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Abstract—A wide range of verification methods have been
proposed to verify the safety properties of deep neural networks
ensuring that the networks function correctly in critical applica-
tions. However, many well-known verification tools still struggle
with complicated network architectures and large network sizes.
In this work, we propose a network reduction technique as
a pre-processing method prior to verification. The proposed
method reduces neural networks via eliminating stable ReLU
neurons, and transforming them into a sequential neural network
consisting of ReLU and Affine layers which can be handled by
the most verification tools. We instantiate the reduction technique
on the state-of-the-art complete and incomplete verification tools,
including α,β-crown, VeriNet and PRIMA. Our experiments on
a large set of benchmarks indicate that the proposed technique
can significantly reduce neural networks and speed up existing
verification tools. Furthermore, the experiment results also show
that network reduction can improve the availability of existing
verification tools on many networks by reducing them into
sequential neural networks.

Keywords—Neural Network Verification, Network Reduction,
Pre-processing

I. INTRODUCTION

Deep neural networks have been widely applied in real-
world applications. At the same time, it is indispensable to
guarantee the safety properties of neural networks in those
critical scenarios. As neural networks are trained to be larger
and deeper, researchers have deployed various techniques
to speed up the verification process. For example, to over-
approximate the whole network behavior [1]–[4]; to deploy
GPU implementation [5]–[7]; or to merge neurons in the
same layer in an over-approximate manner so as to reduce
the number of neurons [8], [9].

This work aims to further accelerate the verification process
by “pre-processing” the tested neural network with ReLU acti-
vation function and constructing a reduced network with fewer
number of neurons and connections. We propose the network
reduction technique, which returns a reduced network (named
as REDNet) that captures the exact behavior of the original
network rather than over-approximating the original network.
Therefore verification over the reduced network equals the
original verification problem yet requires less execution cost.

The REDNet could be instantiated on different verification
techniques and is beneficial for complex verification processes

§Equal contribution
†Corresponding author

such as branch-and-bound based (bab) or abstract refinement
based methods. For example, branch-and-bound based meth-
ods [6], [7], [10], [11] generate a set of sub-problems to
verify the original problem. Once deployed with REDNet
before the branch-and-bound phase, all the sub-problems are
built on the reduced network, thus achieving overall speed
gain. For abstract refinement based methods, like [4], [12],
[13], they collect and encode the network constraints and
refine individual neuron bounds via LP (linear program) or
MILP (mixed-integer linear program) solving. This refinement
process could be applied to a large set of neurons, and
the number of constraints in the network encoding can be
significantly reduced with the deployment of REDNet.

We have implemented our proposed network reduction
technique in a prototypical system named REDNet (the
reduced network), which is available at https://github.com/
REDNet-verifier/IDNN. The experiments show that the ReLU
neurons in the reduced network could be up to 95 times smaller
than those in the original network in the best case and 10.6
times smaller on average. We instantiated REDNet on the
state-of-the-art complete verifier α, β-CROWN [14], VeriNet
[15] and incomplete verifier PRIMA [12] and assessed the
effectiveness of REDNet over a wide range of benchmarks.
The results show that, with the deployment of REDNet, α, β-
CROWN could verify more properties given the same timeout
and gain average 1.5× speedup. Also, VeriNet with REDNet
verifies 25.9% more properties than the original and can
be 1.6× faster. REDNet could also assist PRIMA to gain
1.99× speedup and verifies 60.6% more images on average.
Lastly, REDNet is constructed in a simple network architecture
and making it amenable for existing tools to handle network
architectures that they could not support previously.

We summarize the contributions of our work as follows:
• We define stable ReLU neurons and deploy the state-of-

the-art bounding method to detect such stable neurons.
• We propose a network reduction process to remove stable

neurons and generate REDNet that contains a smaller
number of neurons and connections, thereby boosting the
efficiency of existing verification methods.

• We prove that the generated REDNet preserves the input-
output equivalence of the original network.

• We instantiate the REDNet on several state-of-the-art
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verification methods. The experiment results indicate that
the same verification processes execute faster on the
REDNet than on the original network; it can also respond
accurately to tougher queries the verification of which
were timeout when running on the original network.

• REDNet is constructed with a simple network architec-
ture, it can assist various tools in handling more networks
that they have failed to be supported previously.

• Lastly, we export REDNet as a fully-connected network
in ONNX, which is an open format that is widely
accepted by the most verification tools.

II. PRELIMINARIES
A feedforward neural network is a function F defined as

a directed acyclic diagram (V, E) where every node Li in
V represents a layer of |Li| neurons and each arc (Li, Lj)
in E denotes that the outputs of the neurons in Li are
inputs of the neurons in Lj . For each layer Li ∈ V ,
in(Li) = {Lj |(Lj , Li) ∈ E} is the preceding layers of Li and
out(Li) = {Lj |(Li, Lj) ∈ E} denotes the succeeding layers
of Li. If the set in(Li) of preceding layers is non-empty, then
the layer Li represents a computation operator, e.g. the ReLU
and GEMM operators; otherwise Li is an input layer of the
neural network. In addition, Li is an output layer of the neural
network if out(Li) is empty.

In this paper, we consider the ReLU-based neural network
with one input layer and one output layer. Note that multiple
input layers (and output layers) can be concatenated as one
input layer (and one output layer). Then a neural network is
considered as a sequential neural network if |in(Li)| = 1 and
|out(Li)| = 1 for all layers Li in the neural network except
the input and output layers.

We use a vector a⃗ to denote the input of a neural network
F , and the input space I of F includes all possible inputs of
F . For any input a⃗ ∈ I , Li(⃗a) is a vector denoting the outputs
of neurons in a layer Li given this input a⃗. The output F (⃗a)
of the neural network is the output of its output layer.

The neural network verification problem is to verify that for
all possible inputs a⃗ from a given input space I , the outputs
F (⃗a) of a neural network F must satisfy a specific condition.
For example, the robustness verification problem is to verify
that for all inputs within a specified input space, the neural
network’s output must satisfy that the value of the neuron
corresponding to the ground truth label is greater than the
values of the other neurons in the output layer.

III. OVERVIEW

In this section, we present a simple network F and illustrate
how to construct the reduced network via the deletion of stable
neurons, where stable neurons refer to those ReLU neurons
whose inputs are completely non-negative or non-positive.

The example is a fully-connected network with ReLU
activation function y = max(0, x) as shown in Figure 1,
where the connections are recorded in the linear constraints
near each affine neuron. We set the input space I to be
[−1, 1]× [−1, 1], and apply one of the state-of-the-art bound

x1

[−1, 1]

x2

[−1, 1]

x4

x3

x5

x6

x7

x9

x8

x10

x11

x12

y1

y2

max(0, x3)

max(0, x4)

max(0, x5)

max(0, x6)

max(0, x7)

x3 ∈ [−4, 0]
−x1 − x2 − 2

x4 ∈ [1, 5]
x1 + x2 + 3

x5 ∈ [0, 4]
x1 − x2 + 2

x6 ∈ [0, 4]
x1 + x2 + 2

x7 ∈ [−2, 2]
−x1 + x2

x8 ∈ [0, 0]

x9 ∈ [1, 5]

x10 ∈ [0, 4]

x11 ∈ [0, 4]

x12 ∈ [0, 2]

x11 − x12

x8 − x9 + x10+

x8 + x9+

x10 + x11 + x12

Figure 1: The example network with initial concrete bounds

propagators CROWN [16] to propagate the input intervals to
other neurons of the network. The deployment of CROWN
returns us the concrete bounds for intermediate neurons, which
are displayed next to the corresponding neurons in Figure 1.

From this initial computation, we observe that four ReLU
neurons are stable: x8 is stably deactivated as its input
x3 ≤ 0 yields x8 = 0; x9, x10, x11 are stably activated
as their inputs are always greater or equal to zero, yielding
x9 = x4, x10 = x5, x11 = x6. Given the observation, we
could remove those stable ReLU neurons together with their
input neurons: we could directly eliminate neurons x3, x8; and
delete x4, x5, x6, x9, x10, x11 while connecting y1, y2 directly
to the preceding neurons of x4, x5, x6, which are x1, x2.

After removal, the connections are updated as in Figure 2.
The new affine constraint of y1 is computed as follows:

y1 = x8 − x9 + x10 + x11 − x12

= 0− x4 + x5 + x6 − x12

= x1 − x2 + 1− x12

(1)

Similarly, the computation of y2 is updated as follows:

x1

[−1, 1]

x2

[−1, 1]

x7 x12

y1

y2

max(0, x7)

x7 ∈ [−2, 2]
−x1 + x2

x12 ∈ [0, 2]

x1 − x2 − x12 + 1

3x1 + x2 + x12 + 7

Figure 2: The network connections after neuron removal
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y2 = x8 + x9 + x10 + x11 + x12

= 0 + x4 + x5 + x6 + x12

= 3x1 + x2 + 7 + x12

(2)

The above computation only involves equality replacement;
therefore, the two networks in Figure 2 and Figure 1 func-
tions the same given the specified input space I . However,
the network architecture has been modified, and the output
neurons are now defined over its preceding layer together with
the input layer. To preserve the network architecture without
introducing new connections between layers, we merge the
stably activated neurons into a smaller set of neurons instead
of directly deleting them.

The final reduced network is shown below in Figure 3,
where we transform the connection between y1, y2 and x1, x2

in Figure 2 into two merged neurons m1 = x1−x2+1;m2 =
3x1 + x2 + 7. Since m2 is stably activated given the input
space, we have m4 = m2, thus y2 = m4 + x12 which equals
to the definition of y2 in Figure 2. To further enforce m1 to
remain stably activated, we increase the bias of m1 to be 2,
which leads to m3 = m1, thus y2 = m3−x12− 1. Therefore,
the final reduced network in Figure 3 remains to be a fully-
connected network, but the stably deactivated neuron x3 has
been removed, and the original set of stably activated neurons
x4, x5, x6 are merged into a smaller set of stably activated
neurons m1,m2. Note that the connection between y1, y2 and
m1,m2 are actually identity matrix:[

y1
y2

]
=

[
1 0
0 1

]
·
[
m1

m2

]
+

[
−1
1

]
· x12 +

[
−1
0

]
(3)

Therefore, the number of merged neurons depends on the
number of neurons in the succeeding layer (e.g., the output
layer in this example). Generally speaking, the number of
output neurons is significantly smaller than the number of
intermediate neurons. Therefore we conduct the reduction in
a backward manner from the last hidden layer to the first
hidden layer, and the experiments in section VI show that
a major proportion of the neurons could be deleted, which
boosts verification efficiency and therefore improve precision
within a given execution timeout.

IV. STABLE RELU NEURONS REDUCTION

A. Stable ReLU neurons

Given a ReLU layer X in a neural network and an input a⃗,
the layer X has exactly one preceding layer Y (i.e. in(X) =
{Y }) and the pre-activation of the kth ReLU neuron x in X
is the output y(⃗a) of the kth neuron y in Y . For simplicity,
we use x̂(⃗a) = y(⃗a) to denote the pre-activation of x.

Definition 1. A ReLU neuron x in a neural network is
deactivated w.r.t. (with respect to) an input space I if x̂(⃗a) ≤ 0
for all inputs a⃗ ∈ I , and x is activated w.r.t. the input space
I if x̂(⃗a) ≥ 0 for all a⃗ ∈ I . Then x is stable w.r.t. I if x is
deactivated or activated w.r.t. I .

It is NP-complete to check whether the output of a neural
network is greater than or equal to 0 [17]. In addition, we can
add an additional ReLU layer behind the output layer of the

x1

[−1, 1]

x2

[−1, 1]

x7

m2

m2 ∈ [3, 11]
3x1 + x2 + 7

m4

m4 ∈ [3, 11]

m1

m1 ∈ [0, 4]
x1 − x2 + 2

m3

m3 ∈ [0, 4]

x12

y1

y2

max(0, x7)

max(0,m1)

max(0,m2)

x7 ∈ [−2, 2]
−x1 + x2

x12 ∈ [0, 2]

m3 − x12 − 1

m4 + x12

Figure 3: The final network after reduction (REDNet), where
the dashed connection means the coefficient equals to 0

neural network where the output of the original neural network
becomes the pre-activation of ReLU neurons, therefore, it is
straightforward that checking the stability of ReLU neurons
w.r.t. an input space is NP-hard.

Theorem 1. It is NP-hard to check whether a ReLU neuron
is stable w.r.t. an input space I .

Table I: Bound propagation methods
Methods for Stability Detection Other Methods

Interval [18], DeepZ/Symbolic [2], [19], [20] β-Crown [21]
CROWN [16], FCrown [22], α-Crown [23] GCP-Crown [24]

Deepoly [25], kPoly [26], PRIMA [12] ARENA [13]
RefineZono [27],OptC2V [28] DeepSRGR [4]

SDP-Relaxation [29]–[31]
LP/Lagrangian Dual [32]–[34]

Many methods have been proposed to compute the lower
and upper bounds of the pre-activation of ReLU neurons. Usu-
ally, these methods use different constraints to tighten the pre-
activation bounds, such as linear relaxations, split constraints,
global cuts and output constraints. For detecting the stability
of ReLU neurons w.r.t. an input space, we only consider the
methods which employ the linear relaxations of ReLU neurons
alone, as the other constraints may filter out inputs from the
input space, e.g. a ReLU neuron is compulsory to be stably
deactivated despite the input space if the propagator uses a
split constraint to enforce that the pre-activation input value is
always non-positive. We enumerate various bound propagation
methods in Table I. The methods using other constraints are
not suitable for detecting the stability of intermediate neurons,
such as β-Crown employs split constraints.

In our experiments, we use the GPU-based bound propaga-
tion method CROWN to detect stable ReLU neurons, which
leads to a reasonably significant reduction with a small time
cost, as displayed in Table III.

B. ReLU layer reduction

As illustrated in the example given in section III, after
computation of concrete neuron bounds, we detect and handle
those stable ReLU neurons in the following ways:
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• For a stably deactivated ReLU neuron whose input value
is always non-positive, it is always evaluated as 0 and
thereby will be directly deleted from the network as it
has no effect on the actual computation;

• For a stably activated ReLU neurons (the input values
of which are always non-negative) in the same layer,
we reconstruct this set of stably activated neurons into
a smaller set of stably activated neurons as we reduce
x4, x5, x6 into m1,m2 in section III.

Reconstruction of Stably Activated Neurons. Figure 2
illustrates that the deletion of stably activated neurons requires
creating new connections between the preceding and succeed-
ing neurons of the deleted neurons. We follow the convention
that every intermediate ReLU layer only directly connects to
one preceding layer and one succeeding layer, which conducts
linear computation (and we defer the details of how to simplify
a complicated network with multiple preceding/succeeding
connections into such simpler architecture in section V).

An example of a ReLU layer pending reduction is shown in
Figure 4, where M1 indicates the linear connection between
layer V and X; M2 indicates the connection between layer Y
and Z. Biases are recorded in B1 and B2 respectively. Suppose
that the uppermost k neurons in layer Y are stably activated,
and we delete them together with their inputs in layer X
from Figure 4. After deletion, we need to generate a new
connection between layers Z and V . As stably activated ReLU
neurons behave as identity functions, the new connection
matrix between layer Z and V can be computed from existing
connection matrices M1 (size m×q) and M2 (matrix with size
n × m). Assume that M [0 : k, :] indicates that we slice the
matrix to contain only the first k rows; and M [:, 0 : k] means
we only take the leftmost k columns of the matrix, we define
a matrix M ′

V Z with size n× q that is computed as:

M ′
V Z = M2[:, 0 : k] ·M1[0 : k, :] (4)

Layer V

q neurons

Affine X

B1

m neurons

ReLU Y

m neurons

B2

Affine Z

n neurons

M1 ReLU() M2

Figure 4: Layer X and Y with pending reduction, together
with its preceding layer V and succeeding affine layer Z.

We consider this new connection M ′
V Z with size n× q as:

M ′
V Z = MI ·M ′

V X , (5)

where M ′
V X equals to M ′

V Z and functions as the affine
connection between layers V and newly constructed neurons
in layer X; MI denotes an n × n identity matrix and is the
affine connection between layer Z and the newly constructed
neurons in layer Y , as shown in Figure 5. Here, the additional
weight matrix between layers V and Z is actually computed

as M ′
V Z = MI · ReLU() · M ′

V X . For Equation 5 to hold,
we need to make sure that the ReLU function between M
and M ′ becomes an identity, which means M must be non-
negative and M ′ is stably activated. So we will compute the
concrete bounds of M and add an additional bias B to enforce
it as non-negative as we did for neuron m1 in section III. This
additional bias will be canceled out at layer Z with −B offset.

Note that we conduct this reduction in a backward manner
from the last hidden layer (whose succeeding layer is the
output layer that usually consists of a very small number of
neurons, e.g. 10) to the first hidden layer. Therefore, upon
reduction of layers X and Y , layer Z has already been
reduced and contains a small number n of neurons. In the
end, the k stably activated neurons will be reduced into n
stably activated neurons and we obtain a smaller-sized affine
layer with m−k+n neurons, where k is usually much bigger
than n. Therefore, we are able to observe a significant size
reduction as shown in Table III.

Layer V

q neurons

Affine X

M

B

B1[k : m]

m − k + n neurons

ReLU Y

M ′

m − k + n neurons

B′ + B2 − B
Affine Z

n neurons

M1[k : m, :] ReLU() M2[:, k : m]

ReLU()M ′
V X MI

Figure 5: The block after reduction of stably activated neurons.
M1[k : m, :] contains the last m− k rows of M1, while M2[:
, k : m] takes the rightmost m − k columns of M2. B′ is
computed as M2[:, 0 : k] · B1[0 : k]. The newly constructed
neurons are dashed and colored in blue.

Lemma 1. The reduction process preserves the input-output
equivalence of the original network. That is, for any input
a⃗ ∈ I , F (⃗a) ≡ F ′(⃗a) where F is the original network and F ′

is the reduced one.
Proof. The reduction process operates on ReLU neurons that
are stable w.r.t. the input space I . Specifically, (i) Stably
deactivated ReLU neurons are always evaluated as 0 and can
be deleted directly as they have no effect on the subsequent
computation; (ii) Stably activated ReLU neurons are recon-
structed in a way that their functionality are preserved before
(Figure 4) and after (Figure 5) reconstruction.

For any a⃗ ∈ I , V (⃗a) is the output of Layer V and the output
of Layer Z is computed as Z (⃗a) = M2 ·ReLU(M1 · V (⃗a) +
B1) +B2 in Figure 4. we decompose Z (⃗a)−B2 as

M2[:, 0 : k] ·ReLU(M1[0 : k, :] · V (⃗a) +B1[0 : k]) (6)
+M2[:, k : m] ·ReLU(M1[k : m, :] · V (⃗a) +B1[k : m]) (7)

Without loss of generality , we assume the uppermost k neu-
rons in layer Y are stably activated. Formula 6 thus simplifies
to M2[:, 0 : k] ·M1[0 : k, :] · V (⃗a) +M2[:, 0 : k] ·B1[0 : k] =
MI ·M ′

V X ·V (⃗a)+B′, where M ′
V X = M2[:, 0 : k]·M1[0 : k, :],

B′ = M2[:, 0 : k] · B1[0 : k] and MI is an identity matrix.
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Input NN:
ReLU, MaxPooling,
Conv, GeMM, Add,
Sub, Concat, Reshape,
Flatten, MatMul,
BatchNormalization, · · ·

Intermediate NN:
ReLU,
SumLinear

Simple NN:
ReLU, Linear

REDNet:
ReLU, GeMM

Verifiers:
α,β-crown,
PRIMA,
VeriNet,
· · ·

encode

transform

reduceverify

Figure 6: The procedure of neural network reduction. The
encoding session is described in subsection V-A; the trans-
formation is discussed in subsection V-B; and the reduction
part is explained in section IV.

Furthermore, we compute an additional bias B to ensure that
M ′

V X · V (⃗a) + B ≥ 0 for all a⃗ ∈ I . Thus Formula 6 finally
simplifies to:

MI ·ReLU(M ′
V X · V (⃗a) +B)−B +B′ (8)

Based on Formula 8, we obtain Z (⃗a) = MI · ReLU(M ′
V X ·

V (⃗a) + B) + M2[:, k : m] · ReLU(M1[k : m, :] · V (⃗a) +
B1[k : m]) +B′ +B2 −B, which equals to the computation
conducted in Figure 5. Thus, the network preserves input-
output equivalence after reduction.

V. NEURAL NETWORK SIMPLIFICATION

In section IV, we describe how reduction is conducted on a
sequential neural network, where each intermediate layer only
connects to one preceding Linear layer and one succeeding
Linear layer. In this paper, a Linear layer refers to a layer
whose output is computed via linear computation. Nonethe-
less, there exist many complicated network architectures (e.g.,
residual networks) that are not sequential. In order to handle
a wider range of neural networks, we propose a neural
network simplification process to transform complex network
architectures into simplified sequential neural networks and
then conduct reduction on the simplified network.

We now introduce how to transform a complex ReLU-based
neural network into a sequential neural network consisting of
Linear and ReLU layers so that stable ReLU neurons can
be reduced. Note that we only consider the neural network
layers that can be encoded as Linear and ReLU layers; further
discussion about this can be found in section VII.

The network simplification process involves two main steps
(shown in Figure 6): (i) Encode various layers as SumLinear
blocks and ReLU layers (we defer the definition of SumLinear
block to subsection V-A); (ii) Transform SumLinear blocks
into Linear layers. Here, Linear layers refer to layers that
conduct linear computation.

A. Encode various layers into SumLinear blocks

A SumLinear block is a combination of a set of Linear layers
and a Sum layer such that the Linear layers are preceding
layers of the Sum layer, where the output of the Sum layer

is the element-wise sum of its inputs. The output of the
SumLinear block is equal to the element-wise sum of the
outputs of the Linear layers, and the preceding layers of the
SumLinear block include the preceding layers of all the Linear
layers. Any Linear layer can be encoded as a SumLinear
block by adding a Sum layer behind the Linear layer. A main
difference between them is that the SumLinear block can have
more than 1 preceding layer.

Many neural network layers can be directly transformed into
SumLinear blocks, such as Conv, GeMM, Add, Sub, Concat,
Reshape, Split, Squeeze, Unsqueeze, · · · , Flatten, MatMul, and
BatchNormalization layers used in ONNX models.1 Note that
the Linear layer only has one preceding layer, while the Add
and Concat layers can have more than one preceding layer;
hence, they cannot be directly encoded as a Linear layer (this
motivates the introduction of SumLinear blocks).

X

Y

Concat

(a) A Concat layer

X

Y

Linear

Linear

Sum

SumLinear

(b) A SumLinear block

Figure 7: Encode a Concat layer into a SumLinear block.

Figure 7 shows a SumLinear block encoding a Concat
layer with 2 precedessors X and Y . The biases of the two
Linear layers are zero and the concatenation of their weights
is an identity matrix. Thus, each neuron of the layers X,Y is
mapped to a neuron of the Sum layer. Assume |X| = |Y | = 1.

Their weights are represented by matrices:
[
1
0

]
and

[
0
1

]
which

can be concatenated into an identity matrix
[
1 0
0 1

]
.

In the same spirit, the Add layer could also be encoded as a
SumLinear block as shown in Figure 8. Assume that |X| and
|Y | are each equal to 2, the weights of the two Linear layers

are represented by identity matrices
[
1 0
0 1

]
.

X

Y

Add

(a) An Add layer

X

Y

Linear

Linear

Sum

SumLinear

(b) A SumLinear block

Figure 8: Encode an Add layer into a SumLinear block.

1In general, Maxpooling can be encoded as Conv and ReLU layers with
existing tools such as DNNV [35]. Note that max(x, y) = ReLU(x−y)+y.
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B. Transform SumLinear blocks into Linear Layers

In this subsection, we show how to encode SumLinear
blocks as Linear layers. Firstly, we need to transform Sum-
Linear blocks into normalized SumLinear blocks. To this end,
a SumLinear block L is normalized if it does not have any
Linear layer of which the preceding layer is a SumLinear block
(i.e. in(L) does not have SumLinear blocks), and each of the
Linear layers in L has different preceding layers. For example,
the SumLinear given in Figure 7 is normalized if its preceding
layers X and Y are not SumLinear blocks.

SumLinear Block Normalization. If a SumLinear block
L′ includes a Linear layer L′

j with a weight M ′
j and a bias

B′
j such that the preceding layer of L′

j is another SumLinear
block L′′ including k Linear layers L′′

1 , · · ·L′′
k with weights

M ′′
1 , · · · ,M ′′

k and biases B′′
1 , · · · , B′′

k , then we can normalize
L′ by replacing L′

j with k new Linear layers L1, · · ·Lk where
for any 1 ≤ i ≤ k, the layer Li has the same preceding layer
as that of L′′

i , and the weight and bias of Li are computed as:

Mi = M ′
j ·M ′′

i (9)

Bi =

{
B′

j +M ′
j ·B′′

i if i = 1

M ′
j ·B′′

i otherwise
(10)

During the normalization, if the succeeding layers of the block
L′′ become empty, then L′′ is directly removed.

In addition, if two Linear layers La, Lb in a SumLinear
block have the same preceding layer, then in normalization,
we can replace them by one new Linear layer Lc such that
Lc has the same preceding layer as them and the weight (and
bias) of Lc is the sum of the weights (and biases) of La, Lb.

Lemma 2. SumLinear block normalization does not change
the functionality of a neural network.
Proof. Let a⃗′′i be any input of a Linear layer L′′

i in the block
L′′ where L′′ is the preceding layer of L′

j . Thus, the input of
L′
j (called a⃗′j) equals to

∑k
i=1(M

′′
i ·a⃗′′i +B′′

i ). Then the output
of L′

j is B′
j +

∑k
i=1(M

′
j ·M ′′

i · a⃗′′i +M ′
j ·B′′

i ) which is equal
to the sum of the outputs of the layers L1, · · ·Lk. Therefore,
replacing L′

j with L1, · · ·Lk does not change the output of
the SumLinear block L′.

If the succeeding layers of L′′ become empty, then removing
L′′ does not affect the outputs of other layers and the network.

In addition, the sum of the outputs of the two linear layers
La, Lb in a SumLinear Block with the same preceding layer
is equal to the output of the new layer Lc, thus, the output of
the block does not change after replacing La, Lb with Lc.

So SumLinear block normalization does not change the
functionality of a neural network.

We next show how to encode normalized SumLinear blocks
as Linear layers.

Linear Layer Construction. First, we say that a ReLU
layer Li is blocked by a SumLinear block L if L is the only
succeeding layer of Li. Then, we use RL to denote the set
of ReLU layers blocked by the SumLinear block L. Let PL

include other preceding layers of L which are not in RL. If L

is normalized, then L and the set of ReLU layers in RL can
be replaced by a Linear layer Ll, a ReLU layer Lr and a new
SumLinear block Ls such that

• the weight M l (the bias Bl) of the linear layer Ll is a
concatenation (the sum) of the weights (the bias) of the
Linear layers in L and the preceding layer of Ll is Lr

and Ll has the same succeeding layers as L;
• the SumLinear block Ls encodes a concatenation of

layers in PL and the preceding layers of layers in RL;
• Ls is the preceding layer of Lr.

Additionally, in order to make sure that the outputs of the
layers in PL can pass through the ReLU layer Lr, the neurons
in Lr which connect to the layers in PL are enforced as
activated neurons by adding an additional bias B to a Linear
layer in Ls and minus M l ·B from the bias of Ll.

Lemma 3. Linear layer construction does not change the
functionality of a neural network.

Proof. The pre-activation of Lr is the output of Ls that equals
to B plus the concatenation of the outputs of layers in PL

and the pre-activation of Layers in RL. This ensures that the
output of Lr equals to B plus the concatenation (call it a⃗) of
the outputs of layers in PL and RL. Next, the output of Ll

equals to M l · (B + a⃗) + Bl −M l · B = M l · a⃗+ Bl which
is equal to the output of original layer L.

In addition, L is the only succeeding layer of layers in RL,
so replacing RL, L with the layers Ls, Lr, Ll does not change
the functionality of the neural network.

Network simplification. We use algorithm 1 to transform
ReLU-based neural networks (V, E) into a sequential neural
network consisting of Linear and ReLU layers. At line 1,
the function Initialization(V, E) encodes all layers in V as
SumLinear blocks and ReLU layers. Between line 3 and line 8,
the algorithm repeatedly selects the last SumLinear block L in
V and reconstructs L into Linear layers, where a SumLinear
block is the last block means there is not any path from it to
another SumLinear block. (V, E) only has 1 output layer, and
the Linear and ReLU layers only have 1 preceding layer, thus,
there is only one last SumLinear block.

Algorithm 1: Neural Network Simplification
Input: A neural network (V, E)
Output: A sequential neural network

1 V, E ← Initialization(V, E);
2 while (V, E) has SumLinear blocks do
3 Let L be the last SumLinear block in (V, E);
4 V, E , L← Normalization(V, E , L);
5 if |in(L)| > 1 then
6 V, E ← LinearLayerConstruction(V, E , L);
7 else
8 V, E ← Linearization(V, E , L);

9 return (V, E);
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At line 4, the function Normalization(V, E , L) is used to
normalize the last SumLinear block L. If the normalized L
has more than one preceding layer (i.e. |in(L)| > 1), then
the function LinearLayerConstruction(V, E , L) is used to
replace L with the layers Ll, Lr, Ls introduced in the Lin-
ear layer construction (at line 6), otherwise the function
Linearization(V, E , L) is used to directly replace L with the
only Linear layer included in L (at line 8).

In the rest of this subsection, we show that line 6 in
algorithm 1 can only be visited at most |V| times, thus, the
algorithm can terminate and generate an equivalent sequential
neural network consisting of Linear and ReLU layers.

Lemma 4. Assume (V, E) is a neural network consisting of
Linear, ReLU layers and SumLinear blocks and L is the last
SumLinear block in V . If |in(L)| > 1 and in(L) does not have
SumLinear blocks and Linear layers, then RL is not empty.
Proof. (V, E) only has one output layer and all layers behind
L have at most one preceding layer, thus, a path from any
layer before L to the output layer must pass L.

Let Li be the last ReLU layer in in(L). If Li has a
succeeding layer Lj such that Lj ̸= L, then L must be in
all paths from Lj to the output layer, and there would be a
ReLU layer in in(L) included by a path from Lj to L, which
meant that Li was not the last layer in in(L), a contradiction.
Hence, Li is in RL and RL ̸= ∅.

Based on lemma 4, if |in(L)| > 1, then |RL| ≥ 1, thus, the
number of ReLU layers before the last SumLinear block in V
is decreased after replacing L and the layers in RL with the
layers Ll, Lr, Ls introduced in the Linear layer construction
where Ls becomes the last SumLinear block in V . So we
can get that algorithm 1 can terminate and generate a neural
network consisting of Linear and ReLU layers.

Theorem 2. Algorithm 1 can terminate and generate a neural
network consisting of Linear and ReLU layers.

Proof. From lemma 4, we know that line 6 in algorithm 1 re-
duces the number of ReLU neurons before the last SumLinear
block in V , therefore, it can only be visited at most |V| times.
Note that SumLinear block normalization (at line 4) does not
affect ReLU layers and the layers behind L.

Then line 8 can directly replace all SumLinear blocks
having one preceding layer in V with Linear layers. There-
fore, algorithm 1 can terminate and return a neural network
consisting of Linear and ReLU layers.

Theorem 3. Our constructed REDNet is input-output equiv-
alent to the original network given the input space I .

Proof. (Sketch.) Our reduction technique contains two steps:
(i) network simplification presented in section V; (ii) stable
ReLU neuron reduction described in section IV. Each step is
designed deliberately to preserve input-output equivalence.

Simplification equivalence. Function Initialization(V, E)
at line 1 in algorithm 1 encodes ONNX layers into a uniform
network representation; such encoding preserves input-output

equivalence. Then lemma 2 and lemma 3 show that line 4 and
line 6 do not change network functionality. In addition, line 8,
replacing a SumLinear Block with the only Linear layer in
the block, also does not change network output. Therefore,
algorithm 1 can construct a sequential neural network that has
the same functionality as the original neural network.

Reduction equivalence. The proof is given in lemma 1.

C. Illustrative example of network simplification

In this subsection, we use a simple network block to illus-
trate how to perform algorithm 1 on a non-sequential structure
(Figure 9(a)) to get a sequential neural network consisting
of Linear and ReLU layers (Figure 9(b)). In Figure 9, each
rectangular node (including n1, n2, n3, n4) represents a set
of neurons whose values are derived from the preceding
connected node(s) and the connections between them. Note
that red-colored rectangular nodes are ReLU nodes that rep-
resent the output neurons of the ReLU layer; blue nodes
are convolutional nodes; the black node is an Add layer.
The connections between nodes are represented with directed
edges, and the connected functions are displayed near the
edges (e.g. conv1, ReLU). Symbol ⊕ represents concatenation.

n1

n2

n3

n4 n5

n6

conv3

conv1

ReLU

conv2

(a) Before simplification

n1

n2 ⊕ n′
1

n3 ⊕ n′′
1

n6

conv1⊕identity

ReLU

conv2⊕conv3

(b) After simplification

Figure 9: The simplification of a non-sequential block

Firstly, we apply function Initialization(V, E) at line 1
to encode Figure 9(a) as SumLinear blocks and ReLU layers,
where the weights and biases of each Linear layer are dis-
played above the layer. We name the two ReLU nodes n1, n3

as ReLU1, ReLU2 respectively.

ReLU1 Linear Sum ReLU2 Linear Sum Linear

Sum

Linear Sum Linear

conv1-weights
conv1-biases

conv2-weights
conv2-biases

identity matrix
bias=0

identity matrix
bias=0

conv3-weights
conv3-biases

Figure 10: Network in Figure 9(a) encoded with SumLinear
blocks and ReLU layers
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Then we take the last SumLinear block from Figure 10 and
normalize this block (Figure 11(a)) and obtain the normalized
block as in Figure 11(b). The whole network is now updated
as Figure 12.

Linear Sum Linear

Sum

Linear Sum Linear

conv2-weights
conv2-biases

identity matrix
bias=0

identity matrix
bias=0

conv3-weights
conv3-biases

(a) The last block before normalization

Linear

Sum

Linear

conv2-weights
conv2-biases

conv3-weights
conv3-biases

(b) After normalization

Figure 11: Normalization of the last SumLinear block

ReLU1 Linear Sum ReLU2 Linear

Sum

Linear

conv1-weights
conv1-biases

conv2-weights
conv2-biases

conv3-weights
conv3-biases

Figure 12: The network after the first normalization

At this step, we notice that ReLU layer ReLU2 is blocked
by the last SumLinear block, and ReLU1 is not blocked as it
has another path to a subsequent ReLU layer. Therefore, we
perform the Linear layer construction at line 6 and obtain the
network in Figure 13.

ReLU1

Linear Sum Linear

Sum ReLU2⊕ReLU1 Linear

Linear

conv1-weights
conv1-biases

[
1
0

]bias=0

[
0
1

]bias=0

The new Lr The new LlThe new Ls

conv2-w⊕conv3-w

conv2-b+conv3-b

Figure 13: The network after the Linear layer construction. For
simplicity to show the weight matrices, we assume that ReLU2
and ReLU1 all have one neuron; and “-biases/-weights” are
abbreviated as “-b/-w” respectively.

Lastly, we take out the last SumLinear block in Figure 13
and perform normalization to obtain Figure 14. At Figure 14,
the last SumLinear block includes two Linear layers having
the same preceding layer ReLU1 (Figure 14), which requires
further normalization.

The final architecture of the network is given in Figure 15,

where we have
[

conv1-w
identity

]
= conv1-w ⊕ identity. Now the

oringal network has been simplified into a sequential one.

ReLU1

Linear

Sum ReLU2⊕ReLU1 Linear

Linear

[
conv1-w

0

]

[
0

identity

]

[
conv1-b

0

]

bias=0

conv2-w⊕conv3-w

conv2-b+conv3-b

Figure 14: The network after the second normalization

ReLU1 Linear ReLU2⊕ReLU1 Linear

[
conv1-w
identity

]
[

conv1-b
0

]

conv2-w⊕conv3-w

conv2-b+conv3-b

Figure 15: The sequential network after the third normalization

VI. EXPERIMENTS

In this section, we present our experimental results of
instantiation of network reduction technique on α, β-CROWN
[14], VeriNet [15] and PRIMA [12] to show evidence that:
given the same verification problem, the same verification
algorithm runs faster on the reduced network compared to
the original network, which gives us confidence in the ability
of our method as in enhancing the efficiency of existing
verification methods. Furthermore, the simple architecture in
REDNet allows existing verification tools that only support
limited network benchmarks to handle more networks.

A. Experiment Setup

The evaluation machine has two 2.40GHz Intel(R) Xeon(R)
Silver 4210R CPUs with 384 GB of main memory and a
NVIDIA RTX A5000 GPU.

Evaluation Benchmarks. The evaluation datasets include
MNIST [36] and CIFAR10/CIFAR100 [37]. MNIST dataset
contains hand-written digits with 784 pixels, while CI-
FAR10/CIFAR100 includes colorful images with 3072 pixels.
We chose fully-connected, convolutional and residual networks
with various sizes from two well-known benchmarks: the
academic ERAN system [38] and VNNCOMP2021/2022 (In-
ternational Verification of Neural Networks Competition) [39],
[40]. The number of activation layers (#Layers), the number
of ReLU neurons (#Neurons), and the trained defense of each
network are listed in Table II, where a trained defense refers
to a defense method against adversarial samples to improve
robustness. Please note that “Mixed” means mixed training,
which combines adversarial training and certified defense
training loss. This could lead to an excellent balance between
model clean accuracy and robustness, and is beneficial for
obtaining higher verified accuracy [41].

Verification Properties. We conduct robustness analysis,
where we determine if the classification result of a neural
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network – given a set of slightly perturbed images derived
from the original image (input specification) – remains the
same as the ground truth label obtained from the original
unperturbed image (output specification). The set of images is
defined by a user-specified parameter ϵ, which perturbs each
pixel pi to take an intensity interval [pi− ϵ, pi+ ϵ]. Therefore,
the input space I is

�n
i=1[pi − ϵ, pi + ϵ]. In our experiment,

we acquire the verification properties from the provided vnnlib
files [44] that record the input and output specification or via
a self-specified ϵ. We aim to speed up the analysis process for
those properties that are tough to be verified. Hence we filter
out those falsified properties. We obtain around 30 properties
for each tested network, as enumerated in Table II.

B. Network reduction results

Table III shows the size of reduced networks, where the
bound propagation methods crown and α-crown are used to
compute concrete bounds and detect stable neurons. Here we
present the number of neurons in the original network and
the average size after reduction (under column “AvgN”) and
reduction time (under column “AvgT”) for the two methods.
We have out-of-memory problem when running α-crown on
network C 100 Large, thus we mark the result as “-”.

The table shows that a significant number of neurons could
be reduced within a reasonable time budget by leveraging
the concrete bounds returned by CROWN. Therefore, we
use CROWN as our bound propagator for the rest of the
experiments. On average, the reduced networks are 10.6×
smaller than the original networks.

Figure 16(a) shows the reduction ratio distribution where
each dot (α, β) in the figure means that the reduction ratio is
greater than β on α percent properties. The reduction ratio can
be up to 95 times at the best case and greater than 20 times
on 10% properties. Figure 16(b) gives the size distribution of
reduced networks. Each dot (α, β) in the figure means the
reduced networks have at most β ReLU neurons on α percent
properties. We can see that on more than 94% properties, there
are at most 8000 ReLU neurons in the reduced networks.

Table II: Detailed information of the experimental networks

Network Type #Layers #Neurons Defense #Property
M 256x6 fully-connected 6 1,536 None 30
M ConvMed convolutional 3 5,704 None 31
M ConvBig convolutional 6 48,064 DiffAI [42] 29
M SkipNet residual 6 71,650 DiffAI 31
C 8 255Simp convolutional 3 16,634 None 30
C WideKW convolutional 3 6,244 None 32
C ConvBig convolutional 6 62,464 PGD [43] 37
C Resnet4b residual 10 14,436 None 30
C ResnetA residual 8 11,364 None 32
C ResnetB residual 8 11,364 None 29
C 100 Med residual 10 55,460 Mixed 24
C 100 Large residual 10 286,820 Mixed 24

Table III: The average number of ReLU neurons on reduced
networks and the mean reduction time in seconds.

Network Original Reduced (CROWN) Reduced (α-Crown)
#Neurons AvgN AvgT(s) AvgN AvgT(s)

M 256x6 1,536 991.77 0.14 901.10 3.10
M ConvMed 5,704 2210.77 0.21 2189.32 2.05
M ConvBig 48,064 3250.93 0.32 3229.76 5.03
M SkipNet 71,650 7019.00 0.72 6796.58 7.79
C 8 255Simp 16,634 2168.13 0.33 2117.90 1.92
C WideKW 6,244 567.06 0.28 563.47 2.08
C ConvBig 62,464 6495.00 0.39 6451.57 4.77
C Resnet4b 14,436 7606.73 0.64 7449.23 10.97
C ResnetA 11,364 4654.84 0.64 4583.06 8.08
C ResnetB 11,364 4425.90 0.60 4368.03 10.67
C 100 Med 55,460 2394.63 1.25 2352.33 12.09
C 100 Large 286,820 7207.29 3.50 - -
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Figure 16: Visualized results of the reduction with CROWN

C. Instantitation on α, β-CROWN

α, β-CROWN is GPU based and the winning verifier in VN-
NCOMP 2021 [39] and VNNCOMP 2022 [40], the methodol-
ogy of which is based on linear bound propagation framework
and branch-and-bound. We first instantiate our technique on
α, β-CROWN, and we name the new system as α, β-CROWN-
R. We set the timeout of verification as 300 seconds, and if the
tool fails to terminate within the timeout, we deem the result
to be inconclusive. The results are listed in Table IV, where
we explicitly enumerate the number of timeout properties,
the number of verified properties, and the average execution
time of α, β-CROWN (column α, β-CROWN-O) and our in-
stantiated system (column α, β-CROWN-R) on the properties
where both methods can terminate within timeout.2

From the result, we observe that α, β-CROWN-R could
verify more tough properties that have failed to be verified
within 300 seconds in α, β-CROWN-O. This indicates that our
reduction pre-processing does not only benefit those easy veri-
fication problems but also helps verify more difficult properties
within a decent time. In general, α, β-CROWN-R verifies 11
more properties and boosts the efficiency of α, β-CROWN-O
with average 1.52× speedup on all 12 networks. The average

2When the original method is timeout or fails to execute for all properties,
e.g. C 100 Med in Table V and M ConvBig in Table VI, the average time is
computed on the properties where our method can terminate within timeout.
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is computed across the networks where the speedup for each
network is calculated by the reported time on the original network

the reported time on the reduced network .
In addition, the performance of REDNet is affected by the

network reduction ratio. For example, α, β-CROWN-R only
has average 1.12 speedup on M 256×6 whose reduction ratio
is only 1.55, while α, β-CROWN-R can have average 2.52×
speedup on C 100 large whose mean reduction ratio is 39.80.

D. Instantitation on PRIMA

PRIMA [12] is one of the state-of-the-art incomplete verifi-
cation tools. It introduces a new convex relaxation method
that considers multiple ReLUs jointly in order to capture
the correlation between ReLU neurons in the same layer.
Furthermore, PRIMA leverages LP-solving or MILP-solving
to refine individual neuron bounds within a user-configured
timeout. Note that PRIMA stores the connection between
neurons in two ways: 1. Dense expression, which encodes
the fully-connected computation in a fully-connected layer; 2.
Sparse expression, that only keeps the non-zero coefficients
and the indexes of preceding neurons of which the corre-
sponding coefficients are non-zero (e.g. convolutional layer).
As some affine connections between layers in our reduced
network contain many zero elements (since we introduce the
identity matrix in the newly constructed connection), we elect
to record them as sparse expressions in the instantiated PRIMA
(abbreviated as PRIMA-R).

The comparison results are given in Table V, and we set a
2000 seconds timeout for each verification query as PRIMA
runs on the CPU and usually takes a long execution time for
deep networks. Note that PRIMA returns segmentation fault
for M SkipNet, thus the results are marked as “-”; PRIMA
times out for all properties of C 100 Med and C 100 Large,
hence marked as “TO”. Note that there are some cases where
PRIMA-R runs slower than PRIMA-O, e.g., for network
C ConvBig. This happens because PRIMA conducts refined
verification by pruning the potential adversarial label one by
one within a certain timeout. Once an adversarial label fails

Table IV: The results of α, β-CROWN on the original network
and the reduced network. The time is the average execution
time of the properties where both methods terminate before
timeout.

Neural Net
α, β-CROWN-O

(on original network)
α, β-CROWN-R

(on reduced network)
#Timeout #Verfied Time(s) #Timeout #Verfied Time(s)

M 256x6 1 29 100.53 1 29 89.81
M ConvMed 4 27 48.29 2 29 40.41
M ConvBig 3 26 43.34 1 28 26.16
M SkipNet 5 26 38.66 2 29 22.35
C WideKW 1 31 13.46 1 31 11.76
C 8 255Simp 0 30 19.23 0 30 16.92
C ConvBig 1 36 26.93 0 37 19.97
C Resnet4b 1 29 39.25 1 29 30.84
C ResnetA 0 32 40.16 0 32 29.96
C ResnetB 1 28 28.08 0 29 20.54
C 100 Med 4 20 22.96 3 21 9.32
C 100 Large 3 21 14.29 2 22 5.68

Table V: The experiment results of PRIMA on the original
network and the reduced network. When PRIMA-O fails to
execute or times out for all the properties, e.g. M SkipNet or
C 100 Med, the average time is computed on the properties
where our method can terminate within the timeout.

Neural Net
PRIMA-O

(on original network)
PRIMA-R

(on reduced network)
#Unknown #Verfied Time(s) #Unknown #Verfied Time(s)

M 256x6 30 0 299.94 30 0 281.77
M ConvMed 23 8 244.45 22 9 196.83
M ConvBig 23 6 352.71 23 6 75.13
M SkipNet - - - 30 1 432.08
C WideKW 3 29 53.80 3 29 10.21
C 8 255Simp 30 0 329.94 27 3 255.97
C ConvBig 32 5 227.81 23 14 282.40
C Resnet4b 25 5 912.37 25 5 757.86
C ResnetA 28 4 537.36 28 4 459.67
C ResnetB 25 4 486.68 23 6 416.12
C 100 Med 24 0 TO 14 10 135.97
C 100 Large 24 0 TO 13 11 243.92

to be pruned within the timeout, PRIMA returns unknown
immediately without checking the rest of the adversarial labels.
In PRIMA-R, we could prune those failed labels that previ-
ously timed out in PRIMA-O, thus continuing the verification
process, which may take more overall time. But accordingly,
we gain significant precision improvement, e.g. PRIMA-R can
verify 9 more properties on C ConvBig.

On average, PRIMA-R gains 1.99× speedup than PRIMA-
O and verifies 60.6% more images, which indicates the
strength of REDNet to improve both efficiency and precision.

E. Instantiation on VeriNet

VeriNet [15] is the state-of-the-art complete symbolic in-
terval propagation based toolkit. It is the second-place winner
in VNNCOMP 2021. Similarly, we present the result of the
original VeriNet tool under the column VeriNet-O at Table VI;
the instantiation of REDnet on VeriNet is named VeriNet-R.
The time reported is the average execution time on properties
where both VeriNet-O and VeriNet-O terminate within 300
seconds of timeout. We use a free FICO Community license
for the XPress solver called by VeriNet. Thus, we only
consider 8 networks which fit the limits of the license.

In general, VeriNet-R can verify 25.9% more properties
than VeriNet-O. On average, VeriNet-R can be 1.65× faster
than VeriNet-O. Additionally, the result in Table VI marked
with “-” means that the neural networks M ConvMed and
M ConvBig are not supported by VeriNet. This shows that
network reduction can improve the availability of VeriNet.

F. Overall comparison in visualized figures

Figure 17 gives a visualized comparison between the veri-
fication tools on the original network and those on REDNet.
Figure 17(a), Figure 17(c) and Figure 17(d) shows the exe-
cution time of the verification tools on all tested properties.
Each dot in the figures denotes a property, and both the x-
axis and y-axis indicate execution time in seconds. The result
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Table VI: The experiment results of VeriNet. The time is
the average execution time of the properties where both
methods terminate before timeout. When VeriNet-O fails to
execute, e.g. M ConvBig, the average time is computed on the
properties where our method can terminate within the timeout.

Neural Net
VeriNet-O

(on original network)
VeriNet-R

(on reduced network)
#Timeout #Verfied Time(s) #Timeout #Verfied Time(s)

M 256x6 27 3 52.94 27 3 47.78
M ConvMed - - - 19 12 23.96
M ConvBig - - - 23 6 48.81
C WideKW 3 29 27.12 2 30 22.74
C 8 255Simp 10 20 63.26 10 20 52.56
C ResnetA 25 7 129.49 25 7 83.35
C ResnetB 21 8 116.80 20 9 74.98
C 100 Med 10 14 69.71 9 15 21.15

of a verification tool on an unsupported network is regarded
as timeout. Then Figure 17(b) shows the execution time
distribution of α, β-CROWN-R and α, β-CROWN-O, where
each position (α, β) denotes that the tool can verify β percent
properties in α seconds. For example, by setting the time limit
to 10 seconds, α, β-CROWN-R can verify 32.9% properties,
and α, β-CROWN-O only verifies 18.3% properties.

On most properties, the verification tools on REDNet are
faster than the tools on the original network. Despite its
generality, REDNet may achieve marginal effectiveness on
certain tools or benchmarks due to the following factors:

• The reduction ratio affects the subsequent verification
acceleration. A less significant reduction ratio plus the
reduction cost could cause marginal overall speedup.
Figure 17(e) and Figure 17(f) depict the effect of the re-
duction ratio on the speedup gained. Despite other factors
affecting the final speedup, there is a general trend that a
significant reduction ratio leads to better speedup, which
may cause superb effectiveness on networks C 100 Med
and C 100 Large.

• Different tools may use distinct bound propagation meth-
ods, which have different degrees of dependency on the
network size. PRIMA deploys DeepPoly whose time
complexity depends on N3 where each layer has at most
N neurons [45]; as such reduction in network size can
lead to better performance. α, β-CROWN, on the other
hand, uses β-crown. β-crown is used to generate con-
straints of output neurons defined over preceding layers
until the input layer. Thus, the number of constraints does
not vary, and the number of intermediate neurons can
only affect the number of variables that appear in the
constraint; as such, deployment of REDNET may reap
a marginal effect in speedup on α, β-CROWN compared
to PRIMA. For VeriNet, it uses symbolic interval propa-
gation to generate constraints of intermediate and output
neurons defined over the input neurons. Thereby interme-
diate neuron size only affects the number of constraints
while the number of defined variables in the constraint is
fixed as the input dimension. Hence, REDNet could be
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Figure 17: Visualized comparison results.

less effective on VeriNet compared to PRIMA in general.
• Some layer types (e.g. Conv) may compute faster than

fully-connected layers; since our method transforms these
layers into fully-connected layers before performing net-
work reduction, its efficiency may not be that significant
as compared to the original layers. On the other hand, it
is worth-noticing that the use of fully-connected layers
improves the availability of existing tools.

• α, β-CROWN and VeriNet are branch-and-bound based
and they generate sub-problems from their respective
branching heuristics, which are dependent on the original
network structures. The REDNet changes the network
structure, and hence the heuristic can generate different
sub-problems. This may affect the performance.

We conclude empirically that REDNet has better perfor-
mance (significant speedup or much more properties verified)
on large networks, i.e. networks with more than 40k ReLU
neurons. On the large networks, the average speedup of α, β-
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CROWN-R is 1.94×, and the average speedup of VeriNet-R is
3.29×; and PRIMA-R verifies 42 properties while PRIMA-O
only verifies 11 properties.

G. Support of other verifiers for the benchmarks

As can be seen from subsection VI-D, PRIMA fails to
analyze M SkipNet because it does not support its network ar-
chitecture. However, with the introduction of REDNet, which
is constructed as a fully-connected neural network, PRIMA
is now able to verify M SkipNet. A similar improvement
happens to VeriNet. Therefore, our REDNet not only speeds
up the verification process but also allows existing tools to
handle network architectures that are not supported originally.

To further testify that the reduced network adds support
to existing verification tools, we select four tools - Debona
[46], Venus [47], Nnenum [48], PeregriNN [49] - from VN-
NCOMP2021/2022 that only support limited network archi-
tectures. We select one representative verification property for
each of our tested networks to check if the four designated
tools can support the networks.

Table VII: The networks supported by existing verification
tools. A fully black circle indicates both the original and
the reduced networks are supported. A right-half black circle
indicates that the tool supports only the reduced network.

Networks(12) Tools
Venus Debona Nnenum PeregriNN

M 256x6     
M ConvMed H# H# H# H#
M ConvBig H# H# H# H#
M SkipNet ReLU-error H# H# H#
C WideKW  H#   
C 8 255Simp  H#  H#
C ConvBig H# H# H# H#
C Resnet4b H# H# H# H#
C ResnetA H# H# H# H#
C ResnetB H# H# H# H#
C 100 Med H# H# H# H#
C 100 Large H# H# H# H#

We present the results in Table VII where we color the left
half of the circle black to indicate that the original network
is supported by the tool (and white otherwise); we also color
the right half of the circle black if the reduced network is
supported by the tool (and white otherwise.) In general, the
black color implies the network is supported and the white
color implies the network is not supported. Note that Venus
does not support networks whose output layer is a ReLU
layer; therefore, it cannot be executed for both the original and
the reduced network for M SkipNet. These results boost our
confidence that our constructed REDNet not only accelerates
the verification but also produces a simple neural network
architecture that significantly expands the scope of neural
networks which various tools can handle.

VII. DISCUSSION

We now discuss the limitation of our work.

Supported layer types. As described in section V, our re-
duced neural network contains only Affine layers (e.g. GEMM
layers) and ReLU layers, therefore we could only represent
non-activation layers that conduct linear computation. For
example, an Add layer that takes layer α and layer β conducts
linear computation as the output is computed as α + β. A
Convolutional layer conducts linear computation as well as
it only takes one input layer and the other operands are
constant weights and bias. However, we couldn’t support
a Multiplication layer if it takes layer α and layer β and
computes α×β as the output. For future work, we will explore
the possibility of handling more non-linear computations.

Floating-point error. As presented in Theorem 3, our re-
duction process preserves the input-output equivalence of the
original network in the real-number domain. However, like
many existing verification algorithms [12], [14], [24], [26]
that use floating-point numbers when conducted on physical
machines, our implementation involves floating-point number
computation, thus inevitably introducing floating-point error.
The error could be mitigated by deploying float data type with
higher precision during implementation.

VIII. RELATED WORK

Theoretically, verifying deep neural networks with ReLU
functions is an NP-hard problem [17]. Particularly, the com-
plexity of the problems grows with a larger number of nodes in
the network. Therefore, with the concern of scalability, many
works have been proposed by over-approximating the behavior
of the network. This over-approximation can be conducted by
abstract interpretation techniques [1], [25], [50]; or to soundly
approximate the network with fewer nodes [8], [9], [51], [52].

In detail, abstract interpretation-based methods over-
approximate the functionality of each neuron with an abstract
domain, such as box/interval [50], zonotope [1] or polyhedra
[25]. These methods reason over the original neural networks
without changing the number of neurons in the test network.

On the contrary, reduction methods in [8], [9], [51],
[52] reduce the number of neurons in a way that over-
approximates the original network’s behavior. However, such
over-approximation would jeopardize completeness when in-
stantiated on complete methods. On the contrary, our reduction
method captures the exact behavior of the network without
approximation error. Therefore REDNet could be instantiated
on complete tools and even verify more properties given the
same timeout. Furthermore, REDNet could handle various
large networks where the previous work [51] only evaluated
one large-scale network (the C ConvBig in our benchmark)
that was reduced to 25% of the original size with a very small
perturbation ϵ = 0.001; whereas we could reduce it to just
10% with ϵ ≈ 0.0078 (properties from VNN competition
2022). We remark that the smaller perturbation, the more
reduction we could gain. Other related tools in [9], [52] were
only evaluated with ACAS Xu networks with a very small
input dimension and network sizes, making it challenging for
us to make any meaningful comparison. Last but not least,
the reduced networks designed in [8], [9] use intervals or
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values in an abstract domain to represent connection weights.
Such specialized connections require implementation support
if instantiated on existing verification methods. But we export
REDNet as a fully-connected network in ONNX, which is an
open format that is widely accepted. This makes our REDNet
a versatile tool that could also be combined with existing
reduction methods to lessen the network size even further as
they all apply to fully-connected networks.

REDNet could benefit various verification techniques, such
as branch-and-bound based methods [5], [7], [10], [53]. The
key insight of the branch-and-bound method is to divide the
original verification problem P into subdomains/subproblems
by splitting neuron intervals. For example, one can bisect the
input neuron interval such that the input space is curtailed
in each subdomain; or to split an unstable ReLU neuron y
(whose input value can be both negative and positive) at the
point 0, thereby y will be stably activated or stably deactivated
in the subdomains. Our network reduction technique, once
applied at the beginning of branch-and-bound based methods,
will help generates easier subproblems based on a small-sized
network, thus accelerating the whole analysis process without
sacrificing verification precision.

Furthermore, the reduced network could accelerate abstract
refinement based processes like PRIMA [12], where it encodes
the network constraints and resolves individual neuron bounds.
As REDNet contains fewer neurons and connections, the
solving process involves a smaller set of constraints, which
leads to overall speedup.

IX. CONCLUSION

In this work, we propose the neural network reduction
technique, which constructs a reduced neural network with
fewer neurons and connections while capturing the same
behavior as the original tested neural network. In particular, we
provide formal definitions of stable ReLU neurons and deploy
the state-of-the-art bound propagation method to detect such
stable neurons and remove them from the neural network in
a way that preserves the network functionality. We conduct
extensive experiments over various benchmarks and state-
of-the-art verification tools. The results on a large set of
neural networks indicate that our method can be instantiated
on different verification methods, including α, β-CROWN,
VeriNet and PRIMA, to expedite the analysis process further.

We believe that our method is an efficient pre-processing
technique that returns a functionally-equivalent reduced net-
work on which the same verification algorithm runs faster,
correspondingly enhancing the efficiency of existing verifica-
tion methods for them to answer tough verification queries
within a decent time budget. Moreover, the simplified network
architectures in REDNets empower existing tools to handle a
wider range of networks they could not support previously.
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