on which scientific extrapolations can be
made about the future of the universe.
2) Uncertainties: The concept of ‘uncertainty’ can be
traced back to the philosophical question about the
certainty of knowledge, debated by the ancient Greek
philosophers, including Aristotle. Uncertainty has attrac-
ted significant attention since it is inherent in intelligent
software systems and their operating environments [9]–
[13]. One representative example is the uncertain opera-
ting environments of autonomous driving vehicles (i.e.,
external uncertainties) and inherent uncertainties of their
behaviours due to the use of ML models for perception
and path planning, among other decision-making tasks
(i.e., internal uncertainties). Moreover, models aimed at
understanding, reasoning, and predicting system behavio-
urs make assumptions of all kinds. Therefore, a model
universe devised for a system universe contains two types
of uncertainties: objective uncertainties, which refer to
phenomena whose existence and nature are independent
of any observing agency, and subjective uncertainties,
which refer to information existing within some agency
derived from that agency’s observations and/or reasoning
(i.e., belief agents) [14]. When gaining more knowledge,
subjective uncertainties can evolve into objective ones.
Uncertainties can also be classified into shallow uncer-
tainties and deep uncertainties. Being shallow means that

the probabilities of the outcomes are well known; therefore,
future events can be reasonably predicted by the past.
On the other hand, deep uncertainties refer to contexts
in which the probabilities of the outcomes are poorly
known, unknown, or unknowable, such that past events
can give little insight into future ones [8]. Though deep
uncertainties have been discussed in, for example, natural
hazard risk assessment [15] and financial investments in
climate change [16], they are rarely recognised in software
engineering.
Uncertainties in ML refer to the lack of confidence
in an ML model’s output. Estimating them is essential
to determine if they are low enough that the output
can be trusted. Typically, they are classified into (irre-
ducible) aleatory uncertainties and (reducible) epistemic
uncertainties, referring to the inherent stochasticity of
the observations and the lack of training data. The
software engineering community has only recently studied
uncertainty in ML. It, therefore, still primarily focuses on,
for example, applying uncertainty quantification methods
to supervise ML systems [17]–[20] with tool support [21]–
[23]. All these works limit the scope to uncertainties caused
by the (inherent) limitations of learned ML models, that
is, not covering data quality uncertainty (e.g., where the
quality of the input data is lower than the training data’s)
and scope compliance uncertainty (concerning differences
between a modelled context and its intended application
context), as classified in [24]. The gap between uncerta-
inties understood and captured in prior-knowledge-based
models of the model universe and uncertainties recognised
and quantified in its ML models is also not yet bridged.
3) Evolution of Prior-knowledge-based and ML models:
The common practice of software engineering is to manu-
ally and offline evolve models created based on prior know-
ledge with methods such as inference engines (e.g., Daikon
[25]). For instance, Zhang et al. proposed data-augmented
model evolution methods supported by model execution
and simulation techniques [26] to semi-automatically evo-
lve Unified Modeling Language (UML) state machines
and uncertainty measurements. Considering the multi-
paradigm modelling (MPM) nature of the model universe,
its evolution involves the evolution of models belonging to
the same modelling paradigm (e.g., SysML block definition
diagrams and state machines) and the coevolution of
models across MPM (e.g., Modelica models and 3D CAD
models). In the literature, solutions have been proposed
for MPM and co-simulations [27], [28], but not for the
coevolution of such models. For instance, UncerTolve [29]
advanced state of the art by using real operational data
from CPSs to evolve test models in UML and subjective
uncertainties offline, and DeepCollision [30] and LiveTCM
[31] evolve test scenarios of autonomous driving vehicles
in a 3D virtual environment with reinforcement learning.
ML models are often statically learned from historical
data with ML techniques. Most domain adaptation and
lifelong learning methods address data drift offline, requ-



iring the availability of both source and target domain in-
formation beforehand, an assumption that prevents them
from being applied in real contexts. For instance, RISE-DT
[18] is one such approach: it automatically evolves a digital
twin (with its model captured in automata and its capabi-
lity enabled with an ML model) to be applied to a different
application context of industrial elevator systems with
transfer learning offline. However, online methods must
fit the real-time context of evolving the model universe.
Online domain adaptation has recently been proposed to
continuously handle data drift for semantic segmentation
under ever-changing conditions during deployment [32]. In
addition, to learn from non-stationary (where data become
incrementally available over time) real-world data, lifelong
or continual learning – that is, continually evolving (via
acquiring, turning and transferring) knowledge throughout
lifespans across domains – seems promising [33]. The
most recent advance in this field is online lifelong and
continual learning [34], [35], suitable for model universe
evolution. Still, we need to see applications and empirical
studies, which are currently largely unavailable. Despite
these efforts, there needs to be a solution enabling the
holistic coevolution of the model universe.
4) Coevolution of model and system universes: Due to
uncertainties, a system universe is naturally an evolutio-
nary reality. Therefore, its corresponding model universe
should be an evolutionary model of the evolutionary
reality. Any mechanical model (without the dynamics of
changing for ‘good’) is doomed to be useless. As well put
by George Box in [36], ‘all models are wrong, but some
are useful’. This statement initially referred to statistical
models but now generally applies to all models. During
modelling, assumptions are made to understand and
predict the system universe. When the system universe
evolves, to be valid, the model universe needs to evolve
itself accordingly by 1) validating knowns (captured in
the model universe) with new information obtained from
the system universe, 2) refining subjective uncertainties, 3)
discovering unknowns to invalidate captured assumptions,
and 4) recognise the unknowable.
Without a suitable evolution mechanism, the difference
between the model and system universes becomes promi-
nent, and decisions based on an outdated model universe
are prone to errors. To maintain the model universe’s
usefulness, it must be continuously evolved to remain alive.
We, therefore, define evolution in the model universe as
its progression towards a direction from an uncertain or
worse state to a more certain or better one in terms of
supporting the system universe’s development, operation,
and maintenance. We consider coevolution in universes
as an evolution involving interactions of more than one
model type in the model universe or interactions across
the model and system universes.
5) Coevolutionary algorithms: Evolutionary computa-
tion has been applied to solve many optimisation pro-
blems, e.g., test optimisation [37]–[39], product confi-

guration optimisation [40], [41], and optimisations in
requirements engineering [42], [43]. A subset of evolutio-
nary algorithms, coevolutionary algorithms evaluate an
individual’s fitness based on how the individual performs
against others in the population [44], known as indirect
fitness. Relationships such as competition and cooperation
among individuals are vital in designing coevolutionary
algorithms, which can help simulate real-world scenarios
such as pedestrian detection [44] and search for game-
playing strategies [45].
Coevolutionary algorithms are often implemented in
different metaheuristic algorithms – such as genetic al-
gorithms (GA), genetic programming, and differential
evolution [46] – evidence shows that coevolutionary and
conventional evolutionary algorithms can complement
each other very well. In software engineering, although
coevolution has been leveraged in addressing software
development and testing challenges – as in test case
generation by coevolving test inputs and test oracles
[47], automatic programming [48] and software correction
[49], and the coevolution of models and tests [50] – it
is still largely unexplored for addressing complex and
practical problems requiring novel coevolution strategies
implemented in suitable evolutionary algorithms.
6) Epigenetics and epigenetic algorithms: ‘Epigenetics
studies heritable changes in gene expression that oc-
cur without changes in DNA sequence’ in response to
environmental changes [51]. An example is an octopus
temporarily changing colour to one not encoded in its
DNA in response to environmental threats [52]. Several
recent reviews have studied the role of epigenetics in
domesticated animals [53], plants [54], and humans [55].
For instance, diverse environmental behaviours (e.g. stress,
exercise, and exposure to a toxic environment) bring
epigenetic changes (both positive and adverse) in humans
during their life spans.
We postulate that epigenetic algorithms fit model
universe evolution well because 1) genes passed down
from parents (genetic inheritance) cannot react to sudden
changes in the environment by themselves, but epigenetic
inheritance, by controlling how genes work, allows for
fast adaptation when appropriate, increasing the speed
of convergence while maintaining stability in a changing
environment; 2) epigenetic mechanisms have the potential
to respond – and probably in most cases positively – to
all types of uncertainties if we constrain the direction of
evolution; and 3) epigenetic and coevolutionary algorithms
are both nature-inspired and hence can be naturally
incorporated.
Only a few epigenetic algorithms have been proposed:
epiGA [56] implements gene silencing and integrates it into
GA to control how genes are expressed or turned on or off
in response to environmental uncertainties; EpiLearn [57]
encodes dynamic environmental changes as an epigenetic
layer in a learning process to allow for adaptive and
efficient learning; and RELEpi [57] supports the coevolving



decision making of groups of agents (swarms) in uncertain
environments, although it has not yet proven effective for
real-world problems.
Though these works demonstrate that epigenetic algori-
thms are a promising direction for coping with uncertainty
and unknowns, we are far from being able to apply them
to handle uncertainties in model universe evolution due to
1) rarely seeing implementations of epigenetic mechanisms
from biology, 2) the lack of real-world applications, and
3) the unavailability of experimental frameworks, empi-
rical data, and research communities. This is because
epigenetics in biology is relatively new and complex, and
epigenetic encoding for real applications requires a deep
understanding of application contexts, problems to be
solved, and epigenetic mechanisms.
Concluding remark. There is no holistic method for
evolving the model universe of a system universe under
unknown uncertainties because the model universe’s evolu-
tion: 1) needs to be online and autonomous, 2) is triggered
at different times and in different spaces, 3) is tightly
entangled with uncertainties of various types and degrees,
4) needs to coordinate diverse modelling paradigms, and
5) needs to interact with the system universe during its
operation efficiently.

III. The Way forward

1) Identify universe coevolution patterns: We first
need to understand primary coevolution triggers (e.g.,
discovering unknowns in prior-knowledge–based models,
obtaining new data for adapting ML models), the time
points that trigger each coevolution (e.g., upon receiving
a new batch of data, as soon as an uncertain event
occurs), and the conditions under which each model
needs to be evolved to keep themselves alive and the
data requirements (e.g., quality and quantity). Following
the common practice of model-based engineering, these
understandings can be specified as a metamodel, based
on which methodologies and tools to specify, characterise,
and automatically identify each pattern can be proposed.
2) Inspired by coevolution mechanisms in nature:
Coevolution mechanisms in nature can provide inspiration
for designing and applying coevolutionary algorithms;
however, not all coevolution mechanisms can be directly
implemented in coevolutionary algorithms, mainly because
these mechanisms are complex and we have only a limited
understanding of them. It is therefore important to only
implement their essential features. For instance, some
interactions between the model and system universes
might be mapped to commensalism, where the model
universe benefits from the interactions with the system
universe (e.g., evolving itself with data received from the
system universe) while the system universe remains unaf-
fected. Future research is needed to systematically map
universe coevolution patterns (representing the problems
to be solved) to coevolution mechanisms in nature, which
will leverage the identification of existing coevolutionary

algorithms and the development of novel coevolutionary
algorithms to enable model universe evolution.
3) Develop uncertainty taxonomy, metamodel, quanti-
fication, and management methods: We need to develop
a comprehensive uncertainty taxonomy to support end-
to-end uncertainty management, characterising and qu-
antifying uncertainties (with the uncertainty metamodel
to be devised) which results in uncertainty models being
managed as part of the model universe. We will also need
to integrate various uncertainty quantification methods
for ML and prior-knowledge–based models to efficien-
tly enable holistic end-to-end uncertainty quantification
that involves more than one quantification method, for
example, connecting subjective uncertainties from prior-
knowledge models to objective uncertainties from sen-
sory data and, further, to uncertainties in ML models’
predictions, which could lead to uncertain decision ma-
king and the actuation of physical devices. A solution
needs to systematically select and base itself on various
uncertainty-related theories, such as probability theory for
quantifying the likelihood of known outcomes, possibility
theory for situations in which the probability of an event
is unknown or unknowable, Bayesian decision theory and
Bayesian updating to update the prior knowledge of belief
agents about given events, prospect theory for (subjective)
human decision making under uncertainty and risk (e.g.,
pedestrians crossing roads), chaos theory for modelling,
analysing, and improving system robustness, Dempster-
Shafer theory in handling situations lacking complete
information, and combinations of theories, powering end-
to-end uncertainty-aware model universe evolution.
4) Propose coevolutionary algorithms and epigenetics-
inspired algorithms: An envisioned solution must be
autonomous, data-augmented, and online, which puts high
requirements on its efficiency. To achieve this, we must
first rely on coevolutionary algorithms by developing opti-
mal encoding mechanisms for each coevolution pattern,
defining subjective internal measures for fitness, defining
adaptive problem decomposition structures, and overco-
ming challenges such as avoiding local optima, scaling,
and measuring performance. In response to uncertainties,
we need to develop epigenetics-inspired algorithms that
mimic biological adaptations in species by encoding each
model universe’s evolution pattern in the form of genomes
and epigenomes (both responsible for the regulation and
expression of genetic information), implementing generic
epigenetic operators based on three epigenetic mechani-
sms (DNA methylation, histone modification, and RNA
editing), and simulating uncertainties in gene expressions
through epigenetic changes by applying epigenetic opera-
tors to genes in the model universe through mechanisms
such as the introduction of epigenetic drift (i.e., where the
epigenetic marks change over time) and combing different
epigenetic operators.
5) Design multi-agent evolutionary reinforcement lear-
ning methods: We need to introduce coevolutionary algo-



rithms to multi-agent reinforcement learning by matching
each model in the model universe as a learning agent, its
environment as the system universe, and other models
(i.e., agents) in the model universe. For instance, for
policy-based reinforcement learning, one can let agents
compete or cooperate (or other coevolution mechanisms)
to learn from their interactions, evolve the agents’ policies
via the coevolutionary process, and design the agents’
rewards to encourage or discourage their behaviours. We
will introduce epigenetic mechanisms to coevolutiona-
ry algorithms based on uncertainties under study, for
example, by controlling gene expressions in response to
the environmental changes of individuals in an agent’s
population, influencing the evolution of individuals by
controlling genetic operators such as mutation rates, and
controlling the selection of individuals for reproduction.
When integrating epigenetic and coevolutionary algori-
thms with multi-agent reinforcement learning, we can
use coevolutionary algorithms to evolve the policies of
multiple agents in a reinforcement learning setting and
use the epigenetic mechanisms to modulate the agents’
policies based on their experiences and interactions with
other agents/models and the environment (i.e., the system
universe).
Impact. Intelligent software systems are used in many
applications, such as healthcare, agriculture, transporta-
tion, and manufacturing, and have an enormous impact
on our lives and demand a high degree of dependability on
these systems’ operations. With the envisioned solution,
the dependability of the current and future intelligent
software systems will be significantly improved through
fully-fledged model universes capable of robustly dealing
with uncertainties in real time.

Literatura

[1] L. E. Lwakatare, A. Raj, I. Crnkovic, J. Bosch, and H. H. Olsson,
“Large-scale machine learning systems in real-world industrial
settings: A review of challenges and solutions,” Information and
software technology, vol. 127, p. 106368, 2020.

[2] T. Yue, P. Arcaini, and S. Ali, “Understanding digital twins
for cyber-physical systems: A conceptual model,” in Leveraging
Applications of Formal Methods, Verification and Validation:
Tools and Trends, T. Margaria and B. Steffen, Eds. Cham:
Springer International Publishing, 2021, pp. 54–71.

[3] “Model,” 2023. [Online]. Available: https://en.wikipedia.org/
wiki/Model

[4] A. L. Ramos, J. V. Ferreira, and J. Barceló, “Model-based sys-
tems engineering: An emerging approach for modern systems,”
IEEE Transactions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews), vol. 42, no. 1, pp. 101–111, 2012.

[5] T. Wang, C. Tan, L. Huang, Y. Shi, T. Yue, and Z. Huang,
“Simplexity testbed: A model-based digital twin testbed,”
Computers in Industry, vol. 145, p. 103804, 2023. [Online].
Available: https://www.sciencedirect.com/science/article/pii/
S0166361522002007

[6] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
classification with deep convolutional neural networks,” Com-
munications of the ACM, vol. 60, no. 6, pp. 84–90, 2017.

[7] J. Redmon and A. Farhadi, “Yolo9000: better, faster, stronger,”
in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2017, pp. 7263–7271.

[8] N. Aghanim, Y. Akrami, M. Ashdown, J. Aumont, C. Bac-
cigalupi, M. Ballardini, A. Banday, R. Barreiro, N. Bartolo,
S. Basak et al., “Planck 2018 results-vi. cosmological parameters
(corrigendum),” Astronomy & Astrophysics, vol. 652, p. C4,
2021.

[9] X. Zhang, “Uncertainty-guided testing and robustness enhan-
cement for deep learning systems,” in Proceedings of the
ACM/IEEE 42nd International Conference on Software Engi-
neering: Companion Proceedings, 2020, pp. 101–103.

[10] S. Y. Shin, K. Chaouch, S. Nejati, M. Sabetzadeh, L. C. Briand,
and F. Zimmer, “Uncertainty-aware specification and analysis
for hardware-in-the-loop testing of cyber-physical systems,”
Journal of Systems and Software, vol. 171, p. 110813, 2021.

[11] F. O. Catak, T. Yue, and S. Ali, “Uncertainty-aware prediction
validator in deep learning models for cyber-physical system
data,” ACM Transactions on Software Engineering and Metho-
dology (TOSEM), vol. 31, no. 4, pp. 1–31, 2022.

[12] L. Han, T. Yue, S. Ali, A. Arrieta, and M. Arratibel, “Are
elevator software robust against uncertainties? results and
experiences from an industrial case study,” ser. ESEC/FSE
2022. New York, NY, USA: Association for Computing
Machinery, 2022, p. 1331–1342. [Online]. Available: https:
//doi.org/10.1145/3540250.3558955

[13] L. Han, S. Ali, T. Yue, A. Arrieta, and M. Arratibel,
“Uncertainty-aware robustness assessment of industrial elevator
systems,” vol. 32, no. 4, may 2023. [Online]. Available:
https://doi.org/10.1145/3576041

[14] M. Zhang, B. Selic, S. Ali, T. Yue, O. Okariz, and R. Nor-
gren, “Understanding uncertainty in cyber-physical systems: A
conceptual model,” in Modelling Foundations and Applications,
A. Wąsowski and H. Lönn, Eds. Cham: Springer International
Publishing, 2016, pp. 247–264.

[15] S. Almeida, E. A. Holcombe, F. Pianosi, and T. Wagener,
“Dealing with deep uncertainties in landslide modelling for
disaster risk reduction under climate change,” Natural Hazards
and Earth System Sciences, vol. 17, no. 2, pp. 225–241, 2017.

[16] D. Narita, I. Sato, D. Ogawada, and A. Matsumura, “Evaluating
the robustness of project performance under deep uncertainty
of climate change: A case study of irrigation development in
kenya,” Climate Risk Management, vol. 36, p. 100426, 2022.

[17] M. Weiss and P. Tonella, “Uncertainty quantification for deep
neural networks: An empirical comparison and usage guideli-
nes,” arXiv preprint arXiv:2212.07118, 2022.

[18] Q. Xu, S. Ali, T. Yue, and M. Arratibel, “Uncertainty-aware
transfer learning to evolve digital twins for industrial elevators,”
in Proceedings of the 30th ACM Joint European Software
Engineering Conference and Symposium on the Foundations
of Software Engineering, 2022, pp. 1257–1268.

[19] Q. Xu, S. Ali, and T. Yue, “Digital twin-based anomaly
detection with curriculum learning in cyber-physical systems,”
ACM Trans. Softw. Eng. Methodol., feb 2023, just Accepted.
[Online]. Available: https://doi.org/10.1145/3582571

[20] F. O. Catak, T. Yue, and S. Ali, “Prediction surface uncerta-
inty quantification in object detection models for autonomous
driving,” in 2021 IEEE International Conference on Artificial
Intelligence Testing (AITest), 2021, pp. 93–100.

[21] M. Weiss and P. Tonella, “Uncertainty-wizard: Fast and user-
friendly neural network uncertainty quantification,” in 2021
14th IEEE Conference on Software Testing, Verification and
Validation (ICST). IEEE, 2021, pp. 436–441.

[22] Z. Zou, X. Meng, A. F. Psaros, and G. E. Karniadakis, “Neu-
raluq: A comprehensive library for uncertainty quantification
in neural differential equations and operators,” arXiv preprint
arXiv:2208.11866, 2022.

[23] Y. Chung, I. Char, H. Guo, J. Schneider, and W. Neiswanger,
“Uncertainty toolbox: an open-source library for assessing,
visualizing, and improving uncertainty quantification,” arXiv
preprint arXiv:2109.10254, 2021.

[24] M. Kläs and A. M. Vollmer, “Uncertainty in machine learning
applications: A practice-driven classification of uncertainty,”
in Computer Safety, Reliability, and Security: SAFECOMP
2018 Workshops, ASSURE, DECSoS, SASSUR, STRIVE, and
WAISE, Väster̊as, Sweden, September 18, 2018, Proceedings 37.
Springer, 2018, pp. 431–438.

https://en.wikipedia.org/wiki/Model
https://en.wikipedia.org/wiki/Model
https://www.sciencedirect.com/science/article/pii/S0166361522002007
https://www.sciencedirect.com/science/article/pii/S0166361522002007
https://doi.org/10.1145/3540250.3558955
https://doi.org/10.1145/3540250.3558955
https://doi.org/10.1145/3576041
https://doi.org/10.1145/3582571


[25] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pa-
checo, M. S. Tschantz, and C. Xiao, “The daikon system for
dynamic detection of likely invariants,” Science of computer
programming, vol. 69, no. 1-3, pp. 35–45, 2007.

[26] M. Zhang, S. Ali, T. Yue, and R. Norgre, “Uncertainty-wise
evolution of test ready models,” Information and Software
Technology, vol. 87, pp. 140–159, 2017.

[27] W. de Paula Ferreira, F. Armellini, and L. A. De Santa-
Eulalia, “Simulation in industry 4.0: A state-of-the-art review,”
Computers & Industrial Engineering, vol. 149, p. 106868, 2020.

[28] A. Barǐsić, I. Ruchkin, D. Savić, M. A. Mohamed, R. Al-Ali,
L. W. Li, H. Mkaouar, R. Eslampanah, M. Challenger, D. Blouin
et al., “Multi-paradigm modeling for cyber–physical systems: A
systematic mapping review,” Journal of Systems and Software,
vol. 183, p. 111081, 2022.

[29] M. Zhang, S. Ali, T. Yue, and R. Norgre, “Uncertainty-
wise evolution of test ready models,” Information and
Software Technology, vol. 87, pp. 140–159, 2017. [Online].
Available: https://www.sciencedirect.com/science/article/pii/
S0950584917302161

[30] C. Lu, Y. Shi, H. Zhang, M. Zhang, T. Wang, T. Yue, and S. Ali,
“Learning configurations of operating environment of autono-
mous vehicles to maximize their collisions,” IEEE Transactions
on Software Engineering, vol. 49, no. 1, pp. 384–402, 2023.

[31] Y. Shi, C. Lu, M. Zhang, H. Zhang, T. Yue, and S. Ali,
“Restricted natural language and model-based adaptive test
generation for autonomous driving,” in 2021 ACM/IEEE 24th
International Conference on Model Driven Engineering Langu-
ages and Systems (MODELS), 2021, pp. 101–111.

[32] T. Panagiotakopoulos, P. L. Dovesi, L. Härenstam-Nielsen, and
M. Poggi, “Online domain adaptation for semantic segmenta-
tion in ever-changing conditions,” in Computer Vision–ECCV
2022: 17th European Conference, Tel Aviv, Israel, October 23–
27, 2022, Proceedings, Part XXXIV. Springer, 2022, pp. 128–
146.

[33] G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, and S. Wermter,
“Continual lifelong learning with neural networks: A review,”
Neural networks, vol. 113, pp. 54–71, 2019.

[34] Z. Mai, R. Li, J. Jeong, D. Quispe, H. Kim, and S. Sanner,
“Online continual learning in image classification: An empirical
survey,” Neurocomputing, vol. 469, pp. 28–51, 2022.

[35] B. Liu, “Learning on the job: Online lifelong and continual
learning,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 34, no. 09, 2020, pp. 13 544–13 549.

[36] G. Box, “Robustness in the strategy of scientific model
building,” in Robustness in Statistics, R. L. LAUNER
and G. N. WILKINSON, Eds. Academic Press, 1979, pp.
201–236. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/B9780124381506500182

[37] A. Arrieta, S. Wang, G. Sagardui, and L. Etxeberria, “Search-
based test case prioritization for simulation-based testing of
cyber-physical system product lines,” Journal of Systems and
Software, vol. 149, pp. 1–34, 2019.

[38] A. Panichella, F. M. Kifetew, and P. Tonella, “A large scale
empirical comparison of state-of-the-art search-based test case
generators,” Information and Software Technology, vol. 104, pp.
236–256, 2018.

[39] R. A. Silva, S. d. R. S. de Souza, and P. S. L. de Souza, “A sys-
tematic review on search based mutation testing,” Information
and Software Technology, vol. 81, pp. 19–35, 2017.

[40] C. Henard, M. Papadakis, M. Harman, and Y. Le Traon,
“Combining multi-objective search and constraint solving for
configuring large software product lines,” in 2015 IEEE/ACM
37th IEEE International Conference on Software Engineering,
vol. 1. IEEE, 2015, pp. 517–528.

[41] R. E. Lopez-Herrejon, L. Linsbauer, and A. Egyed, “A syste-
matic mapping study of search-based software engineering for
software product lines,” Information and software technology,
vol. 61, pp. 33–51, 2015.

[42] H. Zhang, M. Zhang, T. Yue, S. Ali, and Y. Li, “Uncertainty-
wise requirements prioritization with search,” ACM Transac-
tions on Software Engineering and Methodology (TOSEM),
vol. 30, no. 1, pp. 1–54, 2020.

[43] Y. Zhang, A. Finkelstein, and M. Harman, “Search based
requirements optimisation: Existing work and challenges,” in
Requirements Engineering: Foundation for Software Quality,
B. Paech and C. Rolland, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2008, pp. 88–94.

[44] Y. Xu, X. Cao, and H. Qiao, “A low-cost pedestrian detection
system with a single optical camera,” in 2006 6th World
Congress on Intelligent Control and Automation, vol. 2. IEEE,
2006, pp. 8759–8763.

[45] C. D. Rosin and R. K. Belew, “New methods for competitive
coevolution,” Evolutionary computation, vol. 5, no. 1, pp. 1–29,
1997.

[46] X. Ma, X. Li, Q. Zhang, K. Tang, Z. Liang, W. Xie, and Z. Zhu,
“A survey on cooperative co-evolutionary algorithms,” IEEE
Transactions on Evolutionary Computation, vol. 23, no. 3, pp.
421–441, 2019.

[47] A. Ouni, M. Kessentini, H. Sahraoui, and M. Boukadoum,
“Maintainability defects detection and correction: a multi-
objective approach,” Automated Software Engineering, vol. 20,
pp. 47–79, 2013.

[48] A. Arcuri and X. Yao, “Co-evolutionary automatic program-
ming for software development,” Information Sciences, vol. 259,
pp. 412–432, 2014.

[49] J. L. Wilkerson, D. R. Tauritz, and J. M. Bridges, “Multi-
objective coevolutionary automated software correction,” in
Proceedings of the 14th annual conference on Genetic and
evolutionary computation, 2012, pp. 1229–1236.

[50] S. Koos, J.-B. Mouret, and S. Doncieux, “Automatic system
identification based on coevolution of models and tests,” in 2009
IEEE congress on evolutionary computation. IEEE, 2009, pp.
560–567.

[51] V. Bollati and A. Baccarelli, “Environmental epigenetics,”
Heredity, vol. 105, no. 1, pp. 105–112, 2010.

[52] N. Liscovitch-Brauer, S. Alon, H. T. Porath, B. Elstein,
R. Unger, T. Ziv, A. Admon, E. Y. Levanon, J. J. Rosenthal,
and E. Eisenberg, “Trade-off between transcriptome plasticity
and genome evolution in cephalopods,” Cell, vol. 169, no. 2, pp.
191–202, 2017.

[53] G. Vogt, “Facilitation of environmental adaptation and evo-
lution by epigenetic phenotype variation: insights from clonal,
invasive, polyploid, and domesticated animals,” Environmental
epigenetics, vol. 3, no. 1, 2017.

[54] B. J. Kelly, J. R. Fitch, Y. Hu, D. J. Corsmeier, H. Zhong,
A. N. Wetzel, R. D. Nordquist, D. L. Newsom, and P. White,
“Churchill: an ultra-fast, deterministic, highly scalable and
balanced parallelization strategy for the discovery of human
genetic variation in clinical and population-scale genomics,”
Genome biology, vol. 16, pp. 1–14, 2015.

[55] R. R. Kanherkar, N. Bhatia-Dey, and A. B. Csoka, “Epigenetics
across the human lifespan,” Frontiers in cell and developmental
biology, vol. 2, p. 49, 2014.

[56] D. H. Stolfi and E. Alba, “Epigenetic algorithms: A new way of
building gas based on epigenetics,” Information Sciences, vol.
424, pp. 250–272, 2018.

[57] F. Mukhlish, J. Page, and M. Bain, “Reward-based epigenetic
learning algorithm for a decentralised multi-agent system,”
International Journal of Intelligent Unmanned Systems, vol. 8,
no. 3, pp. 201–224, 2020.

https://www.sciencedirect.com/science/article/pii/S0950584917302161
https://www.sciencedirect.com/science/article/pii/S0950584917302161
https://www.sciencedirect.com/science/article/pii/B9780124381506500182
https://www.sciencedirect.com/science/article/pii/B9780124381506500182

	Motivation
	Concept Formulation and State-of-the-art
	Model and system universes
	Uncertainties
	Evolution of Prior-knowledge-based and ML models
	Coevolution of model and system universes
	Coevolutionary algorithms
	Epigenetics and epigenetic algorithms


	The Way forward
	Identify universe coevolution patterns
	Inspired by coevolution mechanisms in nature
	Develop uncertainty taxonomy, metamodel, quantification, and management methods
	Propose coevolutionary algorithms and epigenetics-inspired algorithms
	Design multi-agent evolutionary reinforcement learning methods


	Literatura

