
PHYFU: Fuzzing Modern Physics Simulation
Engines

Dongwei Xiao, Zhibo Liu, and Shuai Wang∗
The Hong Kong University of Science and Technology, Hong Kong, China

{dxiaoad, zliudc, shuaiw}@cse.ust.hk

Abstract—A physical simulation engine (PSE) is a software
system that simulates physical environments and objects. Modern
PSES feature both forward and backward simulations, where the
forward phase predicts the behavior of a simulated system, and
the backward phase provides gradients (guidance) for learning-
based control tasks, such as a robot arm learning to fetch items.
This way, modern PSES show promising support for learning-
based control methods. To date, PSES have been largely used in
various high-profitable, commercial applications, such as games,
movies, virtual reality (VR), and robotics. Despite the prosperous
development and usage of PSES by academia and industrial
manufacturers such as Google and NVIDIA, PSES may produce
incorrect simulations, which may lead to negative results, from
poor user experience in entertainment to accidents in robotics-
involved manufacturing and surgical operations.

This paper introduces PHYFU, a fuzzing framework designed
specifically for PSES to uncover errors in both forward and
backward simulation phases. PHYFU mutates initial states and
asserts if the PSE under test behaves consistently with respect
to basic Physics Laws (PLs). We further use feedback-driven
test input scheduling to guide and accelerate the search for
errors. Our study of four PSES covers mainstream industrial
vendors (Google and NVIDIA) as well as academic products. We
successfully uncover over 5K error-triggering inputs that generate
incorrect simulation results spanning across the whole software
stack of PSES.

I. INTRODUCTION

Physics simulation engines (PSES) are computer software
that simulate behavior of physical systems, such as rigid body
dynamics (e.g., a steel robot arm), soft body dynamics (e.g.,
elastic objects), and fluid dynamics (e.g., water simulation).
The past few decades have witnessed a boom in using PSES in
production environments, including computer graphics, gaming,
virtual reality (VR), and various robotic tasks like robot control,
robot parameter design, and trajectory optimization.

Physics simulation techniques have been studied for decades,
with numerous high-quality simulation engines developed and
commercialized [1–9]. Notably, conventional PSES primarily
aim for forward simulation, which progressively computes
the behavior of the simulated physical system starting from
an initial state. In contrast, modern PSES, often referred to
as “differentiable physical simulation engines,” compose both
forward and backward simulation phases. While the forward
phase still predicts how the simulated system evolves, the
defining characteristic of modern PSES is to offer analytical
gradients via a backward phase. The ability of computing
analytical gradients makes it possible to perform end-to-end

∗ Corresponding author

optimization on agent control, and can speedup the optimization
process by dozens to hundreds of times [10]. Also, the
simulated environments become differentiable, making them
technically compatible with training machine learning-based
control agents. With the offered gradients, modern PSES have
been demonstrated to accelerate robotics control optimizations
by one to four orders of magnitude compared to conventional
PSES [10]. The market for PSES is also on a rapid rise,
with both industrial and academic efforts in developing and
enhancing PSES [11–17]. The total market share of developing
and using PSES has reached over 10 billion dollars and is
expected to grow by over a 10% annually [18–20]. In addition,
PSES can be highly expensive, with certain surgical PSES
licenses costing over over 10K USD [21].

Nevertheless, production PSES often comprise dozens
to hundreds of thousands of lines of code [13, 14, 22, 23],
covering a deep software stack, including the simulation
algorithms [15, 17], hardware acceleration modules [16, 22, 23],
even sometimes with domain specific language (DSL) that
has high expressiveness and efficiency on the simulation
primitives, as well as accompanying DSL compilers [22, 23].
Also, the simulated physical effects considered by simulators
are complicated, including collision detection, friction, soft
body dynamics, and fluid dynamics. Plus, the derivation of
gradients in the backward simulation is also challenging, some
requiring manual implementation of gradient computation [12],
others requiring compilers to generate code for gradient
computation directly from the forward simulation code [23, 24].
All of these aspects make PSES highly complex systems
demanding careful design consideration of the PSE vendors.
Notably, since PSES have been applied in various scenarios,
from the entertainment industry to safety-critical sectors like
surgery robotics [25–27], bugs in PSES, in turn, can potentially
lead to poor user experience or even catastrophic accidents.

This work presents PHYFU, the first automated, systematic
fuzz testing framework for modern PSES. PHYFU tackles
black-box scenarios, allowing testing of (commercial) off-the-
shelf PSES and holistically uncovering bugs in the full software
stack of PSES. Instead of capturing obvious “crash” behaviors
(which are rare in PSES), PHYFU uncovers incorrect simulation
outputs (logic bugs) residing in both forward and backward
simulation phases of PSES. To this end, PHYFU generates and
mutates the initial states of the system under simulation, and
it relies on a principled, clear testing oracle on the basis of
Physics Laws (PLs) to uncover incorrect simulations.

ar
X

iv
:2

30
7.

10
81

8v
2

 [
cs

.S
E

]
 1

4
A

ug
 2

02
3

Moreover, although arbitrarily generating testing inputs can
find a reasonable number of errors during testing, such method
struggles to generate inputs towards regions that are difficult to
reach, thus omitting some hidden bugs or repeatedly exploring
regions that are unlikely to trigger bugs. PHYFU, instead,
employs testing feedback to schedule the inputs and to drive the
fuzzing exploration toward space with a higher probability of
violating our oracle. Besides, the generated states must satisfy
the real-world physical constraints to ensure the validity of
our testing inputs. It is seen that randomly generating seed
inputs can easily break the physical constraints, e.g., a robot
arm penetrating the rigid ground. Instead of directly checking
the validity of testing inputs (a generally hard process), we
generate testing seeds by mutating an initially valid seed while
ensuring the validity of our mutations on the fly.

We implement PHYFU targeting four state-of-the-art PSES.
Brax [16], Warp [23], and Taichi [10] are developed by
leading industrial PSES vendors: Google, NVIDIA, and Taichi
Graphics, respectively. We also evaluate Nimble [14], an
advanced, open-source PSES developed by Stanford. Our
experiments cover 8 combinations of PSES and physical
scenarios, including simulation on balls, robot arms, and soft
bodies. PHYFU generates 10K test inputs on each tested setting,
and during approximately 20 days of testing, we detected 5,932
inputs that resulted in erroneously simulated results. While the
discovered error-triggering inputs do not directly crash PSES,
they silently lead to incorrect simulations. We also found over
20 inputs that triggered crashes, indicating severe security issues
like buffer overflow. Through manual analysis and feedback
from the PSES developers, we found that our discovered errors
are due to a wide spectrum of reasons spanning the whole stack
of PSE software. By the time of writing, two bugs have been
promptly fixed. In sum, we make the following contributions:
• We target a crucial yet under-explored need to test PSES. We,

for the first time, propose an automated, systematic fuzzing
framework for PSES in black-box settings.

• PHYFU makes several novel and practical design consider-
ations and optimizations to boost the fuzzing process and
uncover more bugs. Also, PHYFU incorporates a set of
strategies to ensure the validity of testing inputs.

• Our large-scale evaluation of four modern PSES subsumes
different practical scenarios. Under all conditions, PHYFU
detects a substantial number of errors. Further root-cause
analysis reveals a diverse set of hidden bugs distributed
across the full software stack of PSES.
We release and will maintain the codebase of PHYFU at [28]

to boost future research.

II. PRELIMINARY

This section introduces the preliminaries of PSES. For
illustrative purposes, we use a warehouse robotic arm as an
example (Fig. 1). Fig. 1a depicts the physical system in which a
robot arm releases a ball at initial speed v0 downwards. The ball
would perform free-fall due to the gravitational force after the
release. A sensor is located L meters below the ball’s release
point. The sensor would emit a probing signal T seconds after
the ball is released from the robot arm. The robot aims to

optimize the release speed of the ball so the sensor can sense
the ball. In other words, the learning goal of the robot is to
control v0 to let the ball travel L meters in T seconds.

𝐿

Loss function:

𝑙 = 𝐿 − 𝑥𝑇
2

𝑑𝑙

𝑑𝑣0
=?

𝑥𝑇 , 𝑣𝑇
𝐹

𝐿

𝑥0, 𝑣0
𝑥1, 𝑣1

𝑥2, 𝑣2

𝑥𝑖 , 𝑣𝑖
...

𝑣0

𝐿

(a) Initial state. (b) Forward simulation. (c) Gradient computation.

Fig. 1: An example of the simulation process of modern PSES.

Modern PSES comprise two phases: forward simulation and
backward simulation. The forward simulation runs forward
and predicts the system’s behavior, while the backward phase
outputs analytical gradients that will be helpful for agent
learning and control. The details of the backward phase are
more intricate, and we introduce the forward simulation first.
Forward Simulation. The forward simulation models the
position and velocity of the objects in the physical system
as a function of time t. The concatenation of position x and
velocity v are refered to as state. PSES allow users to specify
the external force, denoted as τ , that is applied on the objects.
The external force would determine the change of states as a
function of time.

Given the initial state s0 at t = 0 and the external force τ
applied on the objects in the system, the forward simulation
phase predicts the state s(t) of the simulated system S as a
function of time t :

s(t) = Sim(S, s0, τ, t) (1)

Obtaining s(t) generally requires solving differential equa-
tions deduced from physics laws, e.g., Newton’s Second Law.

Example 1. In the physical scenario of Fig. 1, the state of
systems can be described by the dynamics equations in Eq. (2)
and Eq. (3):

F = mg = m
dv

dt
(2)

dx

dt
= v (3)

, where Eq. (2) denotes that the ball would accelerate due to
gravity, according to Newton’s Second Law, and Eq. (3) comes
from the fact that the time-derivative of position is velocity.

To obtain the function s(t), PSES would discretize the time
t into dozens to hundreds of small intervals, each with length
∆t. Later, as illustrated in Fig. 1b, PSES deduce the system
state si+1 at the time interval [i∆t, (i + 1)∆t) based on the
previous state si. The derivation of si+1 from si is determined
by a time-stepping function TS:

si+1 = TS(si, τi) (4)

, where τi is the external force applied on the objects at
the given time interval. TS is determined by the differential
equations to be solved.
Backward Simulation. Learning and control tasks, e.g., a
robot controlling the initial velocity to shoot a basketball into
the basket, typically aim at deciding an initial state s0 that
would lead to the optimal objective function h(st) defined
on the final state st. In general, the key requirement of the
agent learning process is to enable access to the analytical
gradients, ∂h(sT)/s0, of function h w.r.t. the initial state s0,
as this would enable an end-to-end optimization on the objective
function directly. It has been shown that analytical gradients
can speed up the optimization process by tens to hundreds of
times [16, 24].

As one key feature, modern PSES offer the ability to compute
analytical gradients in the backward simulation phase. This way,
PSES provide feedback to guide learning-based agents, like
robotics control models, to gradually improve their performance
using gradients and reach a user-specified objective. In contrast
to the forward simulation, gradient computation runs backward,
starting from a loss function defined on the final state and
propagating the gradients to the initial state.

Consider Fig. 1c, suppose the forward simulation process
determines that the ball would be located at xT after T seconds,
where xT ̸= L. Given an objective such that the ball is required
to be at location L at time T when a probing signal is emitted,
the robot arm learns to gradually adjust the initial speed, v0, of
the ball. The optimization goal can be formulated as Eq. (5):

argmin
v0

|xT − L|2 (5)

Modern PSES facilitate solving Eq. 5 in a principled manner
by providing the gradients of the simulation process and making
the entire process differentiable. Thus, the simulation process
can be smoothly integrated into training a learning-based agent.
Fig. 1c illustrates how PSES can be employed. Given the loss
function defined as l = (L− xT)

2, the backpropagation first
computes dl/dxT , which can be easily computed by automatic
differentiation frameworks such as PyTorch [29]. Then, PSES
can derive the analytical gradients dxT /dv0 (see below for
details). The dl/dxT and dxT /dv0 can then be combined via
chain rule, resulting in the end-to-end gradient dl/dv0, i.e.,
the gradient of the loss value l w.r.t. the parameter v0. Having
obtained the end-to-end gradients, parameters in a learning-
based agent like robot arm can be consequently optimized
using methods like gradient descent.

Various methods have been proposed for gradient derivation.
Some engines formulates the simulation process as a linear
complementarity problem (LCP) [12, 14] and derive gradients
accordingly, and some treat the simulation as a non-linear
complementarity problem (NCP) [11, 17] that conforms to the
physical laws better but is more costly to solve. Some engines
also use compliant models [16, 30], convex optimization
models [31], and position-based dynamics [23].

III. OVERVIEW OF PHYFU

We aim to uncover logic bugs in PSES. As in Section II,
PSES feature both forward and backward phases to train
learning-based complex agents [10]. The forward phase com-
putes the final state sT of a physical system at time T for
a given initial state s0. The backward, gradient-computation
phase starts from a loss function defined on the final state, and
propagates the gradients backwards to the initial state.

To systematically subsume both forward and backward
phases, we propose a testing oracle based on principled Physics
Laws (PLs). Before introducing the PLs used, we first list some
assumptions below:
Assumptions and Application Scope. We assume a set of
reasonable pre-conditions so that the PLs we use can hold. The
assumptions and their corresponding proofs are already well-
researched in a category of mathematics and physics problem
called the “Inverse Problem” [32, 33], which deals with whether
the initial state s0 for an observed system’s final state sT
is unique and proposes strategies to find such s0. Due to
the complexity of the strict definitions and proofs, we can
only briefly list the high-level ideas of the full assumption
set in a less sound and complete form, so as to facilitate the
understanding of audience from general background:

1) The physical process is deterministic and non-chaotic.
2) The final state after the forward physical process has to

depend continuously on the initial state.
3) No friction is allowed in the physical system.

We note that the above assumptions can reasonably hold
in real-world physical systems and PSES. The first two
assumptions are easily satisfied in common use cases of
PSES, such as robotic and soft-body simulations. The third
assumption is a common setting in real-world usage of PSES,
since typical physical scenarios under simulation, such as
rigid simulation [24], molecular simulation [34, 35] and fluid
simulation [36, 37], generally configure the friction force to
be zero, as the support for friction from PSES is not mature
enough and still an open-research problem [11, 15, 24].

We present the following important fact, denoting the
uniqueness of s0 (on the condition of assumptions listed above):

Under fixed external force, the s0 that can lead to the
observed sT is unique [32, 33, 38–41].

Forward Testing Oracle. Based on the property of uniqueness
for s0 in the theory above, we formulate our testing oracle to
test the forward simulation process as:

Definition 1 (Forward Testing Oracle). Let f(s0) = sT , where
f is the forward simulation mapping initial state s0 to final
state sT .1 For ∀s′0 s.t. f(s′0) = sT , we assert if s′0 = s0.

Oracle in Definition 1 asserts that the final state should not
be identical whenever two initial states are distinct. If this

1Since we are considering the relation between s0 and sT , the S, τ , and
T in Eq. (1) are assumed to be all fixed and are left out in f for simplicity.
The same applies to the rest of the paper.

property is not adhered to, it indicates the presence of bugs in
the forward simulation phase of the tested PSES.

Backward Testing Oracle. To test the analytical gradients
yielded from the backward simulation, we use a theoretic
property of gradients:

Theorem 1 (Theory of Gradient-Based Optimization). Con-
sider a differentiable multi-variate function h(x) and its global
minimal point x∗. Starting from a point x = x∗ +∆x0 that
lies sufficiently close to x∗, perform gradient descend about
∆x until convergence:

∆xk+1 = ∆xk − αkg(∆xk) (6)

, where k is the iteration number, and αk is the update step
length. Then h(x) is bound to converge globally to h(x∗) [42].

Theorem 1 implies that starting from a nearby point around
the optimal point x∗ of the objective function h(x), the
gradient g(x) should be able to guide the optimization of
h(x) towards h(x∗) with sufficient iterations.

x0

2
1

0
1

2

v 0

2
1

0
1

2

Po
si

tio
n

x T
 o

f s
T

1.0

0.5

0.0

0.5

1.0

Seed sseed
0

Mutant smut
0

sT = f(s0)

(a) Seed and mutant.

2.5 0.0 2.5 5.0
x0 (×10 2)

4

2

0

2

4

v 0
(×

10
2)

s0

h(sk) 0 h(sk) 0

h(s) = ||f(sseed
0 + s) f(sseed

0)||

Expected gradient
Wrong gradient direction

(b) Optimize ∆s with gradients.

Fig. 2: Illustration of the backward oracle. In (a), smut
0 is

obtained by adding a small ∆s with sseed0 ; (b) shows two
traces of gradient descent iterations starting from the initial
∆s, where red and blue traces are guided by the correct and
wrong gradients, respectively. The intuition of our backward
oracle is reflected from the blue trace.

We illustrate the ideas of our backward simulation testing
approach in Fig. 2. Denote the forward simulation function as
f , which maps an initial system state s0 to the final state sT .
In Fig. 2a, the position x0 and velocity v0 component of initial
state s0 are shown on the x-y plane, and the z-axis shows
the position component xT of the corresponding final state sT
(sT = f(s0)). Given an initial state sseed0 and its final state
sseedT , we randomly add a small perturbation, ∆s, to sseed0 ,
and obtain a mutated initial state smut

0 . We then aim to find
the minimum of the objective function:

h(∆s) = ∥f(sseed0 +∆s)− f(sseed0)∥ (7)

, by executing the gradient-descend algorithm on ∆s under
the guidance of gradients g(∆s) computed from the backward
simulation. Fig. 2b shows two example optimization traces,
both of which start from the initial ∆s0 and end in their

respective ∆sk after k gradient-descend iterations. The red
trace shows the optimization trace guided under the correct
gradients, while the blue one is guided by buggy gradients.
After k iterations, the red one successfully finds the minimal
point, i.e., when h(∆s) ≈ 0, while the blue one causes h(∆s)
to deviate from its minimum further and further away due to the
wrong direction of computed gradients. Based on Theorem 1,
we assert the following oracle to test backward simulation:

Definition 2 (Backward Testing Oracle). Starting the gradient
descend on a small initial ∆s, the objective function h(∆s)
should converge to 0 after sufficient number of iterations.

The proof of Definition 2 can be readily derived from
Theorem 1, and we leave the full proof on our website [28]
due to space limit.

Seed Generation Testing Stage

𝑠0
𝑚𝑢𝑡

𝑠0
𝑠𝑒𝑒𝑑

𝑠𝑇
𝑠𝑒𝑒𝑑

𝑥0 = 3.32

𝑣0 = 1.01

𝑥0 = 3.30

𝑣0 = 1.00

Feedback

Seed generator

Oracle

Seed queue 𝒬

+Δ𝑠
Simulate

& Collect

Simulate

Initial valid

state 𝑠𝑚𝑒𝑡𝑎

Scheduling

𝑠𝑇
𝑚𝑢𝑡

Fig. 3: Testing pipeline.

IV. DESIGN OF PHYFU

Design Overview. PHYFU delivers an automated, systematic
fuzzing framework to test modern PSES with respect to our
forward and backward testing oracles. Fig. 3 illustrates the
pipeline of PHYFU, which consists of three parts: ➀ seed
generation, ➁ seed scheduling, and ➂ testing.
➀ Seed Generation. PHYFU generates a pool of states C as
the testing seeds for the fuzzing. A state sseed in the seed
pool C comprises the position and the velocity of objects in
the system simulated by the PSE under test. The generated
seed states will be scheduled and fed into the testing stage for
uncovering erroneous simulations. We propose a set of design
choices to ensure the validity of seed states during the seed
generation phase (see Section IV-C).
➁ Seed Scheduling. Testing by randomly generating seeds can
suffer from inefficiency and ineffectiveness issues. Since the
simulation process of PSES is highly time-consuming (often a
testing campaign takes several to dozens of hours; see Table II),
to uncover more bugs with a reasonable resource, we employ
a scheduling algorithm to prioritize seeds that are more likely
to trigger bugs. The seeds generated from the seed generator
are enqueued and sorted in a seed queue Q, and are dequeued
to be used in the testing stage based on their priority.
➂ Testing. The testing stage dequeues a seed sseed from the
seed queue, and uses it as the initial state, sseed0 , for the
simulation. The initial state is added with a sufficiently small
mutation, ∆s, to obtain a mutated initial state smut

0 . We will
then check the seed and mutant against our forward and

Algorithm 1 Fuzz Testing.
1: function Fuzzing(Corpus of Seed Inputs C, T, E)
2: Q ← C,O ← ∅,F ← ∅
3: for 1 ... MAX ITER do
4: sseed0 ← DEQUEUE(Q)
5: τ ← randForce() ▷ Randomly apply external forces.
6: sseedT ← FORWARD(E, sseed0 , τ, T)
7: ∆s← Mutate(sseed0) ▷ Generate small perturbation.
8: for 1 ... MAX GRAD ITER do
9: smut

0 ← sseed0 +∆s ▷ Add mutation.
10: smut

T ← FORWARD(E, smut
0 , τ, T)

11: L ← ∥sseedT − smut
T ∥2 ▷ Compute loss.

12: if L < ϵB then
13: break
14: g ← BACKWARD(E,L) ▷ Backward simulation.
15: ∆s← Update(∆s, g) ▷ Gradient descend.
16: if ViolateOracle(sseed0 , smut

0 , sseedT , smut
T ,L) then

17: ADD(O, sseed0) ▷ Include in the buggy set.
18: ADD(F , sseed0) ▷ Mark as already-fuzzed.
19: Schedule(Q,O,F) ▷ Seed scheduling.
20: return Buggy states O

backward oracles, and provide testing outcomes as feedback
to the seed scheduling stage to prioritize unused seeds.

A. Fuzz Testing

Algorithm 1 formalizes the fuzzing procedure, which tests a
target PSE E and yields a set of error-triggering inputs O that
violates our testing oracles, either Definition 1 or Definition 2.
The core components of Algorithm 1 can be summarized below:
• Mutate takes the initial seed state sseed0 as input and generates

a small perturbation ∆s, which will later be added to sseed0

to obtain a mutated initial state smut
0 . The mutant smut

0 will
be used to initiate the fuzzing campaign.

• Update optimizes the amount of perturbation, ∆s, based on
its gradients g computed by the backward simulation. The
function applies a step of the gradient-descend algorithm, as
the one mentioned previously in Eq. (6).

• ViolateOracle checks whether our oracle, Definition 1 or
Definition 2, is violated. It takes as input the initial and final
states of both the seed and the mutant, as well as the final
loss value after the gradient descend, and checks against the
forward and backward oracles.

• Schedule arranges the order of the seeds. The fuzzing seeds
are stored and sorted in a queue Q, and are dequeued based
on their priority. To maximize the efficiency of fuzzing and
find more bugs in a limited time budget, we leverage a
feedback-driven scheduling algorithm to prioritize the seeds
(see Section IV-B).
Our fuzzing algorithm comprises a series of carefully

designed steps to trigger simulation failures of the target PSE.
Overall, Algorithm 1 contains the following steps:
Initialization. As the entry point of our procedure, Fuzzing
takes as input a corpus of seed inputs C, a simulation time
span T , and a target PSE E . C is used to initialize a queue Q
(line 2), which determines the order of seeds during fuzzing.
Fuzzing Loop. In each iteration, we pop out the seed with
the highest priority (see below for Schedule), and use it as the
seed initial state sseed0 (line 4), whose corresponding final state
sseedT is obtained from the forward simulation of E (line 6).

Based on sseed0 , we generate a small perturbation amount ∆s
(line 7), which will later be added over the seed initial state
sseed0 to obtain a mutated initial state smut

0 (line 9).
Gradient Descend Iterations. The gradient desend iterations
(lines 8–15) follow the steps introduced in Section III to
check the backward simulation. Starting from the initial
perturbation amount ∆s generated in line 7, the variable ∆s
is iteratively updated under the guidance of its gradients, g,
from the backward simulation. The iteration loop is terminated
if the loss value L, which is defined as the distance between
the final states sseedT and smut

T , is small enough (line 12),
or the number of iterations reaches a pre-defined threshold
MAX GRAD ITER (line 8).
Oracle Violation Checking. After the gradient descend
iterations, ViolateOracle detects any violation against the
forward or backward oracle.
Backward Oracle Checking. The backward oracle checking
examines the loss value L, which is iteratively updated under
the guidance of gradients g. If L > ϵB , then the backward
oracle, Definition 2, is deemed to be violated, and gradients
from the backward simulation phase are considered buggy.
Forward Oracle Checking. Following Definition 1, when the
final states of seed and mutant are close to each other, we
check if their corresponding initial states are close to each other.
Specifically, ViolateOracle would report oracle violation if
∥sseedT −smut

T ∥ < ϵF (near-identical final state) while ∥sseed0 −
smut
0 ∥ > ϵI (distinct initial state).

Adaptive Fuzzing Scheduling. After each fuzzing iteration,
sseed0 would be included in the output set O if an oracle
violation is detected (line 17). The buggy set O, together with
the set F of all the already-used seeds, will be used as feedback
to prioritize the seeds in the seed queue Q (line 19). Details
of prioritization are introduced in Section IV-B.

B. Feedback-Driven Seed Prioritization

Inefficiency of Random Seed Selection. The testing campaign
is seen to be slow in evaluations (see Table II). The forward
simulation process requires discretizing the simulation time
span T into dozens to hundreds of small steps (see Section II),
and iteratively applying a non-trivial time-stepping function
Eq. (4) for each small step; the backward simulation also
consumes comparable time as the forward simulation. As such,
the testing process can take hours or dozens of hours to finish,
spending a considerable amount of time on the simulation
process itself. Randomly selecting a seed from the seed pool
can be inefficient, as it can waste time executing the costly
simulation on seeds that are not likely to trigger errors.
Prioritization Strategy. To uncover more errors in a limited
time budget, we employ the Adaptive Random Test (ART)
algorithm [43] to prioritize seeds with higher probabilities to
trigger errors. The intuition behind ART is that neighbors of a
non-failure-inducing seed are also less likely to cause errors,
while neighbors of a failure seed are also more likely to cause
failures. Algorithm 2 shows the workflow of ART. Given the set
of error-triggering seeds O and the set of already-used seeds F ,
ART would first derive non-failure-causing set U by taking the
difference of F and O (line 2). For each seed to schedule in the

Algorithm 2 Feedback-Driven Test Case Prioritization
1: function Schedule(Seed queue Q, Buggy set O, Full set F)
2: U ← F −O ▷ U as seeds that don’t trigger errors.
3: EnergyList← zeros(Q.size)
4: for i in range(Q.size) do
5: minDist← +∞
6: for u in U do ▷ Find minimal distance to seed states in U .
7: minDist← min(minDist, ∥u−Q[i]∥)
8: EnergyList[i]← minDist

9: SORT(Q, EnergyList) ▷ Sort in descending order.

seed queue (line 4), it will compute the minimal distance to all
the non-failure-causing seeds (lines 5–7), and take the computed
minimal distance as the corresponding energy value (line 8).
The seeds in Q will be sorted in descending order according to
their energy value (line 9). ART allows us to focus our testing
efforts on the most promising seeds, increasing the chances
of finding bugs and wasting less time exploring uninteresting
states; see Section VI-C for empirical results.

C. Seed Validity Ensurance

It is critical to ensure that our testing seeds, denoting initial
states sseed0 of the tested PSE, are valid in the physical world.
Otherwise, “bugs” found by the testing process may be less
interesting or even false positives. Typically, the requirements
for the seed validity can be encoded as state constraints, or
referred to as constraints. Constraints vary from scenario to
scenario. We will use the example of two balls colliding with
each other to illustrate the concept of constraints:

Example 2. In a simulation involving only rigid objects, the
states of two balls must satisfy a set of constraints, namely,

“intersection constraint”. A rigid object cannot penetrate another
rigid one. In the situation of two balls, the constraints are
expressed as:√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2 ≥ 2r (8)

, where r is the radius of the two balls, and xi, yi, zi, i ∈ {1, 2}
are the 3D coordinates of ball i.

Two Sources of Invalid Seeds. Performing simulations over a
physically infeasible initial state, e.g., a ball penetrating another
ball, would also likely lead to an invalid final state. We clarify
two sources of invalid seed initial states: ➀ seed generation
without respecting the constraints; ➁ internal bugs in PSES.
Oracle violations due to ➀ should be deemed as false positives
(FPs). In contrast, wrong simulation results due to ➁ are true
positives (TPs), since the invalid seeds are due to bugs in the
tested PSES. We should avoid invalidity issues from ➀.
Invalidity of Random Seed. Our preliminary experiments
show that randomly generating seed states could easily lead
to invalid states from source ➀. For instance, when arbitrarily
generating the initial rotational angle of a robot arm, we find
that a large portion (over 70%) of the generated states lead to
apparently invalid states, such as the palm penetrating a hard
surface. Even worse, typical PSES often lack a comprehensive
ability to detect and reject simulation requests for invalid
initial states. For example, in the Brax Physics Engine [16] (a
Google product), even though the palm of a UR5E robot arm

is obviously under the surface of the ground, the simulation
engine does not detect and warn the user about the issue of
such invalid state, but continues simulation as usual. However,
the invalid seeds are not due to internal bugs of PSES, but
arise from wrongly designed seed generation scheme.

Naive Method: Generate-then-Check (GTC). A potential
approach to ensuring state validity is randomly generating a
seed state and rejecting invalid ones. However, we emphasize
that such a generate-then-check (GTC) approach could not
easily work. The constraints are varied across different physical
environments. Hence, it is challenging to present a unified
solution for state validity checking. Moreover, the format of
constraint equations inside a single physical scenario may be
complex, sometimes not even explicitly representable [44, 45].

Our Solution: Simulate-then-Collect (STC). In contrast to
GTC, which checks the validity of a generated seed state
and rejects invalid, we propose a simulate-then-collect (STC)
approach. The high-level idea of STC is to start from an
initially valid state smeta (also called meta seed, typically
can be chosen to be the default initial state shipped by the
PSE under test) whose validity can be guaranteed through
manual efforts, and run forward simulation to collect a trace
tr = smeta, s1, s2, . . . , sn. The states on the simulation trace
tr would then be collected and added to the seed pool C as
the fuzzing seeds. To enhance the diversity of generated seeds,
the external forces τi during the transition from state si−1 to
si are varied across different i, i ∈ [1, n].

Formally, to see why the STC approach would generate valid
states, we present the following theorem:

Theorem 2 (Theorem of State Validity). Assuming the time
stepping function TS of a PSE is consistent with physics laws,
any reachable state si starting from an initial valid state smeta

should also be valid.

Theorem 2 can be easily proved by math induction (details
are on [28]). We admit that when the time stepping function
TS is buggy, the collected seed states could be invalid in the
first place. However, this should not be a concern, as to our
observation, invalid seeds lead to incorrect simulation results
(true positive bugs), which will be detected by PHYFU later.

V. IMPLEMENTATION

PHYFU is implemented in about 4K LOC [28]. The key
hurdle of our implementation is accommodating the large
differences between evaluated PSES (see Section VI-A).
Each PSE uses a different domain-specific language (DSL)
to describe its simulated environment and perform forward
simulation and gradient computation. The algorithms under
each PSE are also distinct from each other. Still, our testing
method is agnostic to the underlying details of the tested
PSES. Moreover, we spent non-trivial efforts to refactor our
code so that extending our testing method to a different testing
configuration requires little engineering effort. See our codebase
and documentation (including instruction on extension) at [28].

VI. EVALUATION

In this section, we aim to answer the following research
questions (RQs): RQ1: Can PHYFU effectively uncover errors
in the modern PSES? RQ2: To what extent can the seed
scheduling algorithm facilitate the fuzzing campaign? How
much overhead does the scheduling process incur? RQ3: What
are the characteristics of errors uncovered by PHYFU? RQ4:
What root causes lead to the failures of the tested PSES? We
answer the four RQs from four aspects, respectively:

1) We evaluate our testing methods on eight configurations
in total, including four popular PSES and two physical
scenarios per PSE. We show that our testing campaign can
fruitfully uncover error-triggering inputs on each setting.

2) We use ablation study to show that our scheduling algorithm
introduced in Section IV-B can significantly boost error-
discovery efficiency while incurring negligible overhead.

3) We categorize all of our discovered error-triggering inputs
to facilitate understanding our findings.

4) We launch root cause analysis towards our findings through
manual analysis and developer feedback. We further give a
representative example for each of our tested PSES on the
bug root cause.

A. Experiment Setting

Evaluated PSES. Developing PSES with both forward and
backward simulation capabilities has been a hot topic in
recent years, and numerous PSES [11–13, 15, 17] emerged
in just a short period; covering so many existing PSES can be
impractical. We carefully review existing PSES and choose our
testing targets based on their quality, usability, and popularity.
We also consider the diversity of testing targets, covering PSES
from both academy and industry. Ultimately, we select four
PSES as our evaluation targets, namely, Taichi Graphics [24],
Nimble [14], Warp [23], and Brax [16]. Nimble is a popular
PSE developed by Stanford, while Warp and Brax are NVIDIA
and Google’s products, respectively. Taichi Graphics originates
from MIT researchers and later transforms into a 50M-startup
company, with over 22.4K stars [22] on GitHub.
Physical Simulation Scenarios. We choose two categories of
scenarios to evaluate our tested PSES: one that is fundamental
in physical simulation and generally supported by existing
PSES, and the other that is specific to each of our tested
PSES. For the first category, we choose the simulation of
the behavior of a group of balls bouncing between walls,
as the simulation of balls under collision is a base stone
for building up complex simulation cases, such as molecular
simulation [34, 35, 37] and fluid simulation [36, 46, 47]. Also,
as a fundamental simulation scenario, ball collision is widely
supported by existing PSES [48, 49]. As for the second category,
we select an engine-specific use case for each PSE (four in
total). The details of all the evaluated combinations of PSES
and scenarios can be found in Table I. Our tested PSES are at
their latest versions by the time of writing (except Nimble, see
our discussion later). In total, our evaluation consists of eight
configurations (four PSES and two scenarios per PSE). For

TABLE I: Evaluated configurations. “All” means the all the
PSES are evaluated on the scenario of “Balls.”

PSE PSE
Version

Physical
Scenario Brief Description

All NA Balls A group of balls bouncing around walls
and colliding with each other.

Brax 0.1.0 UR5E A UR5 robot arm that can fetch or
deliver items in the factories.

Nimble 0.8.32 Catapult A robot with three joints batting balls.

Warp 0.7.2 Snake A set of rods chained in sequence that
looks like a snake.

Taichi 1.4.1 DiffMPM An elastic object jumping and moving
forward on the ground by deformation.

each configuration, we generate 10K testing inputs and feed
the generated testing inputs into PSES for fuzzing.
Hyper-parameter Settings. As mentioned in Section IV-A,
we use threshold ϵB , ϵF and ϵI to check our testing oracles.
We also need to decide the initial perturbation amount of ∆s
on sseed0 . Deciding proper values for these parameters is quite
challenging and requires manual efforts (see our clarification
on this in Section VII). To do so, we repeat the process
of generating 1K testing inputs under a tentatively-decided
parameter value and adjusting the value based on manual
inspection on possible false positives (FPs) of findings. We
release all parameter settings in the codebase [28] to enable
reproducing results and research transparency.

B. RQ1: Overall Effectiveness

This section studies RQ1, i.e., the effectiveness of our
methods on bug discovery. To that end, we show the total
execution time and the number of errors we find on each
combination of tested PSES and physical scenarios. Table II
reports the statistics of our experiment. The eight testing
settings are abbreviated via the first letter of the tested PSE and
the physical scenario, e.g., “TD” denotes “Taichi DiffMPM”.
Processing Time. We execute all experiments on a Ubuntu
18.04 server with an NVIDIA RTX 2080 Ti GPU ported with
CUDA 12.1, an Intel(R) Xeon(R) E5-2683 CPU, and 256GB
RAM. The third row, “Time (hr)”, in Table II reports the
execution time (in terms of the number of hours) of each
configuration. Overall, the physical simulations on PSES are
slow and take dozens to hundreds of hours to finish, as the
simulation process requires applying the time-stepping function
(i.e., Eq. (4)) for dozens to hundreds of steps. DiffMPM
(TD) is the most time-consuming one since its simulation
requires discretizing the space into thousands of small grids.
The computation of Balls is lightweight and only takes several
hours to finish. An exception is Brax/Balls (BB), possibly due
to its language constraints of disallowing in-place modifications
of array elements [50] and thus wasting time on allocating new
arrays for each modification operation.
Discovered Errors. We generate 10K testing inputs for each
tested combination of PSES and physical scenarios. The second
row, “#Errors”, in Table II lists the number of erroneous inputs
discovered in each tested setting. Although all of our tested
PSES are developed by industry giants or highly experienced
researchers from academia, we can still reveal a considerable
number of errors. In total, we find 5,932 testing inputs that can

TABLE II: Results overview (10K inputs per testing setting).
We leave discussion on “SS (min)” in RQ2.

BB BU NB NC TB TD WB WS Total

#Errors 1183 475 709 833 1128 455 427 732 5932
Time (hr) 28.2 23.4 3.8 5.5 1.5 104.1 1.5 24.0 192
SS (min) 65 43 6 2 2 10 4 5 168

trigger misbehaviors in the simulation outputs. Specifically, the
“Balls” scenarios on Brax and Taichi physics engines have the
highest number of erroneous testing inputs (over a thousand).
Although the physical laws governing the behavior of balls
are conceptually simple, the computer simulation of balls is
challenging to be implemented flawlessly (see a discussion of
the author of Taichi on one of the well-known challenges [10]),
and the intricate interactions between balls and walls may
manifest the hidden bugs and thus be captured by our testing
method. Overall, our method uncovers at least 400 erroneous
cases in all testing settings, demonstrating its effectiveness.
Discovered Crashes. Although our testing method primarily
focuses on logic bugs, i.e., bugs that produce incorrect results,
we also find several crashes that cause severe consequences
like segmentation fault during our testing campaign. When
a crash happens, we start a new process and continue the
generation and execution of testing inputs using a different
random number. During the simulation of DiffMPM on Taichi,
we find 23 crashes that lead to invalid memory access in GPU.
We also encounter a crash in Nimble that constantly produces
segmentation fault and stops the testing process altogether. The
crash is due to a regression bug in the Nimble physics engine.
We thus resort to a relatively older version (0.8.32) of Nimble.

Answer to RQ1: PHYFU can effectively find erroneous
inputs that trigger incorrect results or crashes in simulating
different physical scenarios and with various PSES.

C. RQ2: Effectiveness and Overhead of Seed Scheduling

This section aims to answer RQ2, i.e., the effectiveness of
the guided seed scheduling algorithm in Algorithm 2, and its
incurred time overhead. To answer this question, we perform
an ablation study by excluding the seed scheduling algorithm
in our testing pipeline.

BB
+196%

BU
+35%

NB
+73%

NC
+31%

TB
+45%

TD
+35%

WB
+13%

WS
+32%

0

250

500

750

1000

1250

#E
rr

or
s f

ou
nd

 w
ith

ou
t S

S

400 351 411

636
777

338 379

555

#Errors without SS
#Errors with SS

0

250

500

750

1000

1250

#E
rr

or
s f

ou
nd

 w
ith

 S
S1183

475

709
833

1128

455 427

732

Fig. 4: #Errors discovered without and with seed scheduling
(SS). The relative increase (%) on #errors of SS is on x-axis.

Ablation Study. We disable the seed scheduling algorithm and
launch fuzzing with exactly the same setting as Section VI-B.
We also record the time spent executing the seed scheduling

algorithm itself. Fig. 4 shows the comparative results between
enabling seed scheduling (abbreviated as “SS” in the figure)
and disabling it. The green and yellow bars show the number
of errors discovered without and with SS, respectively. The
meaning of first row of labels on the x-axis is the same as
Table II, showing all the eight testing combinations; the second
row shows the relative percentage of increase in the number
of errors uncovered with SS compared to without SS.

Overall, the seed scheduling method is seen to significantly
boost the error-finding ability. The scheduler typically results
in a 30 to 40 percent rise in the number of uncovered errors,
with the highest increase being 195% and all exceeding 13%.
The increase is most visible when testing the scenario of
“Balls” on Brax (BB) and Nimble (NB) engines. Through a
later manual analysis on the root cause analysis of the error-
triggering inputs, we find that the conditions to trigger bugs
in those two testing settings are quite intricate. For instance,
unveiling some errors requires multiple objects colliding with
each other simultaneously. Such strict requirements on the error-
triggering condition render the random algorithm struggling in
error discovery. In contrast, the seed scheduling algorithm can
prioritize seeds that are more likely to satisfy such conditions.
Time Overhead of Seed Scheduling. Despite the effectiveness
of our seed scheduling algorithm, we find that it only adds
negligible amount of time to the total execution time of fuzzing.
The last row, “SS (min)”, of Table II, shows the extra time
overhead (in terms of minutes) of seed scheduling (abbreviated
as “SS”). In most cases, the time spent on the seed scheduling
algorithm is within several minutes. In contrast, the total
execution time of the whole fuzzing campaign, as also presented
in the row “Time (hr)” in the same table, is typically hours
to dozens of hours, far exceeding the time spent on the seed
scheduling. The efficiency of the seed scheduling algorithm
partly comes from its succinctness; also, the algorithm itself
can be implemented in terms of simple vector computation
primitives, such as dot products, which existing vector libraries
already optimize. An exception is the Brax engine, spending
around or more than an hour on the scheduling algorithm. The
reason might be similar to its long execution time, as explained
in Section VI-B. However, compared to the total amount of
time on the simulation (more than 20 hours), the percentage
of the overhead (3%) is still low.

Answer to RQ2: The seed scheduling algorithm can
significantly boost the error discovery while incurring
negligible time overhead.

D. RQ3: Characteristics of the Errors

This section focuses on RQ3. To answer this question, we
utilize a set of heuristics to classify our findings and summarize
some patterns and the distribution of our discovered errors.
Error Categories. As mentioned in Section III, our testing
method asserts both the forward and backward oracles. Fur-
thermore, forward and backward errors may exhibit various
patterns. We define the following heuristics to classify the
errors on a finer scale:

TABLE III: Classification of error-triggering inputs. “Unap-
parent errors” are possibly false positives of PHYFU, since
unlike the rest of cases, they do not have apperantly erroneous
patterns. See further discussion in Section VII.

BB BU NB NC TB TD WB WS

Forward Position 145 227 88 258 92 44 89 142
Velocity 139 208 79 384 130 41 73 130

Backward Direction 669 71 452 395 874 300 360 420
Extent 679 108 156 271 515 370 205 375

Unapparent Errors 156 16 67 19 41 23 5 14

Position & Velocity Error of System: The forward simulation
process essentially deals with computing states (see Eq. (4)),
which uniquely defines the system’s current situation under
simulation. As introduced in Section II, a state comprises the
velocity part and position part. We thus characterize the forward
errors by whether the position or the velocity is incorrectly
computed during the forward simulation.
Direction & Extent Error of Gradient: The backward simula-
tion computes the gradients w.r.t system initial states. A gradient
is a vector with direction and extent. Accordingly, we classify
backward errors into direction errors and extent errors.
Criteria for Error Classification. When classifying forward
errors, we compare the mutated initial state smut

0 with its
corresponding seed initial state sseed0 , and deem it to be a
position (velocity) error if their position (velocity) components
of the state significantly deviate. As for determining whether
the gradient direction is wrong for a backward error, we use
the following heuristic:

arccos
−g(∆s)T∆s

∥g(∆s)∥∥∆s∥
< θD (9)

, where ∆s = smut
0 −sseed0 , g(∆s) is the gradients computed by

the PSE w.r.t. ∆s, and θD is a threshold, which is empirically
set to π/2. Eq. (9) asserts that the gradient vector g(∆s) should
point to the direction close to −∆s. A violation of Eq. (9)
indicates erroneous gradient direction computed from PSE.

In terms of classifying the gradient extent errors, we use the
following heuristic:

∀||h(∆s1)|| > ||h(∆s2)||, ||g(∆s1)|| ≥ ||g(∆s2)|| (10)

Intuitively, Eq. (10) asserts that a ∆s leading to smaller loss
value h(∆s) should not receive a larger gradient extent. Such
heuristic is based on a general observation that the optimization
process should gradually converge as the loss value decreases,
hence the gradient extent should decrease accordingly.
Classification Results. Table III shows the number of errors in
each category for all the tested PSES and physical scenarios.
Note that the sum of all four categories does not equal the total
number of errors listed in Table II, because an error-triggering
input may exhibit multiple patterns, such as being incorrect in
both the gradient direction and extent.

Overall, we discover a considerable number of errors in all
four categories. Based on the statistics, the errors uncovered
by PHYFU extensively affect different phases of PSES. For
example, during the forward simulation, the simulated objects

may deviate from their correct destination when the position
changes, and the objects may unexpectedly move at varying
speeds when the velocity changes. Similarly, in the backward
phase, the gradient direction errors mislead the optimization
direction, and the optimization process fails to converge in the
existence of gradient extent errors. Our exposed diverse errors,
in turn, can lead to various harmful consequences, ranging from
objects appearing in confusing positions or moving at noticeably
unreal speeds, to the failure to achieve desired goals in agent
learning and control tasks. For instance, one of the discovered
errors has already caused major confusions to the community
when users are performing downstream tasks [51]. Due to
limited space, we present all our findings on our website [28]
for users to re-produce and extend.

We also find that some of our discovered erroneous inputs
do not fall into any of our listed classification criteria (the
row “Unapparent Errors”) in Table III. Since they do not have
obviously erroneous patterns, we conservatively deem them
as possible false positives of PHYFU. This is likely due to
hyper-parameter settings (see our discussion in Section VII).

Answer to RQ3: Our uncovered erroneous test cases
feature a wide range of characteristics, covering position
and velocity errors in the forward simulation, as well as
gradient direction and extent errors in the backward process.

E. RQ4: Root Cause Analysis

This section looks into RQ4: what are the root causes of
discovered failures? To further the understanding of discovered
error-triggering inputs, we pack all of our findings to the
developers of tested PSES. With developers’ help and valuable
feedback, we have rooted seven bugs by the time of writing,
two of which are promptly fixed in the recent release. We
clarify that it takes some time for developers to iterate all
uncovered errors since root cause analysis requires special
expertise, and the stealthiness nature of logic errors and the
large number of buggy cases (hundreds or even a thousand)
increase the analysis difficulty. For illustrative purposes, below
we provide a representative example for each tested PSES.
A Bug in Taichi: Incorrect Compilation of Gradient Computa-
tion Code. The development of PSES is a highly complex task,
requiring not only programming the simulator, but sometimes
also developing a compiler that can generate highly efficient
executables for the code of the simulator. The Taichi engine
has its DSL, the Taichi-lang, and a dedicated compiler that
can generate executables for code written in its DSL. We find
that ti.static, a primitive in Taichi-lang that can be used
as an indicator for loop unrolling, causes incorrect outputs in
the computed gradients. In particular, the compiler in Taichi
would automatically generate code that computes the analytical
gradients, so that developers of simulators only need to focus
on programming the forward simulation and can leave the
gradient computation to the compiler. However, the compiler
of Taichi, although correctly compiles the forward simulation
code and gives correct results in the forward simulation, mis-

compiles the semantics of ti.static and generates incorrect
executables for gradient computation.

A Bug in Nimble: Improper Handling on Impulse Compu-
tation. When solving the dynamics equation, as the example
provided in Eq. (2) and Eq. (3), some PSES, such as Nimble,
would first compute the impulses applied on the objects,
i.e., the product of a time interval ∆t with force on the
corresponding object. The impulse would later determine the
change of objects’ velocities in the given time interval ∆t. The
impulse computation of Nimble is correct in most situations,
yet we find that when multiple objects collide with each other
simultaneously, the output impulses are wrong. Nimble employs
a Linear Complementarity Problem (LCP) solver to compute
the impulses; however, the LCP solver neglects the special
case of simultaneous collision. The impulses are applied twice
on each pair of the colliding objects; thus, the velocity changes
twice as much as it should. Consequently, the total momentum
of the whole system is doubled, a phenomenon that obviously
violates the law of momentum.

A Bug in Brax: Erroneous Contact Modeling. Contacts between
objects are prevalent in both the physical world and simulations.
For instance, a walking robot must have its feet in contact with
the ground to perform the “walking” movement [10], and a
ball bouncing off a wall would create instant contact between
the ball and the wall. Brax models object contacts using the
Position Based Dynamics (PBD) [52]. Recall in Section II,
PSES would discretize the time into small-time intervals ∆t.
Brax’s PBD implementation incorrectly models the objects’
contact only at the end of the interval ∆t, even though in reality,
two objects may touch each other at any time in between a
∆t time span. Such an error is also independently discovered
by a user who wants to use Brax to perform a downstream
task on agent training and learning. The user complains about
poor training results due to the wrong simulation. Developers
deem the contact modeling issue as “definitely one of the big
problems plaguing most simulators” [51].

A Bug in Warp: GPU Kernel Caching and Replaying Is-
sue. Since the physical simulation process inherently requires
intensive computational resources, some PSES may use GPUs
to accelerate the simulation process. The Warp Engine launches
a set of GPU kernels to execute the forward and backward
simulation. Since a GPU kernel may be launched multiple
times during the simulation, Warp would cache previously
launched kernels and replay them later when the same kernels
are called again. Through manual investigation, we find that
the kernel caching mechanism may sometimes cause the break
of the backpropagation flow in the gradient computation phase,
resulting in some updated parameters receiving zero gradients.

Answer to RQ4: We find a wide variety of error-inducing
root causes in the whole software stack of PSES, spanning
from simulation algorithm design, compiler, and hardware
support. Such observation indicates the generalizability of
our testing method and the importance of our findings.

VII. DISCUSSION

Limitations and Threats to Validity. Our study launches
dynamic testing toward PSES. Although our method success-
fully uncovers a considerable number of errors, we cannot
guarantee the correctness of PSES. Program verification may
ensure functional correctness, yet it is generally considered
extremely challenging to implement for complex software like
PSES. Overall, our testing-based approach is in line with the
general stance of relevant works [53, 54].

Another limitation is the generalizability of our testing
oracles. We enforce a set of assumptions in our testing oracles
(see Section III). For other physical scenarios, such as the
Lorenz System [55], in which our assumptions do not hold,
our testing method cannot be directly applied to check the
correctness of simulations. Still, our testing method is seen to
be promising as it successfully uncovers a considerable number
of errors in all the tested, mainstream PSES.
Dicussion of Hyper-parameter Settings. Overall, we have two
sets of hyper-parameters: the first set is perturbation amount ∆s
on the seed state, and the second is ϵF , ϵI , and ϵB for asserting
the testing oracles. Poorly-decided hyper-parameters may lead
to false positives (FPs). However, deciding a reasonable value
setting requires expertise about the tested PSE and physical
scenario, and cannot be easily automated, since different
combinations of PSE and scenario have varied features in their
simulation process. For instance, the softbody simulations sim-
ulate thousands of small particles and grids [24], while robotic
simulations are concerned with dozens of complex-shaped
components, e.g., palms and shoulders [14]; also, different
PSES may leverage different algorithms for the simulation.
Without in-depth understanding of the features of the PSES
and scenarios, the selected hyper-parameter values may not be
reasonable under the given setting. As such, it is challenging to
design an automated, unified method for the parameter decision
process. We thus adopt an empirical approach, following the
manual investigation process as mentioned in Section VI-A.
To make our results fully transparent and highly reproducible,
we have released all of our selected hyper-parameters in our
codebase.
Discussion about Alternative Testing Oracles. Since there
exist many PSES in public repositories, one may question
the feasibility of launching differential testing over a set of
PSES using an identical initial state. Our preliminary study
illustrates that such differential testing setting is problematic,
whose reasons are two-fold.
Different Modeling of Physics Laws. PSES may use different
models for the simulated physical process. Consider the simu-
lation of continuum dynamics, some may use the St. Venant-
Kirchhoff model [56], while others may use the corotated linear
elasticity for modeling the simulated physical process [57].
The two models lead to different 1st Piola-Kirchhoff stress
tensors [58], thus the final results may be different. As such,
the results from the two engines are not comparable.
Different Equation-Solving. Forward simulation in PSES may
give different results due to different equation-solving schemes.
The forward simulation process would first discretize the

dynamics equations, yet the discretization schemes vary from
engine to engine. The implicit Euler method will dampen the
Hamiltonion [59] of the simulated system, while the symplectic
Euler method preserves it [59]. Thus, the forward simulation
results from different engines may not be consistent; the
computed gradients, as a consequence, can also be inconsistent.

VIII. RELATED WORK

Our research focuses on discovering bugs in physical
simulators, which are software systems that model real-world
physical phenomena. While there is a body of work [60–65]
that tests the Simulink compiler, a compiler for multidomain
dynamical systems, our work is distinct and orthogonal to those
efforts. Simulink models are user-defined and may not adhere
to real-world physical laws, whereas our work concentrates on
testing physical simulators that mimic real-world systems and
relies on a set of established physical principles.

Our approach involves generating a series of random
testing inputs to stress-test our testing targets, which are the
physical simulators. This method, known as fuzzing, has been
applied to test other targets as well, such as Markov decision
processes [66] and decompilers [67]. Additionally, fuzzing has
been used to identify missed optimizations in WebAssembly
compilers by randomly generating C programs [68]. While
fuzzing creates new input data to test software systems, another
approach called metamorphic testing transforms existing input
data to uncover bugs. Metamorphic testing has been applied to
test complex software systems, including Deep Learning com-
pilers [69], graphics shader compilers [70, 71], AI models [72],
and database systems [73]. In contrast, our approach focuses
on using fuzzing to test physical simulators, which presents
unique challenges and opportunities for bug detection.

IX. CONCLUSION

We present a novel fuzzing framework, PHYFU, targeting
modern PSES. PHYFU is designed on the basis of principled
physical laws to uncover logic errors in PSES, and it features
a set of design choices and optimizations to improve the
testing. Our study on eight combinations of PSES and physical
scenarios detects a considerable number of findings, covering
the full stack of PSE software. This work can serve as a
roadmap for users and developers to use and improve PSES.

ACKNOWLEDGEMENT

We thank anonymous reviewers for their valuable feedback.
This project is supported in part by a RGC ECS grant under
the contract 26206520.

REFERENCES

[1] Webots, “http://www.cyberbotics.com,” open-source Mobile Robot
Simulation Software. [Online]. Available: http://www.cyberbotics.com

[2] N. Koenig and A. Howard, “Design and use paradigms for gazebo, an
open-source multi-robot simulator,” in 2004 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS) (IEEE Cat.
No.04CH37566), vol. 3, 2004, pp. 2149–2154 vol.3.

[3] E. Rohmer, S. P. N. Singh, and M. Freese, “V-rep: A versatile and
scalable robot simulation framework,” in 2013 IEEE/RSJ International
Conference on Intelligent Robots and Systems, 2013, pp. 1321–1326.

[4] C. Pinciroli, V. Trianni, R. O’Grady, G. Pini, A. Brutschy, M. Brambilla,
N. Mathews, E. Ferrante, G. Di Caro, F. Ducatelle et al., “Argos: a
modular, multi-engine simulator for heterogeneous swarm robotics,” in
2011 IEEE/RSJ International Conference on Intelligent Robots and
Systems. IEEE, 2011, pp. 5027–5034.

[5] E. Coumans, “Bullet physics simulation,” in ACM SIGGRAPH
2015 Courses, ser. SIGGRAPH ’15. New York, NY, USA:
Association for Computing Machinery, 2015. [Online]. Available:
https://doi.org/10.1145/2776880.2792704

[6] H. Telekinesys Research Ltd., “Havok - power to the creators,” https:
//www.havok.com/, 2022.

[7] R. L. Smith, “Open dynamics engine,” https://ode.org/, 2001.
[8] NVIDIA, “Nvidia physx,” https://github.com/NVIDIA-Omniverse/PhysX,

2022.
[9] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for model-

based control,” in 2012 IEEE/RSJ international conference on intelligent
robots and systems. IEEE, 2012, pp. 5026–5033.

[10] Y. Hu, L. Anderson, T.-M. Li, Q. Sun, N. Carr, J. Ragan-Kelley,
and F. Durand, “Difftaichi: Differentiable programming for physical
simulation,” arXiv preprint arXiv:1910.00935, 2019.

[11] T. Howell, S. Cleac’h, J. Kolter, M. Schwager, and Z. Manchester,
“Dojo: A differentiable physics engine for robotics,” arXiv preprint
arXiv:2203.00806, 2022.

[12] F. de Avila Belbute-Peres, K. Smith, K. Allen, J. Tenenbaum, and
J. Z. Kolter, “End-to-end differentiable physics for learning and control,”
Advances in neural information processing systems, vol. 31, 2018.

[13] M. Geilinger, D. Hahn, J. Zehnder, M. Bächer, B. Thomaszewski, and
S. Coros, “Add: Analytically differentiable dynamics for multi-body
systems with frictional contact,” ACM Transactions on Graphics (TOG),
vol. 39, no. 6, pp. 1–15, 2020.

[14] K. Werling, D. Omens, J. Lee, I. Exarchos, and C. K. Liu, “Fast and
feature-complete differentiable physics for articulated rigid bodies with
contact,” arXiv preprint arXiv:2103.16021, 2021.

[15] Z. Huang, Y. Hu, T. Du, S. Zhou, H. Su, J. B. Tenenbaum, and C. Gan,
“Plasticinelab: A soft-body manipulation benchmark with differentiable
physics,” arXiv preprint arXiv:2104.03311, 2021.

[16] C. D. Freeman, E. Frey, A. Raichuk, S. Girgin, I. Mordatch, and
O. Bachem, “Brax–a differentiable physics engine for large scale rigid
body simulation,” arXiv preprint arXiv:2106.13281, 2021.

[17] E. Heiden, D. Millard, E. Coumans, Y. Sheng, and G. S.
Sukhatme, “NeuralSim: Augmenting differentiable simulators with
neural networks,” in Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA), 2021. [Online]. Available:
https://github.com/google-research/tiny-differentiable-simulator

[18] T. N. Stack, “Physics-based simulation and the
future of the metaverse,” https://thenewstack.io/
physics-based-simulation-and-the-future-of-the-metaverse/, 2022.

[19] E. Research, “Simulation software market,” https://www.emergenresearch.
com/industry-report/simulation-software-market, 2022.

[20] ModorIntelligence, “Simulation software market - growth, trends, covid-
19 impact, and forecasts (2023 - 2028),” https://www.mordorintelligence.
com/industry-reports/simulation-software-market, 2023.

[21] A. Hertz, E. George, C. Vaccaro, and T. Brand, “Head-to-head comparison
of three virtual-reality robotic surgery simulators,” https://www.ncbi.nlm.
nih.gov/pmc/articles/PMC5863693/, 2018.

[22] T. Community, “Taichi Lang,” https://github.com/taichi-dev/taichi, 2023.
[23] NVIDIA, “Warp: A high-performance python framework for gpu

simulation and graphics,” https://github.com/NVIDIA/warp, 2022.
[24] Y. Hu, T.-M. Li, L. Anderson, J. Ragan-Kelley, and F. Durand, “Taichi:

a language for high-performance computation on spatially sparse data
structures,” ACM Transactions on Graphics (TOG), vol. 38, no. 6, pp.
1–16, 2019.

[25] I. S. Inc., “da vinci skills simulator,” https://www.intuitive.com/en-us/
products-and-services/da-vinci/learning/simnow, 2023.

[26] I. Mimic Technologies, “dv-trainer,” https://www.medicalexpo.com/prod/
mimic-technologies/product-112216-739694.html, 2023.

[27] Simbionix, “Robotix mentor,” https://simbionix.com/simulators/
robotix-mentor/, 2023.

[28] https://github.com/PhyFuzz/phyfu.
[29] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,

T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style,
high-performance deep learning library,” in Advances in Neural
Information Processing Systems 32. Curran Associates, Inc., 2019,

http://www.cyberbotics.com
https://doi.org/10.1145/2776880.2792704
https://www.havok.com/
https://www.havok.com/
https://ode.org/
https://github.com/NVIDIA-Omniverse/PhysX
https://github.com/google-research/tiny-differentiable-simulator
https://thenewstack.io/physics-based-simulation-and-the-future-of-the-metaverse/
https://thenewstack.io/physics-based-simulation-and-the-future-of-the-metaverse/
https://www.emergenresearch.com/industry-report/simulation-software-market
https://www.emergenresearch.com/industry-report/simulation-software-market
https://www.mordorintelligence.com/industry-reports/simulation-software-market
https://www.mordorintelligence.com/industry-reports/simulation-software-market
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5863693/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5863693/
https://github.com/taichi-dev/taichi
https://github.com/NVIDIA/warp
https://www.intuitive.com/en-us/products-and-services/da-vinci/learning/simnow
https://www.intuitive.com/en-us/products-and-services/da-vinci/learning/simnow
https://www.medicalexpo.com/prod/mimic-technologies/product-112216-739694.html
https://www.medicalexpo.com/prod/mimic-technologies/product-112216-739694.html
https://simbionix.com/simulators/robotix-mentor/
https://simbionix.com/simulators/robotix-mentor/
https://github.com/PhyFuzz/phyfu

pp. 8024–8035. [Online]. Available: http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf

[30] K. M. Jatavallabhula, M. Macklin, F. Golemo, V. Voleti, L. Petrini,
M. Weiss, B. Considine, J. Parent-Levesque, K. Xie, K. Erleben
et al., “gradsim: Differentiable simulation for system identification and
visuomotor control,” arXiv preprint arXiv:2104.02646, 2021.

[31] Y. D. Zhong, B. Dey, and A. Chakraborty, “Extending lagrangian
and hamiltonian neural networks with differentiable contact models,”
Advances in Neural Information Processing Systems, vol. 34, pp. 21 910–
21 922, 2021.

[32] A. F. Collar, J. J. O. Oliveros, and A. I. Grebénnikov, “Uniqueness of
solution of the inverse electroencephalographic problem,” Lecture notes
in computer science, vol. 1988, pp. 207–213, 2002.

[33] A. Hasanov Hasanoğlu and V. G. Romanov, Introduction to Inverse
Problems for Differential Equations. Cham: Springer International
Publishing AG, 2017.

[34] N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein,
“Mdanalysis: a toolkit for the analysis of molecular dynamics simulations,”
Journal of computational chemistry, vol. 32, no. 10, pp. 2319–2327, 2011.

[35] D. Frenkel and B. Smit, Understanding molecular simulation: from
algorithms to applications. Elsevier, 2001, vol. 1.

[36] M. Müller, D. Charypar, and M. Gross, “Particle-based fluid simulation
for interactive applications,” in Proceedings of the 2003 ACM SIG-
GRAPH/Eurographics symposium on Computer animation. Citeseer,
2003, pp. 154–159.

[37] R. J. Sadus et al., Molecular simulation of fluids. Elsevier, 2002.
[38] G. Meshcheryakov, “Uniqueness of the solution of an inverse problem

in potential theory,” Siberian mathematical journal, vol. 11, no. 5, pp.
879–882, 1970.

[39] D. V. Kapanadze, “On the uniqueness of a solution of the inverse problem
for a simple-layer potential,” Ukrainian mathematical journal, vol. 60,
no. 7, pp. 1045–1054, 2008.

[40] A. Prilepko, “On the stability and uniqueness of a solution of inverse prob-
lems of generalized potentials of a simple layer,” Siberian mathematical
journal, vol. 12, no. 4, pp. 594–601, 1971.

[41] A. G. Ramm, “Appendix 1 stable solution of the integral equation of
the inverse problem of potential theory,” in Theory and Applications of
Some New Classes of Integral Equations. United States: Springer New
York, 1980.

[42] R. Cottle, M. N. Thapa et al., Linear and nonlinear optimization.
Springer, 2017, vol. 253.

[43] T. Y. Chen, F. C. Kuo, and H. Liu, “On test case distributions of adaptive
random testing,” in Proceedings of the 19th International Conference on
Software Engineering and Knowledge Engineering. Knowledge Systems
Institute Graduate School, 2007, pp. 141–144.

[44] R. Vlasov, K.-I. Friese, and F.-E. Wolter, “Ray casting for collision
detection in haptic rendering of volume data,” in Proceedings of the ACM
SIGGRAPH Symposium on Interactive 3D Graphics and Games, ser. I3D
’12. New York, NY, USA: Association for Computing Machinery, 2012,
p. 215. [Online]. Available: https://doi.org/10.1145/2159616.2159661

[45] Y. J. Kim, M. C. Lin, and D. Manocha, Collision Detection. Dordrecht:
Springer Netherlands, 2019, pp. 1933–1956. [Online]. Available:
https://doi.org/10.1007/978-94-007-6046-2 26

[46] T. Amada, M. Imura, Y. Yasumuro, Y. Manabe, and K. Chihara, “Particle-
based fluid simulation on gpu,” in ACM workshop on general-purpose
computing on graphics processors, vol. 41. Citeseer, 2004, p. 42.

[47] K. Kadau, J. L. Barber, T. C. Germann, B. L. Holian, and B. J. Alder,
“Atomistic methods in fluid simulation,” Philosophical Transactions of
the Royal Society A: Mathematical, Physical and Engineering Sciences,
vol. 368, no. 1916, pp. 1547–1560, 2010.

[48] Y. Hu, T.-M. Li, L. Anderson, J. Ragan-Kelley, and F. Durand, “Difftaichi
billiards example,” https://github.com/taichi-dev/difftaichi/blob/master/
examples/billiards.py, 2023.

[49] M. Macklin, “Warp: A high-performance python framework for gpu
simulation and graphics,” https://www.nvidia.com/en-us/on-demand/
session/gtcspring22-s41599/, 2022.

[50] Google, “Jax vs. numpy,” https://jax.readthedocs.io/en/latest/notebooks/
thinking in jax.html, 2023.

[51] C. Dawnson, “Brax contact modeling results in non-physical behavior
(and non-physical gradients),” https://github.com/google/brax/issues/317,
2023.

[52] M. Müller, B. Heidelberger, M. Hennix, and J. Ratcliff, “Position based
dynamics,” Journal of Visual Communication and Image Representation,
vol. 18, no. 2, pp. 109–118, 2007.

[53] C. Sun, V. Le, and Z. Su, “Finding compiler bugs via live code mutation,”
in Proceedings of the 2016 ACM SIGPLAN International Conference on
Object-Oriented Programming, Systems, Languages, and Applications,
2016, pp. 849–863.

[54] V. Le, C. Sun, and Z. Su, “Finding deep compiler bugs via guided
stochastic program mutation,” ACM SIGPLAN Notices, vol. 50, no. 10,
pp. 386–399, 2015.

[55] M. Moghtadaei and M. Hashemi Golpayegani, “Complex dynamic
behaviors of the complex lorenz system,” Scientia Iranica, vol. 19,
no. 3, pp. 733–738, 2012. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S1026309811002513

[56] J. Barbič and D. L. James, “Real-time subspace integration
for st. venant-kirchhoff deformable models,” ACM Trans. Graph.,
vol. 24, no. 3, p. 982–990, jul 2005. [Online]. Available: https:
//doi.org/10.1145/1073204.1073300

[57] E. Sifakis and J. Barbic, “Fem simulation of 3d deformable solids: a
practitioner’s guide to theory, discretization and model reduction,” in
Acm siggraph 2012 courses, 2012, pp. 1–50.

[58] H. Chen, “Constructing continuum-like measures based on a nonlocal
lattice particle model: Deformation gradient, strain and stress tensors,”
International Journal of Solids and Structures, vol. 169, pp. 177–186,
2019. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S0020768319301830

[59] A. Stern and M. Desbrun, “Discrete geometric mechanics for variational
time integrators,” in ACM SIGGRAPH 2006 Courses, ser. SIGGRAPH
’06. New York, NY, USA: Association for Computing Machinery, 2006,
p. 75–80. [Online]. Available: https://doi.org/10.1145/1185657.1185669

[60] S. L. Shrestha, “Harnessing large language models for simulink
toolchain testing and developing diverse open-source corpora of simulink
models for metric and evolution analysis,” in Proceedings of the
32nd ACM SIGSOFT International Symposium on Software Testing
and Analysis, ser. ISSTA 2023. New York, NY, USA: Association
for Computing Machinery, 2023, p. 1541–1545. [Online]. Available:
https://doi.org/10.1145/3597926.3605233

[61] S. A. Chowdhury, S. Mohian, S. Mehra, S. Gawsane, T. T. Johnson, and
C. Csallner, “Automatically finding bugs in a commercial cyber-physical
system development tool chain with slforge,” in Proceedings of the
40th International Conference on Software Engineering, ser. ICSE ’18.
New York, NY, USA: Association for Computing Machinery, 2018, p.
981–992. [Online]. Available: https://doi.org/10.1145/3180155.3180231

[62] S. L. Shrestha and C. Csallner, “Slgpt: Using transfer learning to
directly generate simulink model files and find bugs in the simulink
toolchain,” in Proceedings of the 25th International Conference on
Evaluation and Assessment in Software Engineering, ser. EASE ’21.
New York, NY, USA: Association for Computing Machinery, 2021, p.
260–265. [Online]. Available: https://doi.org/10.1145/3463274.3463806

[63] S. L. Shrestha, “Automatic generation of simulink models to find
bugs in a cyber-physical system tool chain using deep learning,”
in Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering: Companion Proceedings, ser. ICSE ’20. New
York, NY, USA: Association for Computing Machinery, 2020, p.
110–112. [Online]. Available: https://doi.org/10.1145/3377812.3382163

[64] S. A. Chowdhury, S. L. Shrestha, T. T. Johnson, and C. Csallner, “Slemi:
Equivalence modulo input (emi) based mutation of cps models for finding
compiler bugs in simulink,” in 2020 IEEE/ACM 42nd International
Conference on Software Engineering (ICSE), 2020, pp. 335–346.

[65] S. Guo, H. Jiang, Z. Xu, X. Li, Z. Ren, Z. Zhou, and R. Chen,
“Detecting simulink compiler bugs via controllable zombie blocks
mutation,” in Proceedings of the 30th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, ser. ESEC/FSE 2022. New York, NY, USA: Association
for Computing Machinery, 2022, p. 1061–1072. [Online]. Available:
https://doi.org/10.1145/3540250.3549159

[66] Q. Pang, Y. Yuan, and S. Wang, “Mdpfuzz: Testing models
solving markov decision processes,” in Proceedings of the 31st
ACM SIGSOFT International Symposium on Software Testing and
Analysis, ser. ISSTA 2022. New York, NY, USA: Association
for Computing Machinery, 2022, p. 378–390. [Online]. Available:
https://doi.org/10.1145/3533767.3534388

[67] Z. Liu and S. Wang, “How far we have come: Testing decompilation
correctness of c decompilers,” in Proceedings of the 29th ACM SIGSOFT
International Symposium on Software Testing and Analysis, ser. ISSTA
2020. New York, NY, USA: Association for Computing Machinery,
2020, p. 475–487. [Online]. Available: https://doi.org/10.1145/3395363.
3397370

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.1145/2159616.2159661
https://doi.org/10.1007/978-94-007-6046-2_26
https://github.com/taichi-dev/difftaichi/blob/master/examples/billiards.py
https://github.com/taichi-dev/difftaichi/blob/master/examples/billiards.py
https://www.nvidia.com/en-us/on-demand/session/gtcspring22-s41599/
https://www.nvidia.com/en-us/on-demand/session/gtcspring22-s41599/
https://jax.readthedocs.io/en/latest/notebooks/thinking_in_jax.html
https://jax.readthedocs.io/en/latest/notebooks/thinking_in_jax.html
https://github.com/google/brax/issues/317
https://www.sciencedirect.com/science/article/pii/S1026309811002513
https://www.sciencedirect.com/science/article/pii/S1026309811002513
https://doi.org/10.1145/1073204.1073300
https://doi.org/10.1145/1073204.1073300
https://www.sciencedirect.com/science/article/pii/S0020768319301830
https://www.sciencedirect.com/science/article/pii/S0020768319301830
https://doi.org/10.1145/1185657.1185669
https://doi.org/10.1145/3597926.3605233
https://doi.org/10.1145/3180155.3180231
https://doi.org/10.1145/3463274.3463806
https://doi.org/10.1145/3377812.3382163
https://doi.org/10.1145/3540250.3549159
https://doi.org/10.1145/3533767.3534388
https://doi.org/10.1145/3395363.3397370
https://doi.org/10.1145/3395363.3397370

[68] Z. Liu, D. Xiao, Z. Li, S. Wang, and W. Meng, “Exploring missed
optimizations in webassembly optimizers,” in Proceedings of the
32nd ACM SIGSOFT International Symposium on Software Testing
and Analysis, ser. ISSTA 2023. New York, NY, USA: Association
for Computing Machinery, 2023, p. 436–448. [Online]. Available:
https://doi.org/10.1145/3597926.3598068

[69] D. Xiao, Z. Liu, Y. Yuan, Q. Pang, and S. Wang, “Metamorphic
testing of deep learning compilers,” in Abstract Proceedings of the
2022 ACM SIGMETRICS/IFIP PERFORMANCE Joint International
Conference on Measurement and Modeling of Computer Systems,
ser. SIGMETRICS/PERFORMANCE ’22. New York, NY, USA:
Association for Computing Machinery, 2022, p. 65–66. [Online].
Available: https://doi.org/10.1145/3489048.3522655

[70] D. Xiao, Z. Liu, and S. Wang, “Metamorphic shader fusion for testing
graphics shader compilers,” in 2023 IEEE/ACM 45th International

Conference on Software Engineering (ICSE), 2023, pp. 2400–2412.
[71] A. F. Donaldson, H. Evrard, A. Lascu, and P. Thomson, “Automated

testing of graphics shader compilers,” Proc. ACM Program. Lang.,
vol. 1, no. OOPSLA, oct 2017. [Online]. Available: https://doi.org/10.
1145/3133917

[72] Y. Yuan, Q. Pang, and S. Wang, “Unveiling hidden dnn defects
with decision-based metamorphic testing,” in Proceedings of the
37th IEEE/ACM International Conference on Automated Software
Engineering, ser. ASE ’22. New York, NY, USA: Association for
Computing Machinery, 2023. [Online]. Available: https://doi.org/10.
1145/3551349.3561157

[73] P. Ma and S. Wang, “Mt-teql: Evaluating and augmenting neural
nlidb on real-world linguistic and schema variations,” Proc. VLDB
Endow., vol. 15, no. 3, p. 569–582, nov 2021. [Online]. Available:
https://doi.org/10.14778/3494124.3494139

https://doi.org/10.1145/3597926.3598068
https://doi.org/10.1145/3489048.3522655
https://doi.org/10.1145/3133917
https://doi.org/10.1145/3133917
https://doi.org/10.1145/3551349.3561157
https://doi.org/10.1145/3551349.3561157
https://doi.org/10.14778/3494124.3494139

	Introduction
	Preliminary
	Overview of PhyFu
	Design of PhyFu
	Fuzz Testing
	Feedback-Driven Seed Prioritization
	Seed Validity Ensurance

	Implementation
	Evaluation
	Experiment Setting
	RQ1: Overall Effectiveness
	RQ2: Effectiveness and Overhead of Seed Scheduling
	RQ3: Characteristics of the Errors
	RQ4: Root Cause Analysis

	Discussion
	Related Work
	Conclusion
	References

