
Repeated Builds During Code Review:
An Empirical Study of the OpenStack Community

Rungroj Maipradit1, Dong Wang2∗, Patanamon Thongtanunam3

Raula Gaikovina Kula4, Yasutaka Kamei2, Shane McIntosh1

1 University of Waterloo, Canada; {rungroj.maipradit, shane.mcintosh}@uwaterloo.ca
2 Kyushu University, Japan; {d.wang, kamei}@ait.kyushu-u.ac.jp

3 The University of Melbourne, Australia; patanamon.t@unimelb.edu.au
4 Nara Institute of Science and Technology, Japan; raula-k@is.naist.jp

Abstract—Code review is a popular practice where developers
critique each others’ changes. Since automated builds can identify
low-level issues (e.g., syntactic errors, regression bugs), it is not
uncommon for software organizations to incorporate automated
builds in the code review process. In such code review deployment
scenarios, submitted change sets must be approved for integration
by both peer code reviewers and automated build bots. Since
automated builds may produce an unreliable signal of the status
of a change set (e.g., due to “flaky” or non-deterministic execution
behaviour), code review tools, such as Gerrit, allow developers
to request a “recheck”, which repeats the build process without
updating the change set. We conjecture that an unconstrained
recheck command will waste time and resources if it is not applied
judiciously. To explore how the recheck command is applied in
a practical setting, in this paper, we conduct an empirical study
of 66,932 code reviews from the OpenStack community.

We quantitatively analyze (i) how often build failures are
rechecked; (ii) the extent to which invoking recheck changes
build failure outcomes; and (iii) how much waste is generated
by invoking recheck. We observe that (i) 55% of code reviews
invoke the recheck command after a failing build is reported; (ii)
invoking the recheck command only changes the outcome of a
failing build in 42% of the cases; and (iii) invoking the recheck
command increases review waiting time by an average of 2,200%
and equates to 187.4 compute years of waste—enough compute
resources to compete with the oldest land living animal on earth.

Our observations indicate that the recheck command is fre-
quently used after the builds fail, but does not achieve a high
likelihood of build success. Based on a developer survey and
our history-based quantitative findings, we encourage reviewer
teams to think twice before rechecking and be considerate
of waste. While recheck currently generates plenty of wasted
computational resources and bloats waiting times, it also presents
exciting future opportunities for researchers and tool builders to
propose solutions that can reduce waste.

Index Terms—Code Review, Continuous Integration, Waste

I. INTRODUCTION

Code review is broadly recognized as a key approach for
improving the quality of software projects [1, 2]. While it
was rooted in the formal code inspection process of the
past [3], the modern variant of code review that is popular
today [4, 5] features online reviewing tools (e.g., Gerrit) and
asynchronously performed reviewing activities. The benefits of

∗Corresponding author.

code review are well established, including code improvement,
knowledge transfer, and finding defects [6].

Although code review brings many benefits, it introduces
a large overhead for software organizations. Indeed, Bosu
and Carver [7] estimate that developers spend an average
of six hours per week performing reviews. Recent efforts
incorporate automation to reduce the reviewing burden on
developers [8, 9], including automated builds to relieve the
burden of detecting low-level issues (e.g., regression bugs).
Often, automated builds are incorporated through a Continuous
Integration (CI) bot, which automatically compiles and tests
each version of a proposed change set [10]. The key benefit of
CI in this context is to provide quick feedback to developers on
whether change sets will smoothly integrate with the existing
codebase. This is especially useful, since both authors and
reviewers can focus their discussion on higher-level code
properties [11, 12], e.g., design [13].

When the outcome of a CI job is not successful (i.e., a
CI job fails), developers may need to diagnose the failure,
update their change set, and re-run the CI job. However, it is
possible that the signal from a CI job may not be completely
reliable and the diagnosis of a CI failure may suggest that the
change set is not to blame [14]. For example, a CI job may fail
sporadically if tests produce non-deterministic (a.k.a., “flaky”)
results [15–17], testing environments encounter infrastructure
failures [18], or a CI service provider has an outage [19].
When developers suspect that a change set is not to blame
for a failing CI job, they may request for the CI bot to repeat
the process. For example, to issue such a request, users of the
Gerrit code review tool can post a comment containing the
word “recheck”.

While repeated builds can be justified if the outcome
changes, if they are not applied judiciously, additional com-
puting resources can be wasted, and waiting time during the
review process can accumulate. Based on the definition of
Sedano et al. [20], this sort of (unnecessary) computation
and waiting time for the repeated CI process with unchanged
outcomes is considered software waste because the activity
consumes resources without providing much value (if any) to
the software organization.

Organizational guidelines often attempt to aid in decision-

ar
X

iv
:2

30
8.

10
07

8v
1

 [
cs

.S
E

]
 1

9
A

ug
 2

02
3

making when it comes to repeated builds. For example, the
testing guidelines for the OpenStack organization1 state that:

You will be tempted to just recheck the patch to see if
it fails again, but please DO NOT DO THAT. CI test
resources are a very scarce resource (and becoming
more so all the time), so please be extremely sparing
when asking the system to re-run tests.

Although the consumption is often opaque to developers,
wasted CI resources consume project finances and can even
increase the carbon footprint of an organization [21].

This paper explores the extent to which developers use
the recheck command to repeat the CI automation process
during code review, and how much potential waste (waiting
time and computational resource) is generated. We conduct an
empirical study of 66,932 code reviews from the OpenStack
community. To structure our study, we formulate the following
three research questions:

RQ1. How often are failing CI jobs rechecked?
Results. 55% of code reviews contain at least one
request to repeat the CI process without updating the
code via the recheck command. On average, recheck is
invoked twice within each change set, while 58.5% of
the change sets invoked a single recheck. These results
suggest that in the OpenStack community, the recheck
function is often used to repeat the CI process, but it is
typically used sparingly within change sets.

RQ2. How often do CI outcomes change after a recheck?
Results. We find that the CI outcomes of 42% of change
sets were changed after the recheck commands were
invoked, with only 24% of these attempts being justi-
fiable waste (i.e., invoking recheck only once). From a
closer inspection of the 100 most frequent test jobs that
had changed outcomes after rechecks were issued, we
find that integration test jobs are the most frequent type
of test job associated with changing outcomes. These
results suggest that CI outcomes do not always change
after a recheck is issued. Often, multiple rechecks are
needed to obtain a successful CI outcome.

RQ3. How much overhead is generated by rechecking
builds?
Results. We estimate that the total amount of overhead
that is generated by the recheck command is a compu-
tational time of 187.4 years and an additional review
waiting time of 16.81 years, while justifiable waste
generates 16.78 years of computational time and 1.66
years of review waiting time. We also find that reviews
where recheck is issued take an average of seven times
more computational time and 22 times more waiting
time than those reviews without recheck.

To understand how the OpenStack community perceives
our empirical observations, we solicit their input through an

1https://docs.openstack.org/project-team-guide/testing.html

online survey.2 We receive 24 valid responses from community
members, with the majority having more than five years
of service. Thematic analysis of the responses suggests that
developers frequently invoke recheck despite being aware of
the large costs that rechecks generate.

While recheck currently generates plenty of wasted compu-
tation and waiting time, our study also presents exciting future
opportunities for researchers and tool builders. Such oppor-
tunities include (i) applying restraints, such as timeouts and
delays on repeated rechecks, and (ii) proposing mechanisms
to recheck only failed jobs. Much like the key principle in
lean manufacturing, we envision opportunities to identify and
eliminate such software waste.
Fostering Open Science: We provide a replication package,
which includes raw data, statistical test results, survey results,
and a code script [22].

II. BACKGROUND AND MOTIVATION

In this section, we introduce the code review process,
explain the CI job repetition process, and provide a real-world
example of recheck waste to motivate our study.

(A) Code Review and Continuous Integration (CI).
Modern code review is a lightweight process, which has
been adopted in industrial and open-source settings [2, 23].
Nowadays, code review is typically performed online and
asynchronously using a review tool. To begin the process, a
code author first submits a change set (i.e., a cohesive set of
changes to project files) with a description of the changes to
the review tool. Then, reviewers (i.e., developers other than
the author) critique the premise, content, and structure of the
submitted change set to provide feedback that the author can
use to improve.

A code author may test their change set locally before
submitting it; however, not all developers have access to
sufficient test resources to run the entire suite of tests. Hence,
reviewers cannot assume that a developer has performed all of
the relevant tests. Therefore, the code review process is tightly
integrated with CI through bots that automatically perform
builds and invoke regression tests. Along with the reviewers’
feedback, CI bots report the outcome of the automated build
and regression tests. Figure 1 shows an example of a code
review ID #684432 from the OpenStack community.3 The
change log in Figure 1(a) shows that the patch set 1 of
#684432 received failure reports from two build jobs (i.e.,
A and B) that originate from two CI bots, i.e., RDO Third
Party CI and Zuul.

To address reviewer feedback and satisfy CI bots, authors
may upload revisions of change sets. This review, test, and
improvement cycle is repeated until the latest revision satisfies
the CI bot and the reviewers. To adhere to Gerrit terminology,

2We obtained approval for this study from the Nara Institute of Science
and Technology ethics review board on , "A Study of how a Recheck of
Software Builds causes Resource Waste in Continuous Integration during
Software Development" (# 2022-I-13).

3https://review.opendev.org/c/openstack/tripleo-heat-templates/+/684432

https://docs.openstack.org/project-team-guide/testing.html

(a) Change log showing a thread of comments.

CI Bot

CI Bot

A

B

C

C

(b) Test jobs and test outcomes within a CI bot failure.

Fig. 1. Real-world example of the usage of recheck during the code review #684432 from OpenStack community. A box and B box denote the CI bot,
while C box refers to the test jobs in a CI bot. D box represents the recheck request.

we refer to a change set as a code review, and revisions of
a change set as a patch set.

(B) Re-run CI job. To determine whether and how to
address feedback from a CI bot, authors must diagnose log
files and perhaps even reproduce the failure locally. If authors
suspect that the failure is not related to their code review,
they may request a re-run of the CI bot using the recheck
command. The recheck command is particularly helpful when
tests are known to be flaky. For example, Figure 1(b) shows
lists of test jobs and their associated build jobs (see C), which
indicate that patch set 1 failed due to two test jobs from RDO
Third Party CI and one test job from Zuul. Then, the
code author requested a recheck (see D in Figure1(a)). Even
though multiple rechecks were issued, patch set 1 still failed
the regression tests of Zuul (see E in Figure1(a)).

(C) Resource Waste generated by CI Bots. Although
the recheck command could save the developer effort on
investigating test failures, it is wasteful to recheck without
first diagnosing whether the failure is due to flakiness. When
failures are indeed caused by a patch set, blind rechecks
waste review waiting time and computational resources and
the CI outcome is likely unchanged after a recheck. Senado
et al. [20] argue that any activity that consumes resources but
creates no value can be considered as Software Development
Waste. Thus, the waiting time and computational resources that
are spent on rechecks of non-flaky builds (i.e., CI outcomes
do not change) could be considered as software waste as well.

The example in Figure 1 shows that code author #684432
requested two rechecks for patch set 1 before abandoning
the patch set. As we can see, the outcome of the tests of the
Zuul and RDO Third Party CI jobs continued to fail.
The average waiting time for these rechecks is 3 hours 12
minutes. Moreover, these two rechecks generate an additional

wasted 6 hours 25 minutes of waiting time, and 41 hours 2
minutes of computational time. Motivated by this, we set out
to examine the prevalence of the use of the recheck command
and investigate the potential costs that are incurred.

III. CASE STUDY DESIGN

In this section, we motivate our research questions and
describe our data preparation approach.

A. Research Questions

Three research questions are formulated to guide our study.

RQ1: How often are failing CI jobs rechecked?
Motivation. Continuous Integration (CI) bots help code authors
and reviewers automatically check whether the proposed patch
set can be safely merged into an upstream repository (i.e., pass
automated quality checks). If the build is unsuccessful, the
code author may use the recheck command to rebuild the patch
set without making any code changes. Since rechecked builds
impose additional computational (and in terms, financial)
costs, we set out to better understand to what degree CI build
failures are rechecked.

RQ2: How often do CI outcomes change after a recheck?
Motivation. Rechecks should be used when CI jobs fail due
to factors external to the code change under scrutiny (e.g.,
test flakiness); however, the extent to which these rechecks
change the build outcome is unknown. Thus, we formulate
RQ2 to investigate the degree to which CI outcomes change
after recheck is performed.

RQ3: How much overhead is generated by rechecking
builds?
Motivation. When recheck is performed, CI bots spend addi-
tional computation resources to rebuild a patch set. In addition,

TABLE I
SUMMARY STATISTIC OF COLLECTED DATASET

Studied Project OpenStack
Studied Period August 2012 – June 2022
Code reviews 66,932
Review Comments (change log) 898,706
Patch sets 267,239
Avg. - Med. - Max. # patch sets per CR 4 - 2 - 948

the reviewing process is stalled while waiting for the outcomes
of the recheck. As discussed in Section 2, the outcome
may not change after rechecking, implying that additional
computational and waiting time have been spent ineffectively.
Therefore, we set out to quantify this potential overhead.

B. Data Preparation

Studied Projects: In this paper, we study the OpenStack
community because they use the popular Gerrit review tool,4

and the community has been extensively studied in the context
of code reviews [5, 24]. OpenStack is a community of open-
source software projects where numerous established organiza-
tions and companies collaborate to develop a cloud computing
platform. The OpenStack community has invested substantial
effort in carefully documenting and performing code reviews
over the last decade, making it a valuable subject community
from which we can draw insights and lessons learned for
other communities. Within the OpenStack community, we
have selected the four most active sub-projects: Nova, Cinder,
Ironic, and Neutron [25]. OpenStack is an open-source cloud
computing platform that allows users to manage compute,
storage, and networking resources through an API.5 These four
studied sub-projects, Nova, Cinder, Ironic, and Neutron, repre-
sent a diverse range of functionality within OpenStack, which
includes virtual machine compute, block storage, bare metal
hardware lifecycle, and networking services, respectively.

Data collection: To collect the code reviews from these
four sub-projects, we use the RESTful API provided by the
Gerrit code review tool. As shown in Table I, we capture
66,932 closed code reviews along with 267,239 patch sets
from August 2012 to June 2022. Since we set out to in-
vestigate interactions between developers and CI bots, we
further collected review comments (which include change log
information) related to each code review. In total, we retrieve
898,706 review comments.

IV. STUDY RESULTS

In this section, we present the approach and findings for
each proposed research question.

A. Recheck Prevalence

Approach. To investigate to what degree are CI build
failures rechecked (RQ1), we analyze descriptive statistics of
the number of patch sets that (i) did not pass CI bots (i.e.,

4https://www.gerritcodereview.com/
5https://www.openstack.org/software/

0 5 10 15 20 25
Invoked rechecks

0.0

0.1

0.2

0.3

0.4

0.5

0.6

P
ro

po
rti

on
 o

f p
at

ch
 s

et
s

Fig. 2. Proportion of patch sets and number of invoked rechecks.

received build failures from CI bots) and (ii) were rechecked.
Specifically, to identify patch sets with build failures, we use a
regular expression, i.e., (?:build failed) to search the
build failure outcomes in comments from CI bots in the studied
code reviews. Then, we check if recheck is requested for these
patch sets that received build failures from CI bots using
a regular expression, i.e., (?:recheck) on the comments
posted after the build failures for these patch sets.

To quantify the prevalence of CI builds that are rechecked,
we first calculate the proportion of code reviews that have at
least one patch set with build failures and those build failures
were rechecked. Since one code review may have multiple
patch sets, we also calculate the proportion of patch sets that
were rechecked after the build failures. It is also possible that
one patch set may have multiple rechecks. Thus, we further
examine the frequency and distributions of rechecks that were
performed per patch set.

Observation 1: 55% of code reviews have at least one patch
set that was rechecked after the failing CI job. From 41,868
code reviews that contain at least one build failure, we find that
more than half of the studied code reviews (55%; 23,086 out of
41,868 reviews) with at least one patch set that was rechecked
after the build failures. As shown, 45% of code reviews did not
invoke rechecks during the code review process. In this case,
the test jobs had failed without recheck invoked. Investigations
at the patch set granularity level indicate that a bit over a
quarter of the patch sets (i.e., 26%; 36,783 out of 142,165)
that had a recheck invoked after CI failed, which is a one in
four chance to invoke a recheck.

We also investigated the prevalence of recheck commands
in passing builds to further our understanding of the recheck
commands used to repeat the CI process. Among 80,428
patch sets containing only build success, we discovered that
2,307 (3%) contained recheck commands. One reason for
using recheck in passing builds seems to be related to failing
tests with non-voting power (i.e., tests whose result does not
determine whether the build is a success or failure), with 55%
of all passing builds containing recheck including such tests.

Multiple RecheckOutcome 1 Recheck nRecheck 1 Outcome n

A A

A A

B

A A

A A

BB

B
Ju

st
ifi

ab
le

C
ha

ng
ed

 o
ut

co
m

e
U

nc
ha

ng
ed

 o
ut

co
m

e

A A

A A

8,965 patch sets

6,517 patch sets

12,063 patch sets

9,238 patch sets

E1

E6

E5

E4

E3

E2

Fig. 3. Six examples to illustrate possible outcomes of CI failed jobs with an invoked recheck to repeated the build.

For example in the code review ID #7522066 first patch set,
after developers attempt to recheck, a comment mentions an
error about failing non-voting jobs.

Observation 2: On average, a patch set with build failures
was invoked a recheck two times. Figure 2 shows the
distribution of invoked rechecks that occur in a patch set.
In detail, the figure shows the proportion of patch sets (y-
axis) against the number of invoked rechecks. According to
the figure, most patch sets (i.e., 59%) invoked a single recheck
after a build failure. In the extreme case, the number of recheck
in a patch set could reach up to 226. We observe that in this
case, the code review is often submitted to test CI jobs. An
average mean, a patch set is prone to multiple rechecks (having
two times) after the CI build failure.

RQ1 Summary: Findings indicate that more than
half (i.e., 55%) of code reviews with failing CI jobs
were rechecked by the review team. Furthermore, most
patch sets (59%) attempted a single recheck.

B. Changing CI Build Outcomes

Approach. To investigate the extent to which invoking
recheck changes the CI outcome from failure to success (RQ2),
we analyze (i) the proportion of the patch sets whose CI
outcomes were changed after invoking recheck and (ii) the
kinds of test jobs in the changed CI outcomes after rechecks.
We analyze the 36,783 patch sets that had at least one recheck
invoked after failing CI jobs.
Proportion of changed CI Outcomes: To investigate this, we
first extract the last CI outcomes of patch sets after rechecks.
To do so, we apply the regular expression, i.e., (?:success
| failure| aborted) on the CI reports in the change
log (i.e., comments from CI bots). Then, we determine patch
sets as having changed CI outcome after rechecks if their last
CI outcomes after recheck are successful. In addition to the

6https://review.opendev.org/c/openstack/tripleo-ci/+/752206/1

proportion of patch sets with changed CI outcomes, we also
examine the number of rechecks that were invoked until the
last CI outcomes.

Figure 3 illustrates different examples showing different
scenarios of CI outcome changes and whether rechecks are
justifiable. Note that a build of a patch set may contain
one or more bots. Based on the review, CI bots are either
automatically or manually added, removed, or replaced for a
build run. For the first four examples (E1 - E4), we consider
these patch sets as having changed CI outcomes after rechecks
because the last CI outcomes are successful. Note that in the
second example (E2), recheck was not invoked for CI bot
B, thus we do not consider CI bot B in this scenario. If the
CI outcome changed after a single recheck, we consider this
recheck as justifiable, i.e., an initial CI job may fail due to
CI-related issues (e.g., flaky tests, test environments), not the
code in the patch set. In Figure 3, we determine the rechecks
in the first two examples (E1 and E2) as justifiable, while
the rechecks in the other examples are considered as non-
justifiable. Although the CI outcome changed after multiple
rechecks (E3 and E4), we argue that such rechecks could
be avoided if the developers figure out the causes, hence we
regard these cases as non-justifiable. On the other hand, if
at least one of the last CI outcomes is still a failure, we
consider these patch sets as having unchanged CI outcomes
after rechecks. For example, we consider the patch sets in
the last two examples (E5 and E6) in Figure 3 as having
unchanged CI outcomes after rechecks.
Test Jobs in Changed CI Outcomes: To better understand the
CI jobs that have changed outcomes, we manually investigate
the kind of test jobs that have changed the outcome from
failure in the initial CI job to success in the last CI jobs.
We first extract the test jobs and their outcomes in the initial
CI outcomes and the last CI outcomes for each patch set using
the regular expression, i.e., ((?:success | failure |
aborted) in(?: \w+?)*s). Figure 1(b) C shows an
example of test jobs and their outcomes that we extracted.
Then, we identify the test jobs whose outcomes in the initial

https://review.opendev.org/c/openstack/tripleo-ci/+/752206/1

TABLE II
PROPORTION OF PATCH SETS WITH CHANGED AND

UNCHANGED CI OUTCOMES AFTER RECHECKS

CI Outcome Count Percentage

Changed outcome
(Failure −→ Success)

Justifiable recheck 8,965 24.37%
Multiple rechecks 6,517 17.72%
Total 15,482 42.09%

Unchanged outcome
(Failure −→ Failure)

Single recheck 12,063 32.80%
Multiple rechecks 9,238 25.11%
Total 21,301 57.91%

CI jobs were changed from failure to success in the last CI
outcomes as test jobs with changed outcomes. Note that we
examine the initial and last CI outcomes that were from the
same CI bot. In total, we have identified 1,765 test jobs with
the changed outcome which are from 4,098 distinct test jobs.

Since the 100 most frequent test jobs whose outcomes
changed after rechecks account for 51% of all test jobs with
changed outcomes, we manually examine the kinds of these
100 most frequent test jobs. For the kinds of test jobs, we refer
to the OpenStack official documentation related to CI7 which
identifies five main kinds of test jobs: (I) integration test, (II)
unit test, (III) functional test, (IV) upgrade test, and (V) style
checks. The first two authors independently classify each of
the 100 most frequent test jobs with changed outcomes based
on the CI reports, the OpenStack job documentations8 and
information from GitHub mirror repositories.9 The inter-rater
agreement (cohen’s kappa) between the first two authors are
0.78 (i.e., substantial agreement). Finally, the first two authors
and the fourth author discussed and resolve the disagreement
on the kinds of 12 studied test jobs.

Observation 3: Of all failing CI jobs that are rechecked,
only 42% of them change the build outcome. Table II
presents the results of build outcome change after the recheck.
On the one hand, we observe that, less than half of build
failures (42%; 15,482 out of 36,783) changed the outcome
(i.e., from failure to success) after invoking the recheck com-
mand on the patch set. Furthermore, 24% of build failures are
justifiable, whereas 17% of them required multiple rechecks
to eventually get the CI outcome to change. On the other
hand, our results show that a relatively large proportion (33%)
of patches with a single recheck did not receive changed CI
outcomes, suggesting that rechecks are less likely to change
CI outcomes.

Additionally, we conduct an analysis on the reassignment
of CI bots to each patch set to gain a better understanding of
how different CI bots change the outcome. The data reveal that
for both justifiable repeat builds and successful patch sets with
multiple rechecks, there are more likely to assign the same bots
(i.e., CI bots are the same before and after invoking recheck) at
rates of 66% and 57% respectively. This is different from the
unchanged outcome for single rechecks and multiple rechecks

7https://docs.openstack.org/project-team-guide/testing.html
8https://zuul.opendev.org/t/openstack/jobs
9https://github.com/openstack

which were 37% and 45% respectively. Further investigation
showed that the Zuul CI bot was prevalent in repeated CI
builds that eventually changed outcomes, with a success rate
of 63% (running 21,084 times).

Observation 4: Integration test jobs are more likely to
change the build outcomes after rechecks. As we can see,
the integration test job (i.e., designed to validate the project
and all related component) tends to change the outcomes,
when compared with other test jobs, accounting for 60%. The
second most common test job is the functional test (17%),
which is designed to validate requirements and verify that
the output is consistent with user expectations. While the rest
of test jobs are unit test, upgrade test, and style check at
(11%, 11%, and 1%) respectively. This observation also helps
to explain why there are so many build failures. One of the
possible reasons is the large number of integration tests which
have a high chance of producing a faulty build.

RQ2 Summary: When invoking a recheck, we find
that less than half (i.e., 42%) are able to successfully
change the build outcomes. Furthermore, only 24%
were justifiable waste (i.e., having a single recheck
to change the outcome). Qualitatively, we find that
rechecks on integration test jobs are more likely to
change the build outcome.

C. Overhead generated by rechecks

Approach. To address RQ3, we quantify software waste that
is generated by invoking recheck after the CI build failures. In
this RQ, we analyzed the 36,783 patch sets where at least one
recheck was invoked. Based on prior work [20], we examine
software waste in terms of waiting time and computational
time. Due to the parallel nature of the CI build process,
we expect build times to exceed actual review times, as we
account for overlaps in the process. Hence, our metrics should
quantify the extent of this overlap. We now describe how we
measure the waiting time and computational time.
Quantifying Waste: Sedano et al. identified waiting/multi-
tasking/parallel due to slow tests or unreliable tests or unreli-
able acceptance environment as a form of software wastes [20].
Align with this definition, in this context, the waiting time for
new CI outcomes after rechecks can be considered as software
waste. Therefore, we measure the waiting time by identifying
the longest time that CI jobs took to complete a recheck (i.e.,
repeated builds and tests). Since one CI job can have multiple
test jobs which can be executed concurrently, we consider the
longest time that the test jobs spent.

In a lean manufacturing context (i.e., manufacturing waste),
extra processing time can be considered as waste [20]. Thus,
we are also interested to quantify the computational time, i.e.,
in the computational time that CI servers spent to repeat the
build and test jobs. We measure the computational time by
accumulating the running time of all test jobs of CI bots in
all rechecks that were invoked for a patch set.

https://docs.openstack.org/project-team-guide/testing.html
https://zuul.opendev.org/t/openstack/jobs
https://github.com/openstack

(a) Review time for a patch set (log hours) (b) Computational time for a patch set (log hours)

Fig. 4. Comparison of (a) review time (b) computational time between with and without recheck (Mann-Whitney U test ****: p <= 0.0001)

TABLE III
ACCUMULATIVE WAITING TIME GENERATED BY RECHECK

Outcome Time (Median) Accumulated

Changed Justifiable 1hr 34min 1.66 years
Multiple rechecks 5hr 7min 5.18 years

Unchanged Single recheck 2hr 22min 3.32 years
Multiple rechecks 5hr 9min 6.65 years

Total 2hr 35min 16.81 years

TABLE IV
ACCUMULATIVE COMPUTATIONAL TIME GENERATED BY RECHECK

Outcome Time (Median) Accumulated

Changed Justifiable 10hr 30min 16.78 years
Multiple rechecks 49hr 54min 62.57 years

Unchanged Single recheck 23hr 10min 34.62 years
Multiple rechecks 52hr 51min 73.43 years

Total 25hr 15min 187.40 years

Analyzing waste: To do so, we compute an average waste
(i.e., waiting time and computational time) per patch set and
the sum of total waste that was generated over the studied
period (i.e., 10 years). We also analyze the waste in the patch
sets that have recheck and patch sets without recheck. Patch
sets without recheck are identified using a regular expression,
i.e., (?:recheck) to search for recheck requests. We select
all patch sets that do not include recheck requests. The analysis
will signal the impact of recheck on the efficiency of code
reviews compared to regular patch sets.

To make a comparison against patch sets that did not invoke
a recheck, we defined two metrics. This first metric is the
review time, which refers to the duration from when the patch
set is uploaded to the last activity of this patch set. The second
metric is the computational time. For patch sets that did not

invoke a recheck, we measure the total CI bot running time.
For patch sets that repeat the CI build (with recheck), we
only consider the CI bots that repeat CI build (after the initial
failure). We use the Mann-Whitney U test (a non-parametric
test) [26] and the effect size using Cliff’s δ (a non-parametric
effect size measure) [27] to quantify the difference.

Observation 5: Around 16.81 years were spent waiting
around for rechecked CI bots to complete their repeated
builds Table III shows waste in terms of the waiting time
for the CI bot to repeat the build over a 10-year period
(i.e., August 2012 to June 2022). In total, the review project
accumulated 16.81 years of waiting of which 15.15 years were
spent on unjustifiable waste. Breaking down this table, justifi-
able waste was the lowest, with waiting times accumulating to
1.66 years, while a total of 5.18 years were spent waiting patch
sets with multiple rechecks to complete the job, with 3.73
years (72%) spent on an attempted recheck that produced an
unchanged CI outcome and 1.45 years (28%) spent on the last
recheck that produced a changed CI outcome. On the other
hand, Table III also reports a total of 9.97 years spent on
waiting for rechecks that did not change the outcome. In detail,
failed rebuilds after a single recheck accumulated in 3.32 years
spent, while review teams spent a total of 6.65 years waiting
on builds with multiple rechecks.

Observation 6: A total of around 187 years (computational
time) were spent on CI Bots running repeated builds.
Similar to Observation 5, Table IV reports resource waste
in terms of the CI bot computational time. In total, 187.40
years of CI bot run-time was spent on repeating builds with
170.62 years spent on unjustifiable. Breaking this down, only
16.78 years are for justifiable and 62.57 years are for builds
with multiple rechecks, with 43.54 years (70%) spent on an
attempted recheck that produced an unchanged CI outcome
and 19.03 years (30%) spent on the last recheck that produced
a changed CI outcome. In terms of failed builds, an accumu-

TABLE V
STATISTICAL COMPARISONS OF WASTE BETWEEN WITH AND WITHOUT

RECHECK

Without check Review time Comp time

< Justifiable Large Small
< Changed outcome multiple rechecks Large Large
< Unchanged outcome single recheck Large Large
< Unchanged outcome multiple rechecks Large Large

Effect size: Negligible |δ| < 0.147, Small 0.147 ≤ |δ| < 0.33,
Medium 0.33 ≤ |δ| < 0.474, Large 0.474 ≤ |δ|

lation of 108.05 years was spent without any change to the
outcome. Breaking this down, failed single rechecks wasted
34.62 years, while a repeated build with multiple rechecks
consumed 73.43 years of CI bot running time.

Additionally, we estimate the financial impact of generating
waste on additional service using circleCI, a dedicated cloud-
based CI provider, that charges between 5 and 2,000 credits
per minute for customized resources,10 with the cost of 1
credit approximately 0.0006 USD.11 Considering the minimum
requirement for deploying Murano, one of the systems in
OpenStack requires 8 GB of RAM and a CPU with four
cores that costs at least 20 credits per minute.12 During the
10-year lifetime of OpenStack, it generated 170.62 years of
unjustifiable waste, which amounted to 89,739,295 minutes. In
total, the estimated cost for rechecking is 1,076,871.54 USD.

Observation 7: On average, patch sets with repeated builds
take considerably more time (2,200%) to be reviewed com-
pared to patch sets that do not invoke a recheck. Figure
4(a) shows that the patch sets that contain repeated builds
tend to have a longer reviewing time. Table V also confirms
statistical significance that a repeated rebuild will take longer
to review. As these results are intuitive (repeat builds always
take longer), we compare the average (median) patch set to
compare the extent of time taken for reviews with or without
a repeated build. First, we find that on average, it takes around
2 hours 53 minutes to complete a review without any repeated
builds. Meanwhile, justifiable repeat builds took 40 hours 56
minutes to review, which less time compared to reviews with
multiple rechecks (i.e., taking 99 hours 49 minutes). In terms
of failed builds, a single recheck amounted to 44 hours 38
minutes on average for a review, while repeated failed rebuilds
containing multiple rechecks took up 93 hours 15 minutes of
reviewing time.

Furthermore, we estimated the potential time savings that
could be achieved by avoiding unjustifiable rechecks. We
compared the overall time spent on code review with the time
spent after the recheck is invoked and found that on average
(median), avoiding unjustifiable rechecks could save 92% of
the review time.

10https://circleci.com/product/features/resource-classes/
11https://discuss.circleci.com/t/performance-plan-billing-update/39502
12https://docs.openstack.org/murano/rocky/admin/deploy_murano/prerequi

sites.html

Observation 8: On average, patch sets with repeated
builds consumes more (700%) computational time when
compared to patch sets without recheck. Figure 4(b) is also
intuitive, with the CI bot running for reviews with repeated
builds longer that those without repeat builds. Statistical signif-
icance is also confirmed in Table V. In terms of computational
time, a patch set without a repeat build takes on average
(median) 3 hours 29 minutes for the CI bots to run. Justifiable
CI bot run times amounted to a total of 34 hours 30 minutes,
which was the least amount of waste generated by the repeated
builds on average, when compared to failed repeated CI builds
(single recheck is 95 hours 10 minutes and multiple rechecks
is 52 hours 51 minutes).

Similar to Observation 7, we estimated the potential com-
putation time saving that could be achieved by avoiding
unjustifiable rechecks. We compared the total compute time
spent on a patch set with the compute time spent after the
recheck is invoked and found that and found that on average
(median), avoiding unjustifiable rechecks could save 63% of
the compute time.

RQ3 Summary: Overall, the total accumulated waste
generated by rechecks is a computational time of
187.4 years, with a waiting time of 16.81 years. We
also find that on average, it takes seven times more
computational time and 22 times more waiting time
compared to reviews without rechecks.

V. COMMUNITY PERCEPTION

To better understand how developer perceive the usage of
the recheck function, we conduct a survey of OpenStack
developers, striving to (i) understand how they handle test
failures, (ii) solicit developer feedback about our observations
and (iii) our recommendations for future work. We sent our
online survey invitation to 936 developers who have invoked
the recheck function at least one time in the past three years
based on our studied dataset. The survey was open from
September 29 to November 14, 2022. We received valid
responses from 24 developers. 16 of the 24 respondents have
more than five years of contributing to OpenStack projects and
20 of the 24 contribute as both contributors and reviewers. To
analyze the responses of the open-ended questions, we use the
card sorting method. Below, we present our survey questions
and discuss the survey results. The survey design and its
sanitized responses are available in our online appendix [22].

Handling test failures. In the first portion of our survey,
we ask respondents about how they handle test failures.
Related to the frequency of using recheck, the majority of
respondents report that they (58%) frequently invoke recheck,
i.e., 50% or 75% of the times when CI jobs fail. For the
awareness of official guidelines, only five respondents admit
that they were unaware of the guidelines. When asked about
the practicality of the guidelines, all respondents agree that it
is practical to examine the logs of the jobs that failed. 20
of the 24 respondents also agree that it is practical to try

https://circleci.com/product/features/resource-classes/
https://discuss.circleci.com/t/performance-plan-billing-update/39502
https://docs.openstack.org/murano/rocky/admin/deploy_murano/prerequisites.html
https://docs.openstack.org/murano/rocky/admin/deploy_murano/prerequisites.html

whenever possible to reproduce the failure locally. In the open-
coded responses of freeform comments, seven respondents
pointed out impractical scenarios for locally reproducing test
failures. For example, one respondent stated that the advice
to “Reproduce locally is OK when the failure is in functional
tests, but not for the tempest-based CI jobs”. The guidelines
also suggest reaching out to the project team, opening a bug
report to track the inconsistent test behaviour, and referencing
that bug when invoking recheck. Only 9% and 6% agree. Five
respondents expressed concerns about the pace at which these
bug reports will generate a reaction (if at all). For example,
one respondent stated “Issuing the bug doesn’t guarantee any
feedback from the team.” and another respondent similarly
reported “Bugs opened for CI failures (exception: across the
board CI breakage) are unlikely to be followed up on and even
if they are acted upon, it will usually take days to weeks”.

In terms of the personal workflow, 13 of the 24 respon-
dents claimed that they have their own workflow to handle
failures. Seven of them further shared their experience in
freeform comments. Their coded responses indicate that all
of them converge towards the official guidelines. For instance,
a respondent explained that they “examine logs, try to find
a reason why it failed. If possible, reproduce locally, come
up with a fix”. When asked about oversight, only 6 of the
24 respondents reported that there is oversight in the usage
of recheck, such as peer pressure from reviewers and the
technical committee, which can condemn projects for not
adhering to policy.

Feedback on our findings. In the second portion of our
survey, we selected six of our observations [1,2,3,4,7,8] and
ask respondents whether their personal experience aligns with
them.

In terms of Observation 1, 20 of the 24 respondents stated
that they are aware of this situation and have experience.
Eight respondents pointed out that over-reliance on recheck
is due to external factors, such as dependencies and unreliable
resources. One respondent highlighted that “I believe there are
people who do a “blind recheck” which is bad because it is
wasteful”.

In terms of Observation 2, we similarly find that 20 of the
24 respondents are aware that patch sets with build failures
invoked recheck twice on average and report that the observa-
tion agree with their personal experience. Several respondents
answered that such a finding is not surprising to them. For
instance, one of them cited “So on average people recheck
twice. Interesting. Sounds about right”. Another respondent
believed that rechecking twice can be avoided and suggested
that in such cases, developers should create a bug report and
wait until it is resolved before invoking a (second) recheck.

With respect Observation 3, 13 of the 24 respondents state
that they are aware of this and have similar experiences. Two
respondents felt that the likelihood of the outcome remaining
unchanged is higher in their experience.

Regarding Observation 4, 17 of the 24 respondents are
aware that integration test jobs are more likely to change
build outcomes after rechecking. Moreover, eleven respondents

explained their rationales. They believe that the unit and func-
tional tests are highly stable and can be reproduced locally;
however, integration tests contain complex dependencies and
are likely to be affected by a bug in one of the multiple projects
that are coordinating. Meanwhile, one respondent provided a
feature suggestion for the existing system, stating that they
“100% agree. That’s why I think if a patch set doesn’t change
and recheck is typed, only recheck the red jobs. No need to
recheck the green jobs”.

Regarding Observation 7 and Observation 8, 17 of the 24
respondents state that they are aware of the massive cost of
the computation and review time resulting from the recheck
builds. Specifically, five respondents showed their surprise
and interest in our observations. One respondent cited “I’m
surprised the additional compute time is so high, I would have
thought 400% max”. Meanwhile, another respondent pointed
out a chilling effect that unscrupulous rechecks may have on
reviewers, stating that: “As a core reviewer, if I see changes
with a lot of recheck I am less likely to review it right away”.

Perception of our recommendations. In the last portion
of our survey, we asked respondents to weigh in on our
recommendations for code authors, reviewer teams and the
software engineering community as a whole:

• Think twice before rechecking, our results indicate that
only 24% of repeated builds belong to justifiable waste
(Observation 3), so maybe you have only a one in four
chance of proving the bot wrong.

• Try to use recheck judiciously, as our results show that
42% of rechecks change the build outcome (Observation
3). Even with multiple recheck attempts, only 18% suc-
ceed in changing the outcome.

• If inevitable, only attempt rechecks on Integration tests
(Observation 4), our results indicate that integration tests
are far more likely to change outcomes when rechecking.

• Be considerate of waste, although these costs are hidden,
developers should be aware of the computation and
waiting time (Observation 5, 6, 7, 8).

Based on their responses, we find that 19, 23, 18, and 20 of
the 24 respondents agree that the four provided suggestions
are practical, respectively.

We also ask respondents about challenges and directions for
future work. Respondents ranked “understanding the reason-
ing behind a recheck” and ”making the review team aware
of waste“ as the most promising. In freeform comments,
seven respondents shared a common suggestion about a future
feature where recheck is constrained to only re-execute failed
jobs. Meanwhile, another respondent suggested that “I think
making the developer write a compulsory explanation for
running the recheck seems reasonable”.

VI. THREATS TO VALIDITY

We breakdown the threats into three parts, external, con-
struct, and internal validity.

A. External Validity

These threats relate to the ability to generalize based on our
results. In this study, we conducted an empirical study only
focusing on the OpenStack community. The observations may
not be generalized to other open source communities and other
technologies other than Gerrit. While, we are confident that
OpenStack is representative enough to be studied, as it actively
performs code reviews and is widely considered in code
review research (cf. Section VII). In future work, we would
like to extend our framework to other popular open-source
communities, such as Qt. Nevertheless, to encourage research
replication, we prepare an online replication package [22].
Another threat lies in generalizing beyond the specific context
of the study due to the exclusion of code change factors and
collaborative aspects of code review. As a result, the findings
may not be fully applicable to code review scenarios where
these omitted factors play significant roles

B. Construct Validity

These threats relate to the degree to which our measure-
ments capture the relevant information. To identify the build
failures and recheck commands in a code review, we rely on
the regular expression to match the review comments. False
positives may occur due to the regular expression design,
however, we manually validated the samples of the retrieved
information and were sure about its accuracy. Another threat
is concerning the metrics that we use to measure waste,
especially when we measure the accumulation of parallel patch
sets being executed. Sedano et al. [20] argue that identifying
waste is difficult, as human cognition and status quo bias may
hinder practitioners’ ability to notice waste. We also claim that
as an initial study, with comparisons just to provide context,
the first step is to identify waste, with follow-up studies aiming
to later redefine these metrics for more precision.

C. Internal Validity

These threats refer to the approximate truth about inferences
regarding cause-effect or causal relationships. The first threat
occurs during our manual analysis of test jobs in RQ2, where
the codes may be mislabeled. To relieve this threat, an open
discussion was conducted between two authors and the fourth
author joined the discussion to resolve each disagreement. The
second threat exists in the selection of statistical significance
testing techniques in RQ3. To measure the significance and
effect size, we leverage the Mann-Whitney U test and Cliff’s δ.
However, we are confident that these testing techniques widely
used in the prior work are an appropriate choice.

VII. RELATED WORK

Code Review. Nowadays, contemporary software devel-
opment teams have widely adopted tool-based code reviews
for their software quality assurance [2, 6, 23]. A large body
of studies has investigated code review from technical and
social perspectives. Regarding the code quality, to name a
few, Bavota and Russo [28] have found that reviewed code is
significantly less likely to contain bugs. Meanwhile, McIntosh

et al. [5] found that review coverage shares a significant
relationship with software quality. Kononenko et al. [4] also
reported that the review quality is primarily associated with
the thoroughness of the feedback, the reviewer’s familiarity
with the code, and the perceived quality of the code itself.
In terms of the review process, Yu et al. [29] explored the
various factors that could impact how long it took for an
integrator to merge a pull request. Baysal et al. [30] suggested
that these nontechnical factors (e.g., reviewer load and activity,
patch writer experience) can significantly impact code review
outcomes. On the other hand, recent researches highlight
that code reviews suffer from many challenges, including
receiving timely feedback [31], information needs [24, 32],
and confusion [33, 34].

Continuous Integration. Continuous Integration is a soft-
ware development practice where team members integrate
their work frequently, and each integration is verified by an au-
tomated build (including test) to detect integration errors [35].
Such automation has been reported to increase productivity
significantly in both industrial projects [10, 36, 37]. Driven
by these success stories, the impact of CI on the open source
software development process has become a topic of active
research. On the one side, Hilton et al. [38] studied the
usage of CI in open-source projects and showed evidence that
CI helps projects release more often. Likewise, Vasilescu et
al. [39] reported that CI improves the productivity of project
teams. Furthermore, Zhao et al. [40] extended the impact of
CI on other development practices (i.e., the adaptation and
evolution of code writing and submission) and suggested a
more nuanced picture of how GitHub teams are adapting to.
On the other side, CI build results are not always a reliable
indication of a code change’s quality, for instance, suffering
from brown builds (i.e., build failure that changes to success
on at least one build rerun without changing the build setup
or source code.). Several issues have been discovered to cause
such build jobs that fail inconsistently, such as asynchronous
calls, multithreading, or test order dependencies [41, 42].
Ghaleb et al. [43] used mixed-effects logistic models to model
long build duration across projects and observed that rerunning
failed commands multiple times is most likely to be associated
with long build duration. Doriane et al. [18] pointed out that
such brown builds not only require multidisciplinary teams to
spend more effort interpreting or even re-running the build,
leading to substantial redundant build activity, but also slows
down the integration pipeline.

CI in Modern Code Review. Rahman and Roy [9] reported
an exploratory study using 578K automated build entries
where they analyzed the impact of automated builds on the
code reviews. Their results suggested that successfully passed
builds are more likely to encourage new code review partici-
pation. To understand how developers use the outcome of CI
builds during code review, Zampetti et al. [44] empirically
investigated the interplay between pull request discussion and
the use of CI by means of 64,865 pull request discussions.
They observed that pull requests with passed builds have a
higher chance of being merged than failed ones, and pointed

out difficulties in properly configuring and maintaining a CI
pipeline. Similarly, Bernardo et al. [11] studied the impact of
adopting continuous integration on the delivery time of pull
requests and they found that projects deliver merged PRs more
quickly after adopting CI. At the same time, Cassee et al. [12]
observed that with the introduction of CI, pull requests are
being discussed less, giving rise to the idea of CI as a silent
helper. Recent work also analyzed the side effects brought by
CI. For instance, Khatoonabad et al. [45] found that being
difficult to resolve the CI build failures is one of the frequent
reasons for contributors to abandon their pull requests. Zhang
et al. [46] reported that, pull requests that need longer CI
builds are more likely to take more time for review. Moreover,
pull requests which passed the CI builds are more likely to
be handled in a shorter time. Durieux et al. [47] empirically
analyze restarted and flaky builds on Travis CI and its effect
on GitHub pull requests. Our study further quantifies the
patches that are rechecked once and those that are rechecked
several times. This allows us to observe justifiable rechecks
and potentially wasteful rechecks. These results strengthen
the observations of Durieux et al. [47]. Our work also raises
awareness of wasteful rechecks for several stakeholders (e.g.,
developers, developer experience engineers), such as how the
developer workflow and computational resources are impacted
by wasteful rechecks.

VIII. CONCLUSION

Automation has led to efficient processes in software devel-
opment, especially in the context of the code review and CI
processes. A hidden and opaque by-product generated by these
CI test resources can be characterized as software waste. In
this study, we conducted an empirical study on the OpenStack
community to explore repeated builds by analysing 66,932
code reviews. Our results reveal that this waste is prevalent
(i.e., 55%), less likely to change outcomes (i.e., 42%), and
consumes resources in both waiting and computational times
(187.4 years and take 2,200% more time to review). Based
on this work which has established the extent of the resource
waste generated by repeated CI builds, there are many open
avenues for future work: understanding how to reduce these
wastes by better handling failed CI builds, further studies for
better identification and awareness of such resource waste to
developers, and tool support to reduce the waste produced by
repeated rebuilds.

IX. ACKNOWLEDGEMENT

This work is supported by Japanese Society for the Promo-
tion of Science (JSPS) KAKENHI Grant Numbers 20K19774,
20H05706, 23K16864, and 21H04877 and JSPS Bilateral Joint
Research Project (JPJSBP120239929). Patanamon Thongta-
nunam was supported by the Australian Research Council’s
Discovery Early Career Researcher Award (DECRA) funding
scheme (DE210101091). Yasutaka Kamei was supported by
Inamori Research Institute for Science, Kyoto, Japan (InaRIS
Fellowship). We thank the 24 members of the OpenStack
community who shared their expert opinions with us.

REFERENCES

[1] P. C. Rigby and C. Bird, “Convergent contemporary
software peer review practices,” in Proceedings of the 9th
Joint Meeting on Foundations of Software Engineering,
2013.

[2] D. Wang, Y. Ueda, R. G. Kula, T. Ishio, and K. Mat-
sumoto, “Can we benchmark code review studies? a
systematic mapping study of methodology, dataset, and
metric,” Journal of Systems and Software, 2021.

[3] M. E. Fagan, “Design and code inspections to reduce
errors in program development,” IBM Systems Journal,
1976.

[4] O. Kononenko, O. Baysal, and M. W. Godfrey, “Code
review quality: How developers see it,” in Proceedings
of the 38th international conference on software engi-
neering, 2016.

[5] S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan,
“An empirical study of the impact of modern code
review practices on software quality,” Empirical Software
Engineering, 2016.

[6] A. Bacchelli and C. Bird, “Expectations, Outcomes, and
Challenges of Modern Code Review,” in Proceedings of
the 35th International Conference on Software Engineer-
ing, 2013.

[7] A. Bosu and J. C. Carver, “Impact of peer code review
on peer impression formation: A survey,” in Proceedings
of the ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement, 2013.

[8] S. Panichella, V. Arnaoudova, M. Di Penta, and G. An-
toniol, “Would static analysis tools help developers with
code reviews?,” in Proceedings of the IEEE 22nd In-
ternational Conference on Software Analysis, Evolution,
and Reengineering, 2015.

[9] M. M. Rahman and C. K. Roy, “Impact of continuous
integration on code reviews,” in Proceedings of the
IEEE/ACM 14th International Conference on Mining
Software Repositories, 2017.

[10] P. M. Duvall, S. Matyas, and A. Glover, Continuous
integration: improving software quality and reducing
risk. 2007.

[11] J. H. Bernardo, D. A. da Costa, and U. Kulesza, “Study-
ing the impact of adopting continuous integration on
the delivery time of pull requests,” in Proceedings of
the IEEE/ACM 15th International Conference on Mining
Software Repositories, 2018.

[12] N. Cassee, B. Vasilescu, and A. Serebrenik, “The silent
helper: the impact of continuous integration on code
reviews,” in Proceedings of the IEEE 27th International
Conference on Software Analysis, Evolution and Reengi-
neering, 2020.

[13] F. E. Zanaty, T. Hirao, S. McIntosh, A. Ihara, and
K. Matsumoto, “An empirical study of design discussions
in code review,” in Proceedings of the 12th ACM/IEEE
International Symposium on Empirical Software Engi-
neering and Measurement, 2018.

[14] M. Hilton, N. Nelson, T. Tunnell, D. Marinov, and
D. Dig, “Trade-offs in continuous integration: assurance,
security, and flexibility,” in Proceedings of the 2017 11th
Joint Meeting on Foundations of Software Engineering,
2017.

[15] Q. Luo, F. Hariri, L. Eloussi, and D. Marinov, “An
empirical analysis of flaky tests,” in Proceedings of
the 22nd ACM SIGSOFT international symposium on
foundations of software engineering, 2014.

[16] M. Eck, F. Palomba, M. Castelluccio, and A. Bacchelli,
“Understanding flaky tests: The developer’s perspective,”
in Proceedings of the 27th ACM Joint Meeting on Euro-
pean Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2019.

[17] W. Lam, K. Muşlu, H. Sajnani, and S. Thummalapenta,
“A study on the lifecycle of flaky tests,” in Proceedings
of the ACM/IEEE 42nd International Conference on
Software Engineering, 2020.

[18] D. Olewicki, M. Nayrolles, and B. Adams, “Towards
language-independent brown build detection,” in Pro-
ceedings of the IEEE/ACM 44th International Conference
on Software Engineering, 2022.

[19] K. Gallaba, M. Lamothe, and S. McIntosh, “Lessons
from eight years of operational data from a continuous
integration service: an exploratory case study of circleci,”
in Proceedings of the IEEE/ACM 44th International
Conference on Software Engineering, 2022.

[20] T. Sedano, P. Ralph, and C. Péraire, “Software devel-
opment waste,” in Proceedings of the IEEE/ACM 39th
International Conference on Software Engineering, 2017.

[21] Y. Jiang and B. Adams, “How much does integrating
this commit cost?-a position paper,” in Proceedings of
the 2nd International Workshop on Release Engineering,
2014.

[22] R. Maipradit, D. Wang, P. Thongtanunam, R. G. Kula,
Y. Kamei, and S. McIntosh, “Replication package,” 2023.
https://doi.org/10.5281/zenodo.7038101.

[23] P. C. Rigby and C. Bird, “Convergent Contemporary
Software Peer Review Practices,” in Proceedings of the
9th Joint Meeting on Foundations of Software Engineer-
ing, 2013.

[24] D. Wang, T. Xiao, P. Thongtanunam, R. G. Kula, and
K. Matsumoto, “Understanding shared links and their
intentions to meet information needs in modern code
review,” Empirical Software Engineering, 2021.

[25] Q. Chen, T. Wang, O. Legunsen, S. Li, and T. Xu,
“Understanding and discovering software configuration
dependencies in cloud and datacenter systems,” in Pro-
ceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2020.

[26] H. B. Mann and D. R. Whitney, “On a Test of Whether
one of Two Random Variables is Stochastically Larger
than the Other,” The Annals of Mathematical Statistics,
1947.

[27] N. Cliff, “Dominance statistics: Ordinal analyses to an-

swer ordinal questions,” Psychological Bulletin, 1993.
[28] G. Bavota and B. Russo, “Four eyes are better than two:

On the impact of code reviews on software quality,” in
Proceedings of the IEEE International Conference on
Software Maintenance and Evolution, 2015.

[29] Y. Yu, H. Wang, V. Filkov, P. Devanbu, and B. Vasilescu,
“Wait for it: Determinants of pull request evaluation
latency on github,” in Proceedings of the IEEE/ACM
12th working conference on mining software repositories,
2015.

[30] O. Baysal, O. Kononenko, R. Holmes, and M. W. God-
frey, “The influence of non-technical factors on code
review,” in Proceedings of the 20th working conference
on reverse engineering, 2013.

[31] L. MacLeod, M. Greiler, M.-A. Storey, C. Bird, and
J. Czerwonka, “Code reviewing in the trenches: Chal-
lenges and best practices,” IEEE Software, 2017.

[32] L. Pascarella, D. Spadini, F. Palomba, M. Bruntink, and
A. Bacchelli, “Information needs in contemporary code
review,” Proceedings of the ACM on Human-Computer
Interaction, 2018.

[33] F. Ebert, F. Castor, N. Novielli, and A. Serebrenik, “Con-
fusion in code reviews: Reasons, impacts, and coping
strategies,” in Proceedings of the IEEE 26th international
conference on software analysis, evolution and reengi-
neering, 2019.

[34] F. Ebert, F. Castor, N. Novielli, and A. Serebrenik,
“An exploratory study on confusion in code reviews,”
Empirical Software Engineering, 2021.

[35] M. Fowler and M. Foemmel, “Continuous integration,”
2006.

[36] D. Goodman and M. Elbaz, “" it’s not the pants, it’s
the people in the pants" learnings from the gap agile
transformation what worked, how we did it, and what
still puzzles us,” in Agile 2008 Conference, 2008.

[37] M. Meyer, “Continuous integration and its tools,” IEEE
software, 2014.

[38] M. Hilton, T. Tunnell, K. Huang, D. Marinov, and D. Dig,
“Usage, costs, and benefits of continuous integration
in open-source projects,” in Proceedings of the 31st
IEEE/ACM International Conference on Automated Soft-
ware Engineering, 2016.

[39] B. Vasilescu, Y. Yu, H. Wang, P. Devanbu, and V. Filkov,
“Quality and productivity outcomes relating to continu-
ous integration in github,” in Proceedings of the 2015
10th joint meeting on foundations of software engineer-
ing, 2015.

[40] Y. Zhao, A. Serebrenik, Y. Zhou, V. Filkov, and
B. Vasilescu, “The impact of continuous integration
on other software development practices: a large-scale
empirical study,” in Proceedings of the 32nd IEEE/ACM
International Conference on Automated Software Engi-
neering, 2017.

[41] K. Gallaba, C. Macho, M. Pinzger, and S. McIntosh,
“Noise and heterogeneity in historical build data: an
empirical study of travis ci,” in Proceedings of the

https://doi.org/10.5281/zenodo.7038101

33rd ACM/IEEE International Conference on Automated
Software Engineering, 2018.

[42] T. A. Ghaleb, D. A. da Costa, Y. Zou, and A. E. Hassan,
“Studying the impact of noises in build breakage data,”
IEEE Transactions on Software Engineering, 2019.

[43] T. A. Ghaleb, D. A. Da Costa, and Y. Zou, “An empirical
study of the long duration of continuous integration
builds,” Empirical Software Engineering, 2019.

[44] F. Zampetti, G. Bavota, G. Canfora, and M. Di Penta,
“A study on the interplay between pull request review
and continuous integration builds,” in Proceedings of
the IEEE 26th International Conference on Software
Analysis, Evolution and Reengineering, 2019.

[45] S. Khatoonabadi, D. E. Costa, R. Abdalkareem, and
E. Shihab, “On wasted contributions: Understanding
the dynamics of contributor-abandoned pull requests: A
mixed-methods study of 10 large open-source projects,”
ACM Transactions on Software Engineering and Method-
ology, 2021.

[46] X. Zhang, Y. Yu, T. Wang, A. Rastogi, and H. Wang,
“Pull request latency explained: An empirical overview,”
Empirical Software Engineering, 2022.

[47] T. Durieux, C. Le Goues, M. Hilton, and R. Abreu,
“Empirical study of restarted and flaky builds on travis
ci,” in Proceedings of the 17th International Conference
on Mining Software Repositories, 2020.

	Introduction
	Background and Motivation
	Case Study Design
	Research Questions
	Data Preparation

	Study Results
	Recheck Prevalence
	Changing CI Build Outcomes
	Overhead generated by rechecks

	Community Perception
	Threats to Validity
	External Validity
	Construct Validity
	Internal Validity

	Related Work
	Conclusion
	Acknowledgement

