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Abstract—WebAssembly (Wasm) is a bytecode format origi-
nally serving as a compilation target for Web applications. It
has recently been used increasingly on the server side, e.g.,
providing a safer, faster, and more portable alternative to Linux
containers. With the popularity of server-side Wasm applications,
it is essential to study performance issues (i.e., abnormal latency)
in Wasm runtimes, as they may cause a significant impact on
server-side applications. However, there is still a lack of attention
to performance issues in server-side Wasm runtimes. In this
paper, we design a novel differential testing approach WarpDiff
to identify performance issues in server-side Wasm runtimes.
The key insight is that in normal cases, the execution time of
the same test case on different Wasm runtimes should follow an
oracle ratio. We identify abnormal cases where the execution time
ratio significantly deviates from the oracle ratio and subsequently
locate the Wasm runtimes that cause the performance issues. We
apply WarpDiff to test five popular server-side Wasm runtimes
using 123 test cases from the LLVM test suite and demonstrate
the top 10 abnormal cases we identified. We further conduct an
in-depth analysis of these abnormal cases and summarize seven
performance issues, all of which have been confirmed by the
developers. We hope our work can inspire future investigation
on improving Wasm runtime implementation and thus promoting
the development of server-side Wasm applications.

Index Terms—WebAssembly, performance issues, differential
testing

I. INTRODUCTION

WebAssembly (abbreviated Wasm) is a static low-level
bytecode format designed as a portable compilation target for
the Web [1]–[3]. Wasm bytecodes are fast to compile and run,
portable across browsers and architectures, and provide guar-
antees of type and memory safety. Such characteristics make
Wasm to be increasingly adopted outside the Web context.
In particular, Wasm has been considered a better isolation
mechanism than containers in cloud environments [4]–[8],
since it provides a higher level of abstraction and consumes
much fewer resources than typical containers. A state-of-the-
art application is Docker+Wasm [9], a special build that makes
it possible to run Wasm containers with Docker [10] using
the WasmEdge runtime [11]. Wasm has also been used in
other server-side applications, including microcontrollers [12],
[13], trusted execution environments (TEEs) [14] and smart
contracts [15]–[17].

With the increase of server-side Wasm applications, study-
ing performance issues of Wasm on the server side becomes

highly essential. On the one hand, performance degradation
(e.g., latency) in server-side applications usually has a more
significant impact than in Web applications. A short latency
may not be easily perceived by users in Web applications.
But, in some performance-sensitive server applications, it may
lead to a decrease in service throughput and cause unexpected
economic losses. Our motivating experiment shows that the la-
tency of Wasm runtimes can significantly affect the throughput
of some services (the details will be elaborated in Section II).
On the other hand, server-side Wasm applications typically run
in a standalone runtime system (e.g., WasmEdge [11]). Unlike
major browsers (e.g., Chrome, Safari and Firefox) that have
been developed for decades and have powerful optimization
mechanisms, existing standalone Wasm runtimes are still in
the early development stage. Therefore, performance issues of
Wasm runtimes are more likely to occur on the server side
than on the Web.

However, there is still a lack of research in this area.
Existing studies on Wasm performance mainly conducted on
the Web environment [18]–[23], while the attention to the
server-side Wasm performance is still limited [24]. Moreover,
existing research only focuses on the systematic performance
gaps between Wasm and native code or JavaScript but lacks
attention to performance issues in Wasm runtimes. In particu-
lar, performance issues refer to the abnormal latency occurring
in the Wasm runtimes when running specific applications.
Such performance issues can usually reveal some inappropriate
mechanisms (e.g., code optimization, code execution strategy)
of specific Wasm runtimes. Finding performance issues in
Wasm runtimes will significantly facilitate the improvement
of runtime implementation.

To this end, this paper aims to reveal performance issues
in existing standalone Wasm runtimes. However, there are
two main challenges to this task. First, there are currently
a lot of standalone Wasm runtime implementations (more
than 30 Wasm runtimes are held on Github [25]). It is hard
to analyze each runtime individually. The second challenge
is determining the oracle of performance issues, i.e., there
is exactly a performance issue in a Wasm runtime. Unlike
semantic issues causing failure execution or wrong outputs,
there is no ground truth of the performance indicator (i.e.,
execution time of test cases). Furthermore, a longer execution
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time does not directly indicate a performance issue because
this may be caused by the features of the test case instead of
the runtime implementation.

To address the first challenge, we adopt the idea of differ-
ential testing [26]–[29], a typical software testing technique
for detecting bugs in a series of comparable systems. The
idea is to observe the inconsistency in the outputs of these
comparable systems given the same input, which is suitable for
testing multiple Wasm runtimes. However, traditional differen-
tial testing approaches only target semantic bugs, which cannot
be directly applied to performance issues. It is infeasible to
identify performance issues simply based on the inconsistency
in execution time of the same test case since there are
systematic performance gaps among different Wasm runtimes.
Therefore, to address the second challenge, we propose a
novel differential testing approach WarpDiff (Wasm Runtime
Performance Differential Testing) for identifying performance
issues in Wasm runtimes. The idea is that in normal cases,
the execution time of the same test case on different Wasm
runtimes should follow a stable ratio, which we call oracle
ratio. The oracle ratio reflects the systematic performance
gaps among different Wasm runtimes. Thus, for each test case,
we first observe the execution time ratio on different Wasm
runtimes, then identify an abnormal case in which this ratio
significantly deviates from the oracle ratio. For the abnormal
case, we further locate which runtime causes the deviation to
identify the performance issue.

To evaluate the effectiveness of WarpDiff , we apply it to
identify performance issues in five popular standalone Wasm
runtimes (i.e., Wasmer [30], Wasmtime [31], Wasm3 [32],
WasmEdge [11], and WAMR [33]) with different settings. We
collect 123 C/C++ programs from the LLVM test suite [34]
as our test cases. We compile the test programs to Wasm
code by Emscripten [35], then run the Wasm code under each
runtime setting and collect their execution time. Based on
these data, we identify performance issues in these runtimes
by our differential testing approach. We report the top 10
abnormal cases and summarize seven performance issues in
four runtimes. We further conduct a comprehensive case
analysis of these performance issues to reveal their causes.
We report these issues to the developers of the corresponding
Wasm runtimes, all of which have been confirmed. Our code
and experiment results are all available1.

The main contributions of this paper are as follows:
• We identify the significance of performance issues in

server-side Wasm applications, and we conduct the first
study on revealing performance issues in server-side
Wasm runtimes.

• We propose a novel and effective differential testing
approach WarpDiff for identifying performance issues in
server-side Wasm runtimes, and we apply it on real-world
Wasm runtimes.

• We reveal seven unknown performance issues in four
Wasm runtimes and further explain their causes with

1https://figshare.com/s/f75ddc64d98669ea3abb

comprehensive case analysis. All the issues have been
confirmed by the developers.

The rest of this paper is organized as follows. Section II
introduces the background of server-side Wasm and illustrates
the motivation of our work. Section III describes the design
and implementation of WarpDiff . Section IV presents our
evaluation of WarpDiff and analysis of identified performance
issues. In Section V, we discuss threats to validity and future
work. We describe the related work in Section VI and finally
conclude this work in Section VII.

II. BACKGROUND AND MOTIVATION

A. Wasm on the Server Side

Wasm is a low-level bytecode language originally intended
for client-side execution in the Web [1]–[3]. It serves as the
compilation target for applications written in other program-
ming languages such as C/C++, Rust, and Go. Wasm gains
popularity in the Web since it is memory-safe, cross-platform,
and provides near-native performance [36]. Such attributes
also make Wasm to be increasingly used on the server side. In
particular, Wasm is a promising solution for running server-
side applications in cloud environments [4]–[8]. Compared
with the traditional Linux containers, Wasm runtimes are safer
since they have fewer attack surfaces. Wasm applications are
portable across operating systems and CPU architectures. They
can also achieve near-native performance by AOT (ahead-of-
time) compilation. Furthermore, Wasm consumes much less
memory and fewer resources than Linux containers. In late
2022, Docker [10] announced its support for Wasm with
WasmEdge runtime [11] called Docker+Wasm [9]. This news
means that the application of Wasm on the server side has
come into practice.

The operating mechanism of Wasm on the server side is
different from that in browsers. To deploy Wasm applications,
we first need to compile the source programs written in high-
level languages to Wasm bytecode by specific compilers. For
example, Emscripten [35] is a popular compiler that compiles
C/C++ to Wasm. For Web applications, Emscripten generates
Wasm module and JavaScript glue code. During the execution,
the JavaScript glue code would call into the browser engine
(e.g., V8 in Chrome), which would then talk to the operating
system. However, Wasm applications outside browsers need a
new way to communicate with the operating system, the We-
bAssembly System Interface (WASI) [37]. Without a browser
engine as runtime, server-side Wasm applications need to
run in a standalone runtime system with WASI support. The
standalone Wasm runtime works as a sandbox on the host
machine, making Wasm applications portable across different
platforms. Figure 1 shows the typical workflow of a server-side
Wasm application.

With the increase of server-side Wasm applications, many
standalone Wasm runtimes have been developed. Currently,
more than 30 standalone Wasm runtimes are held on
GitHub [25]. One representative runtime is Wasmer [30],
which offers exceedingly lightweight containers executable

https://figshare.com/s/f75ddc64d98669ea3abb


Fig. 1. Typical workflow of a server-side Wasm application.

from cloud, desktop, or IOT devices. WasmEdge [11] is
designed by CNCF [38] and integrated with Docker. Wasm-
time [31] and WAMR [33] are two other popular runtimes
proposed by Bytecode Alliance [39]. The above runtimes all
support AOT compilation. There are also runtimes that execute
Wasm code in interpreter mode, such as Wasm3 [32].

However, existing standalone Wasm runtimes are still in
the early development stage. Unlike major browsers (e.g.,
Chrome, Safari and Firefox) developed for several decades,
standalone Wasm runtimes are far from mature and more likely
to contain issues, especially performance issues. Performance
issues are usually harder to reveal during the testing period
than semantic issues, but they can have serious adverse impacts
on the application.

B. Impact of Performance Issues

High performance is a crucial design criterion of Wasm,
and it is one of the attributes that make Wasm popular on
both the client side and the server side. However, sometimes
there may be performance issues (i.e., abnormal latency)
occurring in Wasm runtimes, which is harmful to the reliability
of the system. The impact of performance issues in Wasm
runtimes on the server side is even more significant than
that on the Web. Web applications may not be sensitive to
a short runtime latency since they usually have client-side I/O
much slower than the runtime latency. On the contrary, server-
side applications are usually more performance-sensitive. For
example, in some server-side applications with high through-
put requirements (e.g., network service), runtime latency may
affect the throughput of the application and causes unexpected
economic losses.

To study the impact of performance issues in server-
side Wasm applications, we conduct a motivating experiment
to measure the correlation between Wasm runtime latency
and service throughput. Specifically, we select a real-world
Wasm microservice [40] with MySQL database backend as
our target application. This microservice is a representative
server-side Wasm application supported by Docker+Wasm,
with WasmEdge as the standalone runtime. To simulate the
performance degradation in Wasm runtime, we insert a loop

(a) 10,000 requests (b) 50,000 requests

Fig. 2. The impact of WasmEdge runtime latency on service throughput under
different concurrency and the total number of requests.

of numerical computing into the request-handling function
of the target service. When receiving a request, the service
will execute this loop before handling the request. In this
way, we can introduce runtime latency without changing the
functionality of the target service. We can also control the
latency time by changing the number of iterations in the
loop. During the experiment, we continuously send requests
to the target service from the client machine, and we measure
the throughput of the service by ab [41], a standard HTTP
server benchmarking tool. We fully occupy the CPU during
the request handling to ensure the accuracy of the measured
throughput.

Figure 2 shows the correlation between the runtime latency
of WasmEdge and service throughput under different con-
currency and the total number of requests. To eliminate the
random error of the measurement, we perform seven replicate
experiments for each setting and show the average results.
We can find that the runtime latency will cause a severe drop
in service throughput under different settings. Specifically, a
short latency of 30ms will result in a 20% to 50% drop in
service throughput, which is disastrous for high-throughput
demanding applications.

Although performance issues can significantly affect the
reliability of server-side Wasm applications, there is still a
lack of research on performance issues in server-side Wasm
runtimes. Existing studies only focus on the systematic perfor-
mance gaps between Wasm and native code or JavaScript [18]–
[24]. To the best of knowledge, none of them has studied
performance issues. Therefore, in this work, we aim to reveal
performance issues in existing server-side standalone Wasm
runtimes and thus facilitate the improvement of Wasm runtime
implementation.

III. APPROACH

A. Overview

Finding performance issues in standalone Wasm runtimes
is a challenging task. Specifically, there are two main chal-
lenges. First, as we have mentioned above, there are many
different implementations of standalone Wasm runtimes. It is
time-consuming and labor-intensive to analyze each runtime
separately. Second, it is hard to determine the oracle of
performance issues, i.e., how to indicate the occurrence of
a performance issue. Unlike semantic issues that usually have



Fig. 3. Overall framework of WarpDiff for identifying performance issues in different standalone Wasm runtimes.

a ground truth, performance issues cannot be identified by
clear criteria. We cannot identify a performance issue simply
by observing the execution time of a test case on a Wasm
runtime, because the execution time will be affected by the
features of the test case.

Therefore, to address the two challenges, we design a
novel and effective approach WarpDiff to identify performance
issues in different standalone Wasm runtimes. We introduce
the idea of differential testing [26]–[29] to solve the first
challenge. Differential testing is a widely-used software testing
technique for detecting bugs in multiple comparable systems,
by providing the same input to these systems and observing
the inconsistency in their execution. It is a suitable solution
for our task of testing multiple Wasm runtimes. However,
existing differential testing approaches only target at semantic
bugs, which cannot be directly applied to identify performance
issues. The challenge of determining the oracle of performance
issues still needs to be resolved. To address this challenge,
we introduce a new oracle in WarpDiff , which is effective
in identifying performance issues in different Wasm runtimes.
The key insight is that, in normal cases, the execution time of
the same test case on different Wasm runtimes will follow a
stable ratio, which we call oracle ratio. Although the execution
time of a test case on different Wasm runtimes will be affected
by the features of this case and the systematic performance
gaps among different runtimes, the oracle ratio can always
be an indicator of normal performance. Therefore, we can
identify an abnormal case in which the execution time ratio on
different runtimes significantly deviates from the oracle ratio.
The abnormal cases can indicate performance issues in some
Wasm runtimes, and we further locate the specific runtime in
which the performance issues occurred.

Figure 3 illustrates the overall framework of WarpDiff for
identifying performance issues in different standalone Wasm
runtimes. Specifically, our approach can be divided into three
phases: (1) Performance data collection. We execute each test
case on multiple Wasm runtimes and collect the performance
data; (2) Abnormal case identification. We determine the
oracle ratio based on the performance data of each test case

and identify abnormal cases; (3) Performance issue location.
We analyze the performance data of the abnormal cases to
locate the Wasm runtime with performance issues. In the
following subsections, we will elaborate on the details of our
design and implementation of these three phases.

B. Performance Data Collection

In order to identify performance issues in different stan-
dalone Wasm runtimes, we first need to collect performance
data of various test cases on these runtimes. This phase can be
further divided into three sub-steps: test case selection, Wasm
code execution, and performance data recording.

For test case selection, we need to consider the types of
source programs that can be well supported by standalone
Wasm runtimes. Currently, Wasm has relatively complete
support for source programs written in C/C++ and Rust [36].
Therefore, it is appropriate to select C/C++ or Rust programs
as test cases. Furthermore, we should select test cases that
are more likely to trigger performance issues in Wasm run-
times, e.g., source programs from some benchmark suites for
performance testing.

For each test case, we compile the source program to
Wasm code and then execute it on different standalone Wasm
runtimes. In this step, we need to ensure the correctness of the
execution results of the test cases. We exclude test cases where
the execution result is incorrect or a runtime error occurs
during execution, because it is meaningless to evaluate the
performance of such cases. In order to eliminate random errors
of code execution, we execute each test case multiple times
on each runtime and record the average value of performance
data. The number of executions can be customized according
to the requirements for test efficiency.

During the execution of a test case, we need to record the
performance data of this test case on each Wasm runtime for
differential testing. In this step, we need to consider what
performance data to record. The most intuitive idea is that
for each test case, record the time of the whole process of its
Wasm code running on each runtime. But in order to better
locate and analyze the identified performance issues, we record



the performance data with finer granularity. Specifically, the
whole running process of Wasm code on a runtime consists
of three stages: runtime initialization, Wasm code loading,
and code execution. Runtime initialization is where the Wasm
runtime starts and prepares the code execution environment.
Then in the Wasm code loading stage, the runtimes in AOT
mode will first compile the Wasm code to executable binary,
while the runtimes in interpreter mode just load the Wasm
code into memory. Finally, the runtime performs code exe-
cution. Therefore, for each test case, we record the time of
these three stages when it runs on each Wasm runtime. For
implementation, we use the Linux perf tool [42] to find the
start and end positions of these three stages and record the
time stamps during the test case run. We also record the total
time of the whole running process.

C. Abnormal Case Identification

In this phase, we aim to identify abnormal test cases
based on the performance data we have collected. For the
convenience of data analysis, we only take the total time as the
performance indicator in this phase (For consistency, we refer
to “total time” as “execution time” in the following). The time
of the three running stages will be used for further analysis of
the identified performance issues.

As we have mentioned above, the key idea of identifying
abnormal cases is to observe the execution time ratio on
different Wasm runtimes for each case, and the cases where
this ratio significantly deviates from the oracle ratio are
considered abnormal cases. To this end, we need to solve two
problems: (1) represent the execution time ratio for each test
case; (2) determine the oracle ratio.

For the first problem, an appropriate solution is test case
vectorization. Specifically, for each test case, we create a
time vector to represent the execution time ratio according
to the execution time of this case on each Wasm runtime. For
example, if the execution time of case x on 3 Wasm runtimes
is 1s, 2s, and 3s respectively, the time vector of case x can be
represented as [1, 2, 3]. However, the time vectors of different
test cases cannot be directly compared since the execution time
is related to the features of the case itself. Therefore, to make
the time vectors of different test cases comparable, we need to
normalize the time vectors for all test cases. In this way, the
difference in execution time caused by different test cases can
be eliminated. Test cases with the same execution time ratio
will have the same normalized time vectors. For example, the
time vector [2, 4, 6] of case y will be the same as that of case
x after normalization.

For the second problem, the ideal solution is that we
already know the oracle ratio. Unfortunately, the oracle ratio
cannot be predicted in advance, since the normal performance
of each Wasm runtime is currently unknown. The current
optimal solution to this problem is to estimate the oracle ratio
according to the execution time ratio of the existing test cases.
Specifically, we have mapped the execution time ratio of all the
test cases to the same search space by test case vectorization
and normalization. We treat the center (i.e., mean vector) of

all the normalized time vectors as the vector of the estimated
oracle ratio. Assuming that most test cases are normal cases
where the execution time ratio is similar to the oracle ratio,
when there are enough test cases, our estimated oracle ratio
will approach the ideal oracle ratio.

Thus, for each test case, we can calculate the distance
between its normalized time vector and the vector of the
estimated oracle ratio in the search space. Although the
estimated oracle ratio will be affected by the abnormal cases,
in general, a greater distance means a higher anomaly degree
for a test case. Therefore, we rank all the test cases according
to this distance, and we identify abnormal cases from the top
of this ranking.

D. Performance Issue Location

After we find an abnormal case, we need to locate which
Wasm runtime caused this anomaly, i.e., in which runtime
a performance issue occurred. To this end, we analyze the
impact of each Wasm runtime on this anomaly respectively,
based on the execution time of this abnormal case on each
runtime. According to our strategy for identifying abnormal
cases, the time vector of an abnormal case is relatively far
from the vector of the estimated oracle ratio. This distance is
mainly caused by the abnormal execution time of this case on
some Wasm runtimes, i.e., some dimensions with an abnormal
value in the time vector. Therefore, we can evaluate the effect
of the value of each dimension on this distance separately.
Specifically, we adjust the value of one dimension to make the
time vector closest to the vector of the estimated oracle ratio.
We repeat this operation for each dimension and record the
value that needs to be adjusted, which we call deviation degree.
This deviation degree reflects the impact of the corresponding
Wasm runtime on this abnormal case. The larger deviation
degree means that this anomaly is more likely to be caused
by this runtime. Thus, we treat the Wasm runtime with the
largest deviation degree as the issue-related runtime.

Hence, for each abnormal case, we can locate the Wasm
runtime in which the performance issue occurred by the above
solution. It is worth noting that WarpDiff is only a heuristic
approach, and there may be other solutions for this problem.
We just propose a feasible solution and hope our work can
inspire more refined approaches in the future. We will show
the effectiveness of WarpDiff in the next section.

IV. EVALUATION AND ANALYSIS

To evaluate the effectiveness of WarpDiff , we apply it on
several real-world standalone Wasm runtimes. In this section,
we aim to answer the following research questions:

• RQ1: How does WarpDiff perform in identifying perfor-
mance issues in real-world standalone Wasm runtimes?

• RQ2: What are the causes of the identified performance
issues, and how can we verify them?

• RQ3: What is the computational overhead of differential
testing in WarpDiff ?



TABLE I
INFORMATION OF OUR TEST CASES FROM THE LLVM TEST SUITE.

Benchmark #Program #LOC* Benchmark #Program #LOC*

Adobe-C++ 6 1,615 Misc-C++ 7 1,322
BenchmarkGame 8 486 Misc-C++-EH 1 16,817
CoyoteBench 4 1,471 Polybench 30 4,364
Dhrystone 2 642 Shootout 14 573
Linpack 1 693 Shootout-C++ 25 783
McGill 4 956 SmallPT 1 96
Misc 27 5,052 Stanford 11 1,135

Total 141 36,005

* LOC: lines of code.

A. Experiment Settings

Test Case Selection. As described in Section III, it is
appropriate to select test cases written in source languages that
are well supported by Wasm and that are more likely to trigger
performance issues. Therefore, we select 141 C/C++ programs
with a total of over 30,000 lines of code from the LLVM
test suite [34], which contains various benchmark programs
for evaluating LLVM compilation performance. We select the
test cases from the SingleSource/Benchmarks/ directory of the
test suite, since the programs in this directory can be directly
compiled to Wasm code without modification. Table I shows
the information of our selected test cases, consisting of 14
benchmarks. One of the benchmarks is Polybench [43], which
is a widely-used benchmark suite for Wasm performance
evaluation in previous studies [18], [19], [24]. We compile
the source programs to Wasm code by Emscripten (version
3.1.24) with the optimization level of O2. We exclude those
test cases that cannot be compiled successfully or a runtime
error occurs during execution. Finally, we collect the results
on the remaining 123 test cases.

Wasm Runtime Selection. Although there are many server-
side standalone Wasm runtimes, it is better to select some
representative Wasm runtimes as test targets. Since most
standalone Wasm runtimes are open source on GitHub, we
select target runtimes based on their popularity and activity on
Github. For popularity, we select runtimes with the top number
of Github stars. For activity, we exclude those unmaintained
runtimes, i.e., the last commit was more than one year ago. Fi-
nally, we select five representative standalone Wasm runtimes:
Wasmer [30], Wasmtime [31], Wasm3 [32], WasmEdge [11],
and WebAssembly Micro Runtime (WAMR) [33]. Table II
shows the information of these Wasm runtimes. We select
the latest version of each runtime for testing. For Wasmer,
Wasmtime, and WasmEdge, we test them under AOT mode.
Although WasmEdge also provides interpreter mode, the per-
formance is extremely poor, so we only test WasmEdge with
AOT mode. For Wasm3, we test it on the default interpreter
mode and another setting with –compile option, where the lazy
optimization of Wasm code will be disabled. For WAMR, we
test it on both the interpreter mode and AOT mode. Hence,
we finally have seven runtime settings.

Experiment Environment. All our experiments are running
on a server with an Intel(R) Core(TM) i5-9500T 2.20GHz

TABLE II
INFORMATION OF WASM RUNTIMES FOR TESTING.

Runtime #GitHub Stars* Test Version Execution Mode

Wasmer 15.1k 3.2.0 AOT
Wasmtime 12.1k cli 8.0.0 AOT
Wasm3 6k v0.5.0 Interpreter
WasmEdge 5.9k 0.12.0 AOT
WAMR 3.7k 1.1.2 Interpreter/AOT
* Statistics of Github stars is by April 2023.

CPU and 32GB DDR4 memory. The operating system of the
server is 64-bit Ubuntu 20.04.1 SMP with Linux kernel version
of 5.15.0-56-generic.

B. RQ1: Results of Identifying Performance Issues

We run each test case 10 times under each runtime setting
and collect the performance data averaged over the 10 runs.
Then we apply WarpDiff on all runtime settings and obtain
the results. According to our approach, we identify abnormal
cases and then locate performance issues in specific Wasm
runtimes based on their deviation degree in each case. The
larger deviation degree indicates that the case performance
on the corresponding runtime is with the higher anomaly.
Therefore, we rank the identified abnormal cases based on the
descending order of the deviation degree of the issue-related
runtime. Table III shows the results of the top 10 abnormal
cases. We only report the top 10 abnormal cases since we just
rank the cases without setting a specific threshold for abnormal
cases. We design this strategy because our goal is to reveal
some unknown performance issues in existing standalone
Wasm runtimes, instead of finding all the performance issues.
Actually, it is impossible to find all the performance issues,
because there is currently no ground truth of performance
issues that can be verified.

The values in Table III represent the deviation degree of
each Wasm runtime setting on the top 10 abnormal cases. A
positive value means that the execution time of this case on
this Wasm runtime is higher than the expected value according
to the oracle ratio, while a negative value means that the
execution time is lower than the expected value. Since we
aim to identify performance issues (i.e., the execution time
is abnormally higher than expected), we only focus on the
deviation degree with positive values. For each abnormal case,
the issue-related runtime is marked with a gray background
in the table. We can observe that among the 10 abnormal
cases, four cases are caused by WAMR with interpreter mode,
and the other six cases are caused by Wasmer, Wasmtime and
WasmEdge (two cases on each runtime). There are also other
abnormal cases caused by Wasm3, which are not shown in the
table.

The results indicate that performance issues are common in
existing popular standalone Wasm runtimes, which need our
attention. We will further conduct a detailed case analysis to
reveal the causes of these performance issues.



TABLE III
Deviation degree OF EACH RUNTIME SETTING ON THE TOP 10 ABNORMAL CASES.

Case Wasmer Wasmtime Wasm3 Wasm3 compile WasmEdge WAMR WAMR AOT

BenchmarkGame/fasta.c 0.702 0.113 -0.248 -0.244 0.082 -0.270 0.081
Shootout/methcall.c -0.051 -0.028 -0.164 -0.164 0.502 0.044 -0.014
Shootout-C++/methcall.cpp -0.036 -0.031 -0.126 -0.128 0.415 0.072 -0.009
Shootout/random.c 0.075 0.315 -0.060 -0.060 0.079 -0.026 0.101
Shootout-C++/random.cpp 0.096 0.309 -0.063 -0.063 0.098 -0.036 0.121
Polybench/2mm.c -0.038 -0.039 -0.151 -0.149 -0.035 0.268 0.003
Polybench/gemm.c -0.038 -0.041 -0.145 -0.153 -0.036 0.267 0.007
Polybench/3mm.c -0.037 -0.040 -0.145 -0.140 -0.034 0.261 0.005
Misc/flops-8.c -0.019 0.012 -0.142 -0.142 -0.009 0.251 0.015
Misc/flops-4.c 0.234 -0.003 -0.127 -0.127 -0.019 0.168 0.001

C. RQ2: Case Analysis

In order to verify the identified performance issues and
further facilitate the improvement of Wasm runtime implemen-
tation, it is critical to analyze the causes of these performance
issues. Unfortunately, since the performance issues we iden-
tified are all unknown issues, there are no ground truths that
can be directly used for verification. Therefore, we conduct
a manual analysis of these abnormal cases. Specifically, we
analyze each case in three steps: abnormal stage location, fine-
grained cause location, and cause verification.

In the first step, we locate the running stage where the
abnormal latency occurs. As mentioned in Section III, we
have collected the time of the three running stages (runtime
initialization, Wasm code loading, and code execution) for
each test case. Thus, we can locate the abnormal stage based
on these performance data. Similarly, we apply WarpDiff on
the data of these three stages respectively and identify the
abnormal stage where the issue-related runtime (e.g., for case
fasta.c, the issue-related runtime is Wasmer) holds the
largest deviation degree. We find that in all 10 abnormal
cases, the abnormal latency occurs in the code execution stage.
This means that the performance issues we identified are all
caused by the code execution mechanism of the corresponding
runtimes.

This finding indicates that we can locate fine-grained causes
of the performance issues by analyzing the source code of
the abnormal cases. Therefore, in the second step, we aim to
find out which part of the code is executing with an abnormal
latency. To this end, for each abnormal case, we make a series
of case reduction, and we rerun the reduced cases on all the
Wasm runtimes to observe the changes in the execution time
ratio. Specifically, we generate a reduced case by deleting
a code snippet (e.g., a statement, a loop, or a branch). If
the execution time ratio of the reduced case changes to the
normal level (i.e., close to the oracle ratio), it means that the
performance issue is likely to be caused by the deleted code
snippet, which we call issue-related code snippet.

To verify the causes of the performance issues, we further
create some new test cases that contain the same function as
the issue-related code snippet. We run the new test cases on

(a) Issue-related code snippet of fasta.c.

(b) A new test case that can reproduce Issue #3784.

Fig. 4. Test cases related to Issue #3784 of Wasmer.

all the Wasm runtimes and observe whether the performance
issues will be reproduced. If the performance issues can be
reproduced, it means that the causes we found can be verified.
Finally, we report the performance issues and their causes to
the developers of the corresponding Wasm runtimes.

Overall, we summarize 7 performance issues for the 10
abnormal cases, all of which have been confirmed by the
developers. Table IV shows the summary of these performance
issues. Next, we will explain the performance issues of each
Wasm runtime separately.

Wasmer. In Issue #3784, we find that the core function in
the abnormal case fasta.c is repeat_fasta, as shown
in Figure 4(a). This function prints the characters of the string
s repeatedly, and it stops when the total number of characters



TABLE IV
SUMMARY OF PERFORMANCE ISSUES RELATED TO THE 10 ABNORMAL CASES.

Case Related Runtime Issue ID Cause of Performance Issue Status

BenchmarkGame/fasta.c Wasmer #3784 Improper implementation of fd_write Confirmed
Misc/flops-4.c Wasmer #3821 Version issue of the Cranelift code generator Confirmed

Shootout/methcall.c WasmEdge #2444 Improper handling when invoking function pointer Confirmed
Shootout-C++/methcall.cpp WasmEdge #2442 Improper handling of virtual function Confirmed

Shootout/random.c Wasmtime
#6287 Insufficient optimization for division and modulo Confirmed

Shootout-C++/random.cpp Wasmtime

Polybench/2mm.c WAMR
#2175 Insufficient optimization for matrix multiplications ConfirmedPolybench/gemm.c WAMR

Polybench/3mm.c WAMR
Misc/flops-8.c WAMR #2167 Insufficient optimization for complex arithmetic expressions Confirmed

printed is count. We further locate the issue-related code snip-
pet, which accounts for the majority of the case execution time
at lines 55-56 by case reduction. Here the program invokes two
C standard I/O functions fwrite and putchar in a loop.
When we delete these two lines of code, the execution time
of this case on Wasmer will go back to normal. Therefore,
this performance issue is probably caused by improper I/O
implementation of Wasmer. To verify this cause, we create
a new test case that also includes a standard I/O function
printf in a loop, as shown in Figure 4(b). We find that
the performance issue of Wasmer can be reproduced in this
case. Then, we check the source code of I/O implementation
in Wasmer (in wasmer/lib/wasi/src/syscalls/wasi/fd write.rs),
delete the code snippet of setting written size and rebuild
Wasmer. We find that the performance issue will not occur
after rebuilding. Therefore, the cause of improper I/O imple-
mentation in Wasmer can be verified.

In Issue #3821, the abnormal case flops-4.c is a
program that calculates the integral of cos(x) using the trape-
zoidal method. We find that the issue-related code snippet of
this case is a statement that performs arithmetic operations.
Thus, the performance issue may be related to Wasmer’s
improper handling of such operations. Specifically, Wasm
runtimes in AOT mode will generate executable machine code
for the input Wasm code before execution. The default code
generator of Wasmer is Cranelift [44]. When we change the
code generator to the LLVM backend and rerun this case
on Wasmer, the performance is back to normal. However,
Wasmtime also uses Cranelift as the default code generator
but no performance issue occurs, which indicates that the issue
is caused by the current version of Cranelift in Wasmer.

These two performance issues of Wasmer have been con-
firmed by the developers and marked as milestones for the
development of the next version.

WasmEdge. In Issue #2444, the abnormal case
methcall.c defines a structure named Toggle, and it
invokes a function to activate the toggle repeatedly. For the
convenience of explaining the issue, we create a simplified
methcall.c, as shown in Figure 5. In this case, we locate
the issue-related code snippet at line 20, where the program

Fig. 5. Simplified methcall.c related to Issue #2444 of WasmEdge.

invokes the function toggle_activate via the function
pointer activate defined in the structure Toggle. However,
when we remove the code of this line and invoke the function
toggle_activate directly (as shown in line 21), the
performance issue of WasmEdge will not show up again. The
results indicate that this performance issue is caused by the
improper handling of WasmEdge when invoking a function
pointer.

The abnormal case methcall.cpp in Issue #2442 im-
plements the same function as methcall.c, but written
in C++. Due to differences in syntax of C and C++, the
function pointer activate in methcall.c is defined as a
virtual function reference virtual bool& activate()
in methcall.cpp. The performance issue in this case also
occurs when invoking activate. Therefore, we find that
WasmEdge also has improper handling of a virtual function.
These two performance issues are also confirmed by the
developers of WasmEdge.

Wasmtime. The abnormal cases random.c and
random.cpp reveal the same performance issue #6287
of Wasmtime. The core functions of the two programs are
generating a random number by some compound operations,



(a) Issue-related code snippet of random.c.

(b) A new test case that can reproduce Issue #6287.

Fig. 6. Test cases related to Issue #6287 of Wasmtime.

Fig. 7. Issue-related code snippet of 2mm.c in Issue #2175 of WAMR.

as shown in Figure 6(a). We locate the issue-related code
snippet at lines 19-20, which means that Wasmtime may
handle such compound operations improperly. We then
create another test case with a similar function, as shown
in Figure 6(b), and find that the performance issue will
be reproduced. We further create more test cases that
contain different compound operations, and we find that this
performance issue of Wasmtime only occurs when division
and modulo are included. We report this performance issue
to the developers of Wasmtime. They confirm this issue
and admit that the optimization of division and modulo is
currently not well supported by Wasmtime.

WAMR. The three abnormal cases 2mm.c, gemm.c, and
3mm.c from Polybench reflect the same performance issue
#2175 of WAMR in interpreter mode. The functions of these
three programs are all matrix multiplication. Figure 7 shows
the core computations in 2mm.c, where the program performs
the operation alpha∗A∗B∗C+beta∗D on matrices A, B, C,
D. We locate the issue-related code snippet at lines 97, 102,
and 104, which are the statements of matrix multiplication. We
also obtain similar results on gemm.c and 3mm.c. In particu-
lar, the execution time of these cases on WAMR is more than
2× slower than that in Wasm3 (another Wasm interpreter),
while WAMR can achieve comparable performance to Wasm3
on other normal cases. This indicates that WAMR may not
optimize the matrix multiplication operation well enough in
interpreter mode.

In Issue #2167, the abnormal case flops-8.c calculates

Fig. 8. Issue-related code snippet of flops-8.c in Issue #2167 of WAMR.

TABLE V
COMPUTATIONAL OVERHEAD OF DIFFERENTIAL TESTING UNDER

DIFFERENT NUMBERS OF RUNTIME SETTINGS.

#Runtime 2 3 4 5 6 7

Avg. Overhead (s) 0.330 0.476 0.604 0.735 0.845 0.966
Std. Deviation 0.026 0.039 0.047 0.058 0.044 0.037

integral of sin(x) ∗ cos(x) ∗ cos(x) from 0 to PI/3. The
issue-related code snippet is shown in Figure 8. We find
that the abnormal latency of WAMR occurs when handling
complex arithmetic expressions in a loop, like the code at
lines 249-250. We also observe this phenomenon in some
other similar programs of flops-8.c. Therefore, WAMR
in interpreter mode may also not have sufficient runtime
optimization for such complex arithmetic expressions. We
have received confirmation for these two issues.

D. RQ3: Computational Overhead

The efficiency of WarpDiff is important for its usability
in practice. Therefore, we also evaluate the computational
overhead of differential testing in WarpDiff . Specifically, we
measure the running time of the differential testing part
(abnormal case identification and performance issue location)
in WarpDiff , with different numbers of runtime settings. We
exclude the time of performance data collection because this
part of the time is determined by test case execution and
should not be counted in the overhead of differential testing.
For each number of runtime settings, we perform differential
testing on all possible runtime setting combinations 10 times
and calculate the average running time.

The results are shown in Table V. We can find that as the
number of runtime settings grows, the computational overhead
of differential testing increases steadily, but all within one
second. In our experiments, the time spent on performance
data collection for a single execution of all the test cases is
about two hours. It means that the computational overhead of
differential testing only accounts for less than 0.01% of the
whole process. The results indicate that WarpDiff is highly
efficient, which provides good usability for its practice.

V. DISCUSSION

A. Threats to Validity

There are some threats to validity of our work, including test
case selection, Wasm runtime selection, and the sufficiency of
case analysis.



First, we select 123 C/C++ programs from the LLVM test
suite as our test cases, which may not be very large-scale.
However, the test cases are representative benchmark programs
for performance testing and are well-suited as the source
programs of Wasm. Our test cases include Polybench [43], a
popular benchmark that is widely used for Wasm performance
evaluation in previous studies [18], [19], [24]. Furthermore,
the goal of our work is to reveal some unknown performance
issues in server-side Wasm runtimes instead of finding all the
performance issues (actually, it is impossible). Our evaluation
has shown the effectiveness of the selected test cases in
achieving our goal.

Second, we select five server-side standalone Wasm run-
times as our test targets. We select the Wasm runtimes ac-
cording to their popularity and activity, thereby ensuring the
representativeness of the selected runtimes. Also, the number
of runtime settings may affect the testing results, as the
abnormal cases are identified based on the execution time ratio
on these runtime settings. We conduct a series of experiments
with different numbers of runtime settings, and we find that
those abnormal cases with high deviation degree on the issue-
related runtime can always be identified.

Third, we only report the top 10 abnormal cases in this
paper, as it is inappropriate to set a threshold for abnormal
case identification. We report the 10 abnormal cases since
they are with the top anomaly degree and worthy of attention.
We conduct an in-depth case analysis to reveal the causes
of the performance issues. We also report these issues to
the developers of the corresponding Wasm runtimes to get
their confirmation. The results indicate the effectiveness of
our differential testing approach.

B. Future Work

In this work, we propose a novel differential testing ap-
proach to identify performance issues in server-side standalone
Wasm runtimes. Based on our approach, we can collect more
performance issues in existing popular standalone Wasm run-
times, then build a comprehensive benchmark suite for testing
the performance issues in Wasm runtimes. This benchmark
suite can facilitate future work on performance issue testing
for Wasm runtimes.

Also, our work can facilitate the improvement of existing
standalone Wasm runtime implementation. In the future, we
aim to further improve the internal mechanisms related to the
performance issues in existing Wasm runtimes. We can also
design a new Wasm runtime implementation with a better
optimization strategy and execution mechanism.

VI. RELATED WORK

Server-side Wasm. WebAssembly (Wasm) is a low-level
bytecode language originally designed for client-side exe-
cution in Web browsers [1]. Wasm’s sandboxing execution
mechanism brings safety, higher-performance, lightweight, and
portability natures, making it suitable for server-side applica-
tions as well [45]–[47]. Cloud applications built with Wasm
have become increasingly popular in recent years [4]–[8]. For

example, FASSM [4] introduces a new isolation abstraction
based on Wasm for high performance serverless computing.
Wasm is also suggested to enable computational offloading in
cloud environments [48]–[51]. Nomad [49] provides a cross-
platform computational offloading and migration mechanism
in Femtoclouds using Wasm. WIPROG [50] proposes an edge-
centric approach to IoT application programming based on
Wasm. Besides cloud environments, Wasm is also used in
microcontrollers [12], [13], Trusted Execution Environments
(TEEs) [14] and smart contracts [15]–[17].

Wasm Performance. High performance is an important
design consideration of Wasm. Wasm attempts to provide near-
native execution speed both in browsers and server-side appli-
cations [1], [36]. Extensive work studies Wasm performance
over the browsers [2], [18]–[23]. Jangda et al. [18], [19]
build BROWSIX-Wasm to run unmodified Wasm-compiled
Unix applications directly inside the browser. Then they use
BROWSIX-Wasm to conduct the first large-scale evaluation
of the performance of Wasm in comparison with native code.
They point out a substantial performance gap between the
two. Wang [20] investigates how Chrome optimizes Wasm
execution in comparison to JavaScript. Yan et al. [21] extend
this study to more browser engines (Chrome, Firefox, and
Edge). They find that JIT optimization significantly impacts
JavaScript speed but has little effect on Wasm speed. Also,
Wasm uses much more memory than JavaScript. Regard-
ing the server-side Wasm performance, there are relatively
fewer studies. Spies et al. [24] conduct an evaluation of
Wasm performance in non-Web environments. The evaluation
demonstrates that Wasm is generally faster than JavaScript and
can approach native code performance in some cases. To sum
up, existing studies simply compare the performance of Wasm
with other codes. There is still a lack of research on how to
test performance issues in Wasm runtimes.

Differential Testing. Differential testing is a popular soft-
ware testing technique for detecting bugs in two or more
comparable systems or different implementations of the same
application [26]–[29]. The idea is to provide the same input
to these comparable systems, and observe the inconsistency in
their execution. If the results differ, it indicates that some of
the systems may contain a bug. Differential testing has been
widely used to detect semantic bugs in diverse domains, such
as C compilers [52]–[55], JVM implementations [56]–[59],
SSL/TLS implementations [60]–[62], and even deep learning
systems [63]–[65]. Existing differential testing approaches
can be divided into two categories, unguided and guided,
based on the way of input generation. Unguided differential
testing approaches generate test inputs independently with-
out considering information from past inputs. An example
is Frankencerts [60], which tests for semantic violations of
SSL/TLS certificate validation across multiple implementa-
tions. Guided differential testing approaches aim to minimize
the number of inputs by considering program behavior in-
formation for past inputs, making the testing process more
efficient. For example, classfuzz [56] is a coverage-guided
fuzzing approach for differential testing of JVMs’ startup



processes. Existing differential testing approaches only focus
on semantic or logic bugs in software systems. In this work, we
first extend differential testing to performance issue detection,
which is one of our contributions.

VII. CONCLUSION

Performance issues are critical for server-side Wasm appli-
cations, but research in this area is lacking. In this work, we
conduct the first study on performance issues in server-side
standalone Wasm runtimes. We propose a novel differential
testing approach WarpDiff to identify performance issues in
standalone Wasm runtimes, and we apply it to five popular
real-world Wasm runtimes with 123 test cases. We further
conduct a comprehensive case analysis of the top 10 identified
abnormal cases, and summarize seven performance issues in
four popular Wasm runtimes. All issues are confirmed by
developers. The results indicate the effectiveness of WarpDiff ,
which provide inspiration for future work on improving server-
side Wasm runtime implementation.
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[46] N. Mäkitalo, T. Mikkonen, C. Pautasso, V. Bankowski, P. Daubaris,
R. Mikkola, and O. Beletski, “Webassembly modules as lightweight
containers for liquid iot applications,” in Web Engineering: 21st Inter-
national Conference, ICWE 2021, Biarritz, France, May 18–21, 2021,
Proceedings. Springer, 2021, pp. 328–336.

[47] V. Kjorveziroski, S. Filiposka, and A. Mishev, “Evaluating webassembly
for orchestrated deployment of serverless functions,” in 2022 30th
Telecommunications Forum (TELFOR). IEEE, 2022, pp. 1–4.

[48] W. Huang and M. Paradies, “An evaluation of webassembly and ebpf as
offloading mechanisms in the context of computational storage,” arXiv
preprint arXiv:2111.01947, 2021.

[49] M. Nurul-Hoque and K. A. Harras, “Nomad: Cross-platform compu-
tational offloading and migration in femtoclouds using webassembly,”
in 2021 IEEE International Conference on Cloud Engineering (IC2E).
IEEE, 2021, pp. 168–178.

[50] B. Li, W. Dong, and Y. Gao, “Wiprog: A webassembly-based approach
to integrated iot programming,” in IEEE INFOCOM 2021-IEEE Con-
ference on Computer Communications. IEEE, 2021, pp. 1–10.

[51] E. Wen and G. Weber, “Wasmachine: Bring iot up to speed with a
webassembly os,” in 2020 IEEE International Conference on Perva-
sive Computing and Communications Workshops (PerCom Workshops).
IEEE, 2020, pp. 1–4.

[52] X. Yang, Y. Chen, E. Eide, and J. Regehr, “Finding and understanding
bugs in c compilers,” in Proceedings of the 32nd ACM SIGPLAN
conference on Programming language design and implementation, 2011,
pp. 283–294.

[53] G. Barany, “Finding missed compiler optimizations by differential
testing,” in Proceedings of the 27th international conference on compiler
construction, 2018, pp. 82–92.

[54] J. Chen, W. Hu, D. Hao, Y. Xiong, H. Zhang, L. Zhang, and B. Xie, “An
empirical comparison of compiler testing techniques,” in Proceedings of
the 38th International Conference on Software Engineering, 2016, pp.
180–190.
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