
Accepted to the 38th IEEE/ACM International Conference on Automated Software Engineering

Nuances are the Key: Unlocking ChatGPT to Find
Failure-Inducing Tests with Differential Prompting

Tsz-On Lia,b, Wenxi Zongc, Yibo Wangc, Haoye Tiand, Ying Wangc,a*, Shing-Chi Cheunga,b*, Jeff Kramere

aThe Hong Kong University of Science and Technology, Hong Kong, China
bGuangzhou HKUST Fok Ying Tung Research Institute, Guangzhou, China

cNortheastern University, Shenyang, China
dUniversity of Luxembourg, Luxembourg, Luxembourg
eImperial College London, London, United Kingdom

{toli,scc}@cse.ust.hk, iamwenxiz@163.com, yibowangcz@outlook.com, haoye.tian@uni.lu,
wangying@swc.neu.edu.cn, j.kramer@imperial.ac.uk

Abstract—Automated detection of software failures is an im-
portant but challenging software engineering task. It involves
finding in a vast search space the failure-inducing test cases
that contain an input triggering the software fault and an oracle
asserting the incorrect execution. We are motivated to study how
far this outstanding challenge can be solved by recent advances
in large language models (LLMs) such as ChatGPT. However,
our study reveals that ChatGPT has a relatively low success rate
(28.8%) in finding correct failure-inducing test cases for buggy
programs. A possible conjecture is that finding failure-inducing
test cases requires analyzing the subtle differences (nuances)
between the tokens of a program’s correct version and those
for its buggy version. When these two versions have similar sets
of tokens and attentions, ChatGPT is weak in distinguishing their
differences.

We find that ChatGPT can successfully generate failure-
inducing test cases when it is guided to focus on the nuances. Our
solution is inspired by an interesting observation that ChatGPT
could infer the intended functionality of buggy code if it is similar
to the correct version. Driven by the inspiration, we develop a
novel technique, called Differential Prompting, to effectively find
failure-inducing test cases with the help of the compilable code
synthesized by the inferred intention. Prompts are constructed
based on the nuances between the given version and the syn-
thesized code. We evaluate Differential Prompting on QuixBugs
(a popular benchmark of buggy programs) and recent programs
published at Codeforces (a popular programming contest portal,
which is also an official benchmark of ChatGPT). We compare
Differential Prompting with two baselines constructed using
conventional ChatGPT prompting and PYNGUIN (the state-of-
the-art unit test generation tool for Python programs). Our eval-
uation results show that for programs of QuixBugs, Differential
Prompting can achieve a success rate of 75.0% in finding failure-
inducing test cases, outperforming the best baseline by 2.6X. For
programs of Codeforces, Differential Prompting’s success rate
is 66.7%, outperforming the best baseline by 4.0X.

Index Terms—failure-inducing test cases, large language mod-
els, program intention inference, program generation

I. INTRODUCTION

° Testing leads to failure, and failure leads to
understanding. ± - Burt Rutan

*Ying Wang and Shing-Chi Cheung are the corresponding authors.

Problem and Challenges. Finding failure-inducing test
cases is a main objective in software testing. However, finding
such test cases is challenging in practice. First, it is because
a developer needs to search for a test input that can trigger a
program failure, while the search space of such a test input is
vast [1]. Second, the developer needs to construct a test oracle
to automatically detect a program failure, while constructing
a test oracle is often an undecidable problem [2].

Recent studies [3], [4] have reported the potential of using
large language models (LLMs) like ChatGPT [5] for software
engineering tasks, such as automated program repair. In this
paper, we conduct the first study to investigate the use of
ChatGPT in finding failure-inducing test cases for a given
program. We do not focus on finding test cases that achieve
high code coverage because it is not necessarily correlated
with fault detection abilities. In addition, finding test cases
whose assertions are incorrectly generated is not useful even
if they achieve high code coverage. Our study aims to find test
cases with failure-inducing test inputs and correctly specified
assertions. However, using ChatGPT to find such test cases is
challenging.

We experiment using ChatGPT in a direct manner with both
buggy and correct Python programs in QuixBugs [6], which is
a common benchmark used by recent works [4], [3] to study
the use of LLMs for SE tasks. We prompt ChatGPT in two
steps, following a recently proposed prompting convention [3].
For each program, we first ask ChatGPT to determine whether
a given program contains bugs. When it replies yes, we ask it
to generate a failure-inducing test case. Our experiment yields
two findings: first, ChatGPT has a low success rate (28.8%) in
finding failure-inducing test cases for buggy programs; second,
ChatGPT often considers correct programs buggy and suggests
failure-inducing test cases.

A possible explanation of the findings is that ChatGPT
is essentially a Transformer (a Deep Learning model archi-
tecture commonly adopted by LLM) [5], which is found to
be insensitive to nuances (i.e., subtle differences between

ar
X

iv
:2

30
4.

11
68

6v
6

 [
cs

.S
E

]
 9

 S
ep

 2
02

3

“Is there an input which makes the two

programs below have different outputs?

Suggest an input if it exists. ”
01 def program1 (a, b) :
02 if b == 0 :
03 return a
04 else :
05 return program1 (a, a%b)

01 def program2 (a, b) :
02 if b == 0 :
03 return a
04 else :
05 return program2 (a%b, a)

”

“No, there isn’t. Both programs implement

the same algorithm to calculate the greatest

common divisor (GCD) of two numbers.

Since the algorithm is deterministic, the

outputs of both programs will always be the

same for the same input.

Fig. 1: An illustrative example for ChatGPT’s weakness.

two similar sequences of tokens) [7], [8], [9], [10]. In other
words, when a sequence of input tokens varies slightly, LLMs
often make similar inferences. This property allows LLMs to
tolerate some noise in input tokens. Nevertheless, a bug is
essentially a nuance between a buggy program and its fixed
version [11], [12], [13]. Hence, an LLM (including ChatGPT)
cannot reliably detect the existence of bugs in a program and
is therefore weak in finding correct failure-inducing test cases.

Figure 1 shows an illustrative example that consists of two
buggy implementations of greatest common divisor. We ask
ChatGPT to generate an input that can make the two programs
have different outputs. When a=12 and b=20, the outputs of
the two programs differ. However, ChatGPT responds that
no input can make the two programs have different outputs.
ChatGPT shows its insensitivity to the presence of nuances in
this example.

Insights. To tackle the weakness of ChatGPT in finding
failure-inducing test cases, we leverage two insights. First, the
task of finding a failure-inducing test case for a program can
be much facilitated if its intention is known. It enables us to
focus our search for failure-inducing test cases on those that
exhibit behaviors different from the program intention.

Second, the weakness of ChatGPT at recognizing nuances
can facilitate ChatGPT to infer a program’s intention, because
such a weakness allows ChatGPT to ignore the presence of a
bug (i.e., nuances) when inferring the program’s intention. To
validate this insight, we conduct an experiment on QuixBugs
by requesting ChatGPT to infer a buggy program’s actual
intention. Our experiment result shows that ChatGPT correctly
infers the actual intention of 91.0% buggy programs.

Approach. Leveraging these two insights, we propose Dif-
ferential Prompting, a new paradigm for finding failure-
inducing test cases. Differential Prompting divides the task
of finding failure-inducing test cases into three sub-tasks: pro-
gram intention inference, program generation, and differential
testing. Specifically, given a program-under-test (PUT), Dif-
ferential Prompting first asks ChatGPT to infer the intention
of a PUT. ChatGPT is then prompted to generate multiple
compilable programs that have the same intention as the PUT.
Essentially, these programs are alternative implementations
of the PUT. Since these programs may also be buggy, we
consider only those test cases that deliver consistent results
across these programs. Here, we assume that these generated
programs are unlikely to commonly suffer from the same
bug. Therefore, if one of these test cases induces PUT to
deliver a different result, the test case will likely be failure-
inducing. In other words, we apply differential testing be-

tween PUT and the programs generated by ChatGPT based
on the inferred program intention. By doing so, Differential
Prompting bypasses the weakness of ChatGPT at recognizing
nuances, while leveraging its capability of inferring program
intention. Note that Differential Prompting may find incorrect
failure-inducing test cases in the few scenarios when programs
generated by ChatGPT commonly suffer from the same bug.
We will evaluate this and suggest measures to mitigate this in
our evaluation.

Evaluation. We evaluate Differential Prompting on
QuixBugs and Codeforces [14]. Codeforces publicly re-
leases all buggy or correct programs submitted by contest
participants. We select seven programs that were submitted
after September 2021 (the cut-off date of ChatGPT’s training
dataset) for evaluation, in order to mitigate the threat of data
leakage. We compare Differential Prompting against two base-
lines: ChatGPT and Pynguin [15] (the state-of-the-art unit test
generation tool for Python program). Our evaluation results
show that for buggy programs of QuixBugs, the success rate of
Differential Prompting in finding failure-inducing test cases is
75.0%, outperforming the best baselines (28.8%) by 2.6X. For
correct programs of QuixBugs, Differential Prompting only
incorrectly suggests a failure-inducing test case for 5.0% of the
programs. In comparison, the two baselines incorrectly suggest
a failure-inducing test case for every correct program. For
buggy programs of Codeforces that have similar complexity
with buggy programs of QuixBugs, Differential Prompting
’s success rate is 66.7%, outperforming the best baselines
(16.7%) by 4.0X. For the correct programs, Differential
Prompting only incorrectly suggests failure-inducing test cases
for 1 out of 7 programs, while the baselines incorrectly suggest
failure-inducing test cases for all the seven programs.

Contributions. To summarize, this paper makes the follow-
ing three contributions:
• Originality: To the best of our knowledge, we conducted the

first study to investigate ChatGPT’s effectiveness in finding
failure-inducing test cases. Our findings help understand
ChatGPT’s limitations in doing so, and inspire future studies
in this area.

• Technique: We propose Differential Prompting, a new
paradigm for finding failure-inducing test cases. Differential
Prompting unlocks ChatGPT’s power in detecting software
failure, by formulating the task of finding failure-inducing
test cases into program intention inference, program gen-
eration, and differential testing. By doing so, Differential
Prompting turns ChatGPT’s weakness into a strength in
finding failure-inducing test cases. The evaluation result
shows that Differential Prompting notably outperforms the
state-of-the-art baselines on QuixBugs and Codeforces.

• Evaluation: We implement Differential Prompting and eval-
uate it on QuixBugs and Codeforces. Our evaluation
result shows that Differential Prompting’s success rate out-
performs the best baseline by 2.6X on QuixBugs and
4.0X on Codeforces. We make our research artifact and
experimental data available.
Promising Application Scenarios. We acknowledge that

Differential Prompting in this paper works best in finding
failure-inducing test cases for simple programs (i.e., programs

that have less than 100 lines of code). However, the im-
provement that it offers over state-of-the-art approaches is
an essential step towards finding failure-inducing test cases
for larger software. Larger software is inevitably associated
with more sophisticated program intention/requirement, which
can be difficult to describe precisely in natural language. In
addition, the input search space can be much larger. As a
result, failure-inducing test cases are more difficult to find.

Besides, Differential Prompting’s effectiveness in finding
failure-inducing test cases also benefits education for software
engineering. Specifically, our evaluation result implies that
failure-inducing test cases found by Differential Prompting
can accurately detect failures of programming beginners’
programs (which are usually simple programs). Previous stud-
ies [16], [17], [18] on software engineering education suggest
that those failure-inducing test cases can facilitate a program-
ming beginner’s understanding of programming concepts, and
help the beginner effectively learn debugging practices. Hence,
like many software engineering techniques proposed for pro-
gramming assignments [19], [20], [21], Differential Prompting
can be adopted by beginners for learning programming.

II. PRELIMINARIES

We use a running example in Figure 1 to illustrate the task of
finding failure-inducing test cases. In the example, program1
and program2 differ in their last return statement, which
is return program1(a,a%b) for the former and return
program2(a%b,a) for the latter. Essentially, they swap the
order of arguments. This makes the output of program1 and
program2 different for certain inputs. For instance, when a =
12 and b = 20, program1 outputs 12 while program2 incor-
rectly outputs 0. However, program1 intends to implement a
greatest common divisor (GCD) program. Hence, given a =
12 and b = 20, the output of program1 should be 4.

A test case found by Differential Prompting, ChatGPT or
Pynguin [15] can fall into one of the five categories.
• Correct failure-inducing test case (FT-IA). An FT-IA con-

sists of (1) a failure-revealing test input I that triggers PUT
to give an incorrect output, and (2) a correct assertion A
that identifies the incorrect output. So, both failure-inducing
input and assertion are correctly generated. An example
is a test case that executes program1(12,20) and asserts
its expected output to be 4. It correctly reveals a bug in
program1. A failing test triggered by an FT-IA is considered
a true failure.

• Coincidental failure-inducing test case (FT-Ia) An FT-Ia is
similar to an FT-IA except its assertion a incorrectly specifies
the expected output. A failure is coincidentally observed
because the incorrect output given by the PUT happens to
be different from the incorrectly specified expected output
in the assertion. In other words, the failure-inducing input is
correctly generated but the assertion is not. An example is a
test case that executes program1(12,20) but incorrectly
asserts its expected output to be a value (e.g., 2) other
than 4 (correct output) and 12 (incorrect output of PUT). A
failing test triggered by an FT-Ia is considered a coincidental
failure. An FT-Ia does not help fault diagnosis and program
repair. It rejects correct patches.

• False failure-inducing test case (FT-ia) An FT-ia reports
a false alarm. The test case consists of (1) a non-failure-
inducing test input i, and (2) an assertion a that incorrectly
asserts the expected output. So, both the failure-inducing in-
put and the assertion are incorrectly generated. An example
is a test case that executes program1(17,0) and incorrectly
asserts its expected output to be 18. A failing test triggered
by an FT-ia is considered a false failure.

• Passing test (PT). A PT results in a passing test.
• Illegal argument test case (IT). An IT consists of an illegal

test input violating the designated argument type.
Note that a test case with a correct assertion (A) and a non-

failure-inducing test input (i) cannot trigger a failure. Such a
test case is either PT or IT. Out of the five categories, an FT-IA
is considered a correct failure-inducing test case, while test
cases in the other categories are considered incorrect failure-
inducing test cases. The correctness criterion allows us to
design an evaluation metric (e.g., success rate) to compare
the effectiveness of Differential Prompting with the baselines
(see §IV-A1).

III. METHODOLOGY

Differential Prompting is designed to correctly find failure-
inducing test cases for a PUT. Figure 2 shows the workflow
of Differential Prompting: it accepts a PUT and outputs either
a failure-inducing test case or a message that it cannot find a
failure-inducing test case. Differential Prompting consists of
two main components: Program Generator (§III-A) and Test
Case Generator (§III-B).

A. Program Generator

Program Generator’s objective is to generate multiple “ref-
erence versions” of a PUT, each of which provides an alter-
native implementation of the PUT. However, our experiment
on QuixBugs programs finds that only 6.8% of the programs
generated by ChatGPT are correct when it is prompted to
generate bug-free versions of the QuixBugs programs (see
§IV-B2). Therefore, such a strawman approach to generate
reference versions does not work well. In the following, we
present a more effective mechanism for Program Generator.

1) Overview of Program Generator: As pointed out in §I,
ChatGPT can be insensitive to code nuances. It is a double-
edged sword. On the one hand, it hinders ChatGPT from
identifying bugs arising from these nuances. On the other
hand, it lets ChatGPT infer the intention of a PUT despite
the presence of these bugs. Leveraging this insight, Program
Generator divides the task of generating reference versions
into two steps. It first leverages ChatGPT to infer the intention
of a PUT. Then, it leverages ChatGPT to generate multiple
compilable reference versions of the PUT based on the inferred
intention. These reference versions will be used by Test
Case Generator for differential testing. By doing so, Program
Generator no longer relies on the generation of correct patched
programs from buggy code, and bypasses the weakness using
the strawman approach.

We consider a reference version generated by ChatGPT
from the inferred intention is good if the reference version
does not suffer from the same bug(s) as PUT. It is a necessary
condition for Differential Prompting to deduce the correct

01 def gcd (a, b) :
02 if b != 0 :
03 return gcd (b, a%b)
04 else :
05 return a

Compilable Reference Version 2

“What is the intention of this
program? ”

01 def gcd (a, b) :
02 if b == 0 :
03 return a
04 else :
05 return gcd (a, a%b)

Input

“The intention of this program is to
compute a greatest common divisor
for a and b.”

“Generate two programs
which achieve this intention.”

Prompt 1

01 def gcd (a, b) :
02 if b != 0 :
03 return gcd (b, a%b)
04 else :
05 return a

Compilable Reference Version 2

Component 1: Program Generator Component 2: Failure-inducing Test Case Generator

Output1 = 4

Output2 = 4

Response 1

Prompt 2

Response 2

01 def gcd (a, b) :
02 if b == 0 :
03 return a
04 else :
05 return gcd (b, a%b)

Compilable Reference Version 1

Generate a pool of
tests for the Program
Under Test

01 def gcd (a, b) :
02 if b == 0 :
03 return a
04 else :
05 return gcd (b, a%b)

Compilable Reference Version 1

Select a test from the
pool and run it on two
reference versions

a=12
b=20

Compare the outputs
of the two reference
versions

Are Output1
and Output2
consistent

Compare the output of
the PUT and that of the
reference versions

goto Step 2

No

a=12
b=20

Valid TestYes

No

Are OutputPUT
and OutputR
consistent

OutputPUT = 12

Yes

PUT Reference versions

OutputR = 4

1 2 3 4

goto Step 2

Output

a=12, b=20
a=37, b=60
a=11, b=0

...

Test Pool

“Generate diverse test inputs
for this program.”

Prompt 3

Response 3

Branch
coverage
saturated?

Failure-inducing
test case

assert gcd(a,b) == 4

a=12
b=20

Accumulate
branch coverage

Program
Under Test

(PUT)

No
failure-

inducing
test is
found

Fig. 2: Workflow of Differential Prompting

expected output of a failure-inducing test case using the
reference version. Our experiment results show that 74.6% of
the reference versions generated by Program Generator using
the inferred intention are good (see §IV-C). The relaxation of
the correctness requirement for generated reference versions
allows Differential Prompting to successfully find failure-
inducing test cases for most program subjects in QuixBugs [6],
significantly outperforming the baselines (see §IV-A).

2) Illustration of Program Generator’s workflow: Compo-
nent 1 in Figure 2 illustrates Program Generator’s workflow.
Suppose that the buggy gcd(a,b) function described in §II
is the PUT, Program Generator first requests ChatGPT to
infer the intention (as shown in Prompt 1). After ChatGPT
returns an inferred intention (Response 1), ProgramGenerator
requests ChatGPT to generate multiple compilable reference
versions based on the inferred intention (as shown in Prompt
2). ChatGPT then generates the reference versions (named
“Reference Version 1” and “Reference Version 2” in Response
2). Note that the number of reference versions to generate is a
parameter of Differential Prompting. Differential Prompting
by default generates two reference versions because two is
the minimal number of reference versions needed to validate
the correctness of an expected output (more discussion in
§III-B2). Our evaluation shows that Differential Prompting
can effectively find FT-IA using the default setting (§IV-A).

B. Test Case Generator

A Test Case Generator is designed to find a failure-inducing
test case for PUT by conducting differential testing between
PUT and the reference versions generated by Program Gen-
erator. Test Case Generator works in three steps: generating
test input for PUT (§III-B3), inferring expected output using
reference versions (§III-B2) and applying differential testing
(§III-B3).

1) Step 1: Generating test input: To perform differential
testing, the first step is to generate test inputs that can trigger
diverse behaviors (e.g., branches) of a PUT. Test Case Gen-
erator leverages ChatGPT to perform the generation because
recent studies [22], [23] reveal that LLMs have the potential
to generate more diverse and valid test inputs than conven-
tional approaches (e.g., PYNGUIN). Our experiment results
(Figure 3) also show that ChatGPT generates significantly
more failing tests than PYNGUIN, and notably fewer illegal test

inputs. Hence, Differential Prompting prompts ChatGPT to
generate diverse test inputs instead of relying on Pynguin. Note
that Differential Prompting prompts ChatGPT to “generate
diverse test input” instead of “generate test inputs that result
in different outputs between PUT and reference versions”,
because the later prompt requires ChatGPT to identify a
nuance between PUT and reference versions. As shown in our
illustrative example (§I) and our experimental result (§IV-C),
ChatGPT is not effective in telling the differences between
two similar pieces of code.

Step 1 works as follows. Given a PUT, Test Case Generator
requests ChatGPT to generate diverse tests for the PUT
(Prompt 3 of Figure 2). ChatGPT then returns a set of test
inputs (Response 3). Note that the number of test inputs
returned by ChatGPT may vary across conversations. In the
evaluation, we repeat the experiment ten times. Test Case
Generator then chooses the test inputs in turn and performs
Step 2 (§III-B2) until it finds a failure-inducing test case. It
discards a chosen test input if the input leads to an inconsistent
output across the reference versions or cannot trigger a failure
in PUT.

2) Step 2: Inferring an expected output: In this step, Test
Case Generator infers the expected output of a PUT with
respect to the test input chosen in Step 1. Since reference
versions generated by ChatGPT can have bugs, they can
induce incorrect failure-inducing tests. Differential Prompting
addresses this issue by using only those test inputs that lead to
the same output for all reference versions. Here, the strategy
assumes that the chances that all reference versions commonly
suffer from the same bug are low, i.e., the reference versions
are sufficiently diversified. The degree of diversity can be
increased by generating more reference versions or enlarging
the temperature setting of ChatGPT. Our evaluation (Figure 3
and Figure 4) by using two reference versions shows the
effectiveness of this strategy: Differential Prompting has a low
probability of returning FT-Ia or FT-ia. Essentially, Differential
Prompting returns these two types of test cases only when both
reference versions commonly have the same bug.

Therefore step 2 works as follows. Test Case Generator
first passes the test input in turn to all reference versions
generated by Program Generator. Test Case Generator then
inspects whether the output returned by each reference version
is the same. If so, Test Case Generator regards such an output

as the expected output. Test Case Generator makes at most
k attempts (the default value of k is 10). If Differential
Prompting cannot find a failure-inducing test case after k
attempts, it reports failure-inducing test cases not found.

3) Step 3: Differential testing: In this step, Test Case Gen-
erator inspects whether the output of PUT and the consistent
output of the reference versions are the same. If not, it
essentially reveals a potential failure of the PUT. Hence, when
Test Case Generator detects an output difference, Test Case
Generator constructs a failure-inducing test case with the test
input found in Step 1, and the expected output inferred in Step
2, and then reports this failure-inducing test case. Otherwise,
the test input is considered non-failure-inducing. So, Test Case
Generator rolls back to Step 1 and chooses another test input
(§III-B2). Before rolling back to Step 1, Test Case Generator
records the lines of code exercised by the current test input,
in order to compute the branch coverage accumulated by all
test inputs that have been exercised on a PUT. When the
branch coverage has reached 100% or saturated, Test Case
Generator considers a PUT has been adequately tested. Hence,
Test Case Generator stops finding a failure-inducing test case,
and reports failure-inducing test cases not found.

IV. EVALUATION

To evaluate Differential Prompting’s effectiveness and use-
fulness, we study four research questions. For the study of each
research question, we first introduce the experiment design
(e.g., subject selection, evaluation metrics, and baseline con-
struction), followed by experimental results and discussions.
• � RQ1 (Finding FT-IA for QuixBugs): Can correct failure-

inducing test cases for QuixBugs programs be effectively
found?

• � RQ2 (Inferring program intention): Can program
intention be effectively inferred?

• � RQ3 (Generating reference versions): Can reference
versions be effectively generated?

• � RQ4 (Finding FT-IA for Codeforces): Can correct
failure-inducing test cases for recent Codeforces programs
be effectively found?
All experiments were conducted on a Linux computer

running AMD Ryzen 7 5800 8-Core Processor 3.40 GHz and
16GB RAM. All interactions with ChatGPT, such as sending
requests to ChatGPT or receiving responses from ChatGPT,
are performed via ChatGPT’s API of version gpt-3.5-turbo-
0301. We conduct the experiment via ChatGPT’s API instead
of its web interface because ChatGPT’s API allows us to
explicitly specify the model version (e.g., gpt-3.5-turbo-0301),
which is useful for result reproduction.

A. RQ1: Finding FTs for QuixBugs

1) Experiment setup: We consider two baselines to com-
pare their effectiveness in finding failure-inducing test cases:
• BASECHATGPT: The first baseline is to prompt Chat-

GPT directly for failure-inducing test cases. This baseline
prompts ChatGPT in two steps: initially, it checks with Chat-
GPT if a PUT contains bugs. Upon an affirmative response,
it further requests ChatGPT to generate a failure-inducing
test case. We refer to this baseline as BASECHATGPT. Like

a recent related study [3], the two-step prompting convention
does not assume any knowledge if a given program is buggy,
emulating a common real-life situation.

• PYNGUIN: The second baseline is PYNGUIN [15], the state-
of-the-art unit test generation tool for Python.
Dataset. We evaluate Differential Prompting and the base-

lines on QuixBugs [6], which consists of 40 pairs of buggy and
patched Python programs; each implements a commonly used
algorithm, such as breath-first-search and mergesort.
Each buggy program contains one bug. The programs have
been adopted by recent works [3], [4] to study the use
of LLMs for software engineering tasks. We select all the
80 QuixBugs programs as evaluation subjects because they
implement algorithms that are common building blocks of
real-life software [4], [6].

Although QuixBugs also consists of Java programs, our
evaluation focuses on Python programs for two main rea-
sons. First, Python is one of the most popular programming
languages [24]. Second, recent studies [25], [4], [26] show
that ChatGPT has potential in performing various software
engineering tasks for Python programs. Some of these tasks
(e.g., program generation [26]) are closely related to Differen-
tial Prompting. Hence, the findings of these studies indicate
that Differential Prompting has potential in finding failure-
inducing test cases for Python programs. We leave Differential
Prompting’s evaluation on Java programs to future works.

Note that, we remove all the code comments or problem
descriptions for each program documented by QuixBugs, to
avoid their interference with Differential Prompting’s perfor-
mance of inferring program intentions. In fact, the code com-
ments or problem descriptions of each program are considered
the ground truth of the program’s intention in RQ2 (§IV-B).

Comparison. To mitigate experimentation randomness, we
repeat the experiment ten times for Differential Prompting and
BASECHATGPT, and record the number of failure-inducing
test cases in each category found. The number of test cases
found each time can be either 0 or 1. For the success rate
for buggy/correct programs, we compute the ratio of number
of correct failure-inducing test cases found by each technique
for the buggy/correct programs to the total number of times
that the technique has been executed (400 = 40 programs ×
10 runs).

Unlike Differential Prompting and BASECHATGPT which
return at most one test case each time, PYNGUIN returns multi-
ple test cases. It is because PYNGUIN is a coverage-guided test
generation technique designed to generate enough test cases
to achieve code coverage. The current version of PYNGUIN
that we can publicly access does not support parameters to
limit the number of generated test cases or specify stopping
conditions for test generation (e.g., coverage threshold or
time budget). Hence, for a fair comparison, we repeat the
experiment of applying PYNGUIN to each program ten times.
In each experiment, we repeatedly execute PYNGUIN until it
generates ten test cases. If PYNGUIN generates more than ten
test cases, we select the top ten test cases. The number of FT-IA
found by PYNGUIN for a program is calculated as the average
number of FT-IA found in the concerned ten experiments. We
further round off all the average numbers into integers so

0

1

2

3

4

5

6

7

8

9

10

#
Te
st
C
as
es
Fo
un
d
Pe
r
Su
bj
ec
t

Failure-inducing test
case that reports a

true failure

Failure-inducing test
case that reports a
coincidental failure

Failure-inducing test
case that reports a

false failure

Passing test Test with Illegal
Arguments

No test found

Differential
Prompting

BaseChatGPT

Pynguin

FT-IA FT-Ia FT-ia PT IT NT

×

×

×

Fig. 3: Effectiveness of Differential Prompting and the baselines in finding failure-inducing test cases for buggy programs of QuixBugs.
The vertical axis represents the number of test cases found by Differential Prompting or a baseline for a program subject in ten executions.
The cross marks in the FT-IA column indicate the average number of FT-IA found by the three techniques.

that the presentation of PYNGUIN’s performance is consistent
with that of Differential Prompting or BASECHATGPT. We
calculate the number of other failure-inducing test cases (e.g.,
FT-Ia) found by PYNGUIN similarly. The success rate of
PYNGUIN is computed in the same way as that of Differential
Prompting and BASECHATGPT.

Apart from success rate, we propose another evaluation
metric called accuracy to assess the three techniques’ effec-
tiveness in finding FT-IA. Specifically, accuracy is calculated
as the total number of FT-IA found by a technique for all
targeted subjects (e.g., all buggy programs) divided by the
total number of all test cases found by the technique for
these subjects. Essentially, accuracy is adapted from a popular
evaluation metric called Precision (i.e., a ratio calculated by
diving the number of true positives with the total number of
true positives and false positives). However, since PYNGUIN’s
main objective is to generate test cases that achieve high code
coverage instead of finding failure-inducing test cases, directly
using Precision as an evaluation metric for PYNGUIN may
lead to confusion. Hence, accuracy is proposed to avoid such
confusion, while sharing a similar implication with Precision.

2) Results and findings: Figure 3 compares the effective-
ness of the three techniques in finding failure-inducing test
cases for buggy programs. The cross marks in the FT-IA
column indicate the average number of FT-IA found by the
three techniques for all the forty program subjects. Particularly,
the average number is calculated as the total number of FT-IA
found for the forty subjects divided by forty. Hence, success
rate can be calculated by dividing the average number of FT-
IA by ten (i.e., dividing the total number of FT-IA by four
hundred).

Overall, Differential Prompting’s success rate is 75.0%,
2.6X as BASECHATGPT (28.8%) and 10.0X as PYNGUIN
(7.5%). In terms of accuracy, Table II shows that Differential
Prompting’s accuracy for buggy code is 98.0%, outperforms
the best baseline (28.8%) by 3.4X. This result indicates
test cases returned by Differential Prompting have a high
probability to be correct failure-inducing test cases (i.e., FT-
IA).
Differential Prompting can achieve a significantly higher

success rate and accuracy because Differential Prompting’s

TABLE I: Effectiveness of the three techniques in finding correct
failure-inducing test cases (i.e., FT-IA) for programs of QuixBugs.
Note that test cases other than FT-IA are considered incorrect failure-
inducing test cases.

Buggy programs
#programs that a technique
finds ten FT-IA

#programs that a technique
finds at least one FT-IA

Differential
Prompting 22 37

Base-
ChatGPT 2 32

Pynguin 0 8
#programs that a technique
finds ten incorrect failure-
inducing test cases

#programs that a technique
finds at least one incorrect
failure-inducing test cases

Differential
Prompting 0 2

Base-
ChatGPT 8 38

Pynguin 32 40
Correct programs

#programs that a technique
finds ten incorrect failure-
inducing test cases

#programs that a technique
finds at least one incorrect
failure-inducing test cases

Differential
Prompting 0 2

Base-
ChatGPT 36 40

Pynguin 40 40

workflow makes use of ChatGPT’s strength and bypasses its
weakness. Specifically, §IV-B shows that Differential Prompt-
ing correctly infers an intention for 91.0% buggy programs
of QuixBugs, and has a success rate of 74.6% in generating
reference versions that can reveal the buggy programs’ failures
§IV-C.

Table I further delves into the three techniques’ effectiveness
in finding FT-IA. Essentially, Differential Prompting finds at
least one FT-IA in ten executions for 37 out of 40 buggy
programs, and finds ten FT-IA for 22 out of 40 buggy programs.
In contrast, BASECHATGPT (the best baseline) is restricted by
ChatGPT’s weakness in identifying nuance, so it finds ten FT-
IA only for 2 out of 40 buggy programs. For PYNGUIN, it
finds only few FT-IA. Indeed, most test cases it finds are PT
and IT, and none of the PT consists of failure-inducing test
inputs.

TABLE II: Accuracy of the three techniques on QuixBugs programs
and Codeforces programs. Accuracy is calculated as the number of
FT-IA divided by the number of all test cases (§IV-A1). It has a
similar implication as Precision.

Accuracy (buggy
programs only)

Accuracy (buggy and
correct programs)

QuixBugs programs
Differential
Prompting 98.0% 94.6%

BaseChatGPT 28.8% 14.3%
Pynguin 7.5% 3.8%

Codeforces programs
Differential
Prompting 87.9% 80.1%

BaseChatGPT 7.1% 3.6%
Pynguin 0.0% 0.0%

We analyze the few cases where Differential Prompting fails
to find failure-inducing test cases successfully and observe
two situations. The first situation occurs when Differential
Prompting cannot find a failure-inducing test input. For
instance, Differential Prompting finds FT-IA in only three
executions for depth-first-search. In the remaining seven
executions, Differential Prompting cannot generate a test input
that reaches the buggy branch using ChatGPT. Specifically,
to reach the buggy branch, a test input needs to contain
a graph of at least one cycle. Without guidance, Differen-
tial Prompting (and also BASECHATGPT) does not always
generate such a test input. This situation also occurs in the
other three buggy programs detect-cycle, quick-sort,
and topological-ordering, where Differential Prompting
accomplishes a relatively low success rate.

The second situation occurs when the two reference versions
generated by ChatGPT suffer from the same bug. As a result,
Differential Prompting can return incorrect failure-inducing
test cases (e.g., lcs-length and wrap return two and one
FT-Ia respectively). §IV-C further delves into this reason and
methods for mitigation.

ø Finding 1: For buggy programs of QuixBugs, Differential
Prompting’s success rate is 75.0%, 2.6X as BASECHATGPT
(28.8%) and 10.0X as Pynguins (7.5%).
¨ Implication: Differential Prompting is effective in finding
failure-inducing test cases for buggy programs.

Figure 4 compares the effectiveness of Differential Prompt-
ing and the baselines on correct programs of QuixBugs.
The figure shows that Differential Prompting has notably
lower frequencies in finding incorrect failure-inducing test
cases (i.e., FT-ia, PT, and IT). Table I further looks into the
three techniques’ performance in avoiding incorrect failure-
inducing test cases for correct programs. Essentially, Differ-
ential Prompting returns incorrect failure-inducing test cases
for only two programs. These two programs are lcs-length
and wrap, which Differential Prompting also returns incorrect
failure-inducing test cases for their buggy version (§IV-B2
discusses these two cases). Meanwhile, the baselines return
incorrect failure-inducing test cases for all the forty programs.

Overall, Table II shows that Differential Prompting’s accu-
racy on both buggy and correct programs (94.6%) is compa-
rable with that on buggy programs only (98.0%). Moreover,
Differential Prompting’s accuracy on buggy and correct pro-
grams outperforms the best baseline (14.3%) by 6.6X.

0

1

2

3

4

5

6

7

8

9

10
Differential Prompting BaseChatGPT Pynguin

#
Te
st
C
as
es
Fo
un
d
Pe
r
Su
bj
ec
t

Failure-inducing test
case that reports a

false failure

Passing test Test with Illegal
Arguments

No test found
FT-ia PT IT NT

Fig. 4: Effectiveness of Differential Prompting and the baselines in
finding failure-inducing test cases for correct programs of QuixBugs.
The vertical axis represents the number of test cases found by
Differential Prompting or a baseline for a program subject in ten
executions.

0
3

0

7

30

0

5

10

15

20

25

30

35

0 1-3 4-6 7-9 10

Su

bj
ec

ts
Correct Intention Inferred by

ChatGPT in 10 Runs

Fig. 5: ChatGPT’s effectiveness in inferring program intention.

ø Finding 2: Differential Prompting’s accuracy on buggy
and correct programs (94.6%) outperforms the best baseline
(14.3%) by 6.6X.
¨ Implication: Differential Prompting has a high probabil-
ity of returning correct failure-inducing test cases (i.e., re-
turning FT-IA for buggy programs, and returning no failure-
inducing test case for correct programs).

B. RQ2: Inferring Program Intention

1) Experiment setup: To evaluate the likelihood that Chat-
GPT is able to infer a program’s intention correctly even if
the program is buggy, we conduct a manual analysis. We
treat the problem description documented in the comments of
each program in QuixBugs as the ground truth to assess the
correctness of the 400 intentions inferred by ChatGPT in RQ1.
Following an open coding procedure [27], two authors who
have substantial software development experience separately
examine whether each inferred intention is consistent with the
documented problem description. Discrepancies between the
two authors are discussed until a consensus is reached. Upon
completion of the manual inspection, we observed Cohen’s
Kappa to be 82.3%, which is considered an “almost perfect
agreement” by Landis et al. [28]. We then calculate ChatGPT’s
success rate in inferring intentions as the number of correct
intentions divided by 400 (i.e., total number of intention
returned by ChatGPT in RQ1).

2) Results and findings: Figure 5 shows that ChatGPT
infers a correct intention for a majority of buggy programs.

Specifically, Differential Prompting correctly infers ten inten-
tions for 30 out of 40 subjects. Overall, Differential Prompt-
ing’s success rate in inferring intention is 91.0% (364 out of
400). This result justifies our insight that ChatGPT is good at
inferring program intention despite the presence of program
bugs.

We further look into the three subjects (lcs-length, wrap
and next_palindrome) where Differential Prompting infers
only few (1-3) correct intentions. Specifically, the intentions
inferred by Differential Prompting for these subjects often
describe the actual program semantics of the incorrect im-
plementation. However, these intentions are incorrect, missing
important details about the program’s intended functionality.

For instance, lcs-length aims to solve the problem
of finding the longest common substring of two input
strings (“common substrings” are defined as consecutive
characters that exist in both input strings). The buggy
PUT intends to address this problem using dynamic pro-
gramming. However, the PUT implements an incorrect dy-
namic programming algorithm: the implemented statement
is dp[i,j]=dp[i-1,j]+1, while the correct statement
should be dp[i,j]=dp[i-1,j-1]+1. Hence, the PUT
often finds common characters that are not the longest, if not
the shortest.

The intention inferred by ChatGPT correctly points out that
the PUT implements a dynamic programming algorithm for
finding the longest common characters. However, the intention
does not mention whether the characters should be consecutive
or not. Hence, the reference versions generated based on this
intention often output the longest common characters that are
not consecutive (i.e., these reference versions are bad). A sim-
ilar situation occurs for wrap and next_palindrome. §IV-C
provides further discussion about this case and a possible
mitigation strategy.

ø Finding 3: Differential Prompting’s success rate in infer-
ring intention is 91.0% (364 out of 400).
¨ Implication: ChatGPT can often infer the intention of a
program despite the presence of bugs.

C. RQ3: Generating Reference Versions
1) Experiment setup: To evaluate Differential Prompting’s

effectiveness in generating good reference versions, we study
the number of good reference versions generated by Differen-
tial Prompting: a reference version is considered good if the
reference version does not suffer from the same bug(s) as the
PUT (discussed in §III-A1).

Specifically, recalled that in RQ1, Differential Prompting
has been applied to each buggy program 10 times. Each
time, Differential Prompting generates two reference ver-
sions (§III-A2). Hence, for each buggy program, Differential
Prompting has generated 20 reference versions in total. We
consider a reference version of a buggy program to be good if
it passes the failure-inducing test cases provided by QuixBugs
for the program.

In this RQ, Differential Prompting’s baseline is a strawman
approach that directly prompts ChatGPT to generate reference
versions. The strawman approach prompts ChatGPT in two
steps. First, it asks ChatGPT whether a PUT has bugs. Upon

0
2
4
6
8
10
12
14
16
18
20

Differential
Prompting

Strawman
Approach

G

oo
d

R
ef

er
en

ce
 V

er
si

on
s

G
en

er
at

ed
 P

er
 S

ub
je

ct

Fig. 6: Effectiveness of Differential Prompting and the baseline
in generating good reference versions. The vertical axis represents
the number of good reference versions generated by Differential
Prompting or the baseline for a subject in ten executions. Note
that Differential Prompting or the baseline generates two reference
versions in each execution. The cross marks in the figure indicate
the average number of good reference versions generated by the two
techniques.

affirmative response, it further asks ChatGPT to generate two
bug-fixed implementations of the PUT (same as Differential
Prompting that in each execution, Differential Prompting also
generates two reference versions). This two-step prompting
convention emulates a common real-life scenario (similar to
BASECHATGPT introduced in RQ1). Following our exper-
iment setup in RQ1, we apply the strawman approach to
each program 10 times. Our evaluation metric for this RQ
is success rate in generating good reference versions: the
success rate is calculated as the number of good reference
versions generated by a technique for the forty buggy programs
divided by eight hundred (which is the total number of
reference versions generated by the technique for the forty
buggy programs).

2) Results and findings: Figure 6 compares the effective-
ness of Differential Prompting and the baseline in generating
reference versions. The cross marks in the figure indicate the
average number of good reference versions generated by the
two techniques for all the forty program subjects. Specifically,
the average number is calculated by dividing the total number
of good reference versions by forty. Hence, the success rate
can be calculated by dividing the average number by twenty
(i.e., dividing the total number of good reference versions by
eight hundred).

Overall, Differential Prompting’s success rate is 74.6%,
outperforms the baseline (6.8%) by 11.0X. Besides, Differ-
ential Prompting generates 20 good reference versions for
20 subjects, while the baseline generates 20 good reference
versions for only two subjects. It is because Differential
Prompting generates reference versions through a PUT’s in-
tention (instead of its implementation), and hence bypasses
ChatGPT’s weakness in identifying nuances(§IV-B2). In con-
trast, the strawman approach generates reference versions from
a PUT’s implementation, hence it confronts ChatGPT’s limita-
tion in identifying nuances. Figure 6 shows that the strawman
approach cannot generate any good reference version for a
majority of (34 out of 40) subjects. Specifically, in 89.2%
of the executions using the strawman approach, ChatGPT
responds with “no bug is found”. In 6.8% of the executions,
ChatGPT cannot confirm whether a bug exists in a PUT and

responds with “More information is required”. The result is in
line with our conjecture that ChatGPT is insensitive to nuances
(e.g., bugs) in input tokens (§I).

For the subjects that Differential Prompting only generates a
low number (e.g., nearly zero) of good reference versions (e.g.,
lcs_length, next_palindrome, wrap), we found the main
reason is that Differential Prompting has inferred an incorrect
intention (§IV-B). For instance, the intention inferred by Dif-
ferential Prompting for lcs_length often misses important
details, causing Differential Prompting to generate reference
versions that always output an incorrect value. Hence, for
lcs_length, Differential Prompting generates many (18 out
of 20) bad reference versions.

However, we found that by providing Differential Prompt-
ing with the correct intention (i.e., the documented descrip-
tion). Differential Prompting has a much higher probability
of generating a good reference version. For instance, with a
correct intention, the number of good reference versions for
lcs_length generated by Differential Prompting increases
from 2 to 20 out of 20. We also observed a similar increase for
next_palindrome and wrap. This result essentially implies
inferring a correct intention is crucial. One possible solution is
adopting in-context learning (e.g., few-shot prompting), which
has shown great potential in improving ChatGPT’s reasoning
capability. [29]

ø Finding 4: Differential Prompting’s success rate in
generating good reference versions is 74.6%, outperforms
the baseline (6.8%) by 11.0X.
¨ Implication: Differential Prompting is effective in gener-
ating good reference versions.

D. RQ4: Finding FT-IA for Codeforces

1) Experiment setup: To address the validity threat due to
data leakage discussed in § IV-E1, we conduct an evaluation
on Codeforces programs released after the cutoff date of
ChatGPT’s training dataset.

Specifically, we selected programs from a contest for pro-
gramming beginners (named Codeforces Round 835, held on
21, November 2022). Codeforces Round 835 is the educational
contest most recent to the date that ChatGPT was launched
(i.e., 30, November 2022). The contest contains seven pro-
gramming problems of different difficulties. For each pro-
gramming problem, we choose a buggy version and a correct
version based on two criteria. First, the correct program has
to be the bug-fixed version of the buggy program, so that we
can compare Differential Prompting’s success rate and false
positive rate fairly. Second, both programs are implemented
in Python. If there is more than one candidate satisfying both
criteria, we randomly choose one.

We use the two baselines as adopted for RQ1 (§IV-A):
BASECHATGPT and PYNGUIN. We apply Differential
Prompting and the baselines to each program 10 times and
record the number of failure-inducing test cases found in each
category, following the experiment setup in RQ1. We adopt the
success rate and accuracy defined in RQ1 as the evaluation
metric of this RQ.

10

6

10

2

7

5

0
0

2

4

6

8

10

12

#
 C

o
rr

e
ct

 I
n
fe

rr
e
d
 I
n
te

n
ti
o
n
s

Subjects of Codeforces
A B C D E F G

Fig. 7: ChatGPT’s effectiveness in inferring intentions for buggy
programs of Codeforces.

2) Results and findings: Table III shows that for buggy
programs of Codeforces, Differential Prompting’s success
rate (41.0%) outperforms the best baseline (7.0%) by 5.9X.
In addition, for both buggy and correct programs, Differential
Prompting returns incorrect failure-inducing test cases for only
one subject (Challenging Valleys), while BASECHATGPT
returns incorrect failure-inducing test cases for all seven sub-
jects. Besides, PYNGUIN finds no correct failure-inducing test
cases in any executions.

Note that Differential Prompting’s success rate on
Codeforces is lower than that on QuixBugs. Table II also
shows that Differential Prompting’s accuracy is notably lower
on Codeforces than that on QuixBugs. We observe that such
discrepancies can be caused by differences in complexities/d-
ifficulties between programs of Codeforces and QuixBugs.

Specifically, Table III shows the seven selected Codeforces
programs. In fact, Codeforces has assigned a label (a letter
from A to G) to each program: the label represents the
complexity level of a program. We also present these labels
in Table III. Particularly, the program labeled with A is the
simplest and the program labeled with G is the most difficult.
Essentially, Differential Prompting performs the best (i.e.,
finds ten FT-IA) for A, and its performance gradually decreases
for programs with increasing difficulties. We also find that
Differential Prompting’s performance in inferring intentions
decreases for programs with increasing difficulties (Figure 7).

We further analyze Codeforces’ programs to understand
how program complexity may affect Differential Prompting’s
performance. Programs with label D to G are rated with a
difficulty level of at least 1000 in Codeforces. According to
studies [30], [31] of Codeforces’ rating scheme, programs
that are rated 1000 or above focus on applying advanced data
structures or algorithmic techniques (e.g., divide-and-conquer,
dynamic programming) for solving complex problems.

In comparison, programs with label A to C are rated with
a difficulty level of 800, according to the studies [30], [31],
they focus on implementing common algorithms (e.g., A im-
plements the computation of medium number). Hence, A to C
have similar complexities with QuixBugs’ programs, because
QuixBugs also focuses on implementing common algorithms
adopted by real-world programs [6], such as quicksort,
detect-cycle, reverse-linked-list.

We find that Differential Prompting’s success rate over A
to C (66.7%) is not significantly less than its success rate
over the QuixBugs programs (75.0%). The results suggest
that Differential Prompting is able to find failure-inducing

TABLE III: The effectiveness of Differential Prompting and the baselines in finding failure-inducing test cases for Codeforces.
Failing test which

triggers a true failure (FT-IA)
Failing test which triggers

a coincidental failure (FT-Ia)
Failing test which triggers

a false failure (FT-ia) Passing test (PT) Illegal test input (IT)

Buggy programs Differential
Prompting

Base-
ChatGPT PYNGUIN

Differential
Prompting

Base-
ChatGPT PYNGUIN

Differential
Prompting

Base-
ChatGPT PYNGUIN

Differential
Prompting

Base-
ChatGPT PYNGUIN

Differential
Prompting

Base-
ChatGPT PYNGUIN

Buggy program
A: Medium Number 10 4 0 0 2 0 0 1 0 0 2 2 0 1 8
B: Atilla’s Favorite 6 1 0 0 5 0 0 3 0 0 0 2 0 1 8
C: Advantage 4 0 0 0 5 0 0 4 0 0 1 4 0 0 6
D: Challenging Valleys 3 0 0 0 6 0 4 2 0 0 0 0 0 2 10
E: Binary Inversions 0 0 0 0 0 0 0 5 0 0 0 6 0 4 4
F: Quests 6 0 0 0 2 0 0 8 0 0 0 2 0 0 8
G: SlavicG’s Favorite 0 0 0 0 0 0 0 8 0 0 2 5 0 0 5

Average 4.1 0.7 0.0 0.0 2.9 0.0 0.6 4.4 0.0 0.0 0.7 3.0 0.0 1.1 7.0
Correct Program

A: Medium Number 0 0 0 0 0 0 0 2 0 0 3 2 0 5 8
B: Atilla’s Favorite 0 0 0 0 0 0 0 5 0 0 5 3 0 0 7
C: Advantage 0 0 0 0 0 0 0 7 0 0 3 4 0 0 6
D: Challenging Valleys 0 0 0 0 0 0 3 0 0 0 1 0 0 8 10
E: Binary Inversions 0 0 0 0 0 0 0 6 0 0 0 2 0 4 8
F: Quests 0 0 0 0 0 0 0 7 0 0 1 1 0 2 9
G: SlavicG’s Favorite 0 0 0 0 0 0 0 3 0 0 1 4 0 5 6

Average 0.0 0.0 0.0 0.0 0.0 0.0 0.4 4.3 0.0 0.0 2.0 2.3 0.0 3.4 7.7
†Each cell of the table shows the number of FT-IA, FT-Ia, FT-ia, FT-IA and IT found by Differential Prompting or the baselines for each subject of Codeforces.
†For each subject, Differential Prompting and the baselines are run ten times.
†The total number of test cases found by Differential Prompting for a subject can be less than ten, because Differential Prompting may not return any test case in an execution.

test cases for Codeforces programs with similar complexity
as QuixBugs programs. Similarly, Differential Prompting’s
accuracy over A to C is 100% because no incorrect failure-
inducing test case has been found. It is comparable with that
on QuixBugs programs (over 94.6%, see Table I).

However, Differential Prompting may not work well on
complex programs. An interesting future research direction
is to explore a reduction methodology, allowing the use of
Differential Prompting on the simpler code snippets reduced
from a complex program. Experimental results suggest that
Differential Prompting is effective to find for those programs
the failure-inducing test cases, that the state-of-the-art test gen-
eration technique and a strawman approach of using ChatGPT
are unlikely able to find.

ø Finding 5: For selected Codeforces programs that have
similar complexity with QuixBugs programs, Differential
Prompting’s success rate on these Codeforces programs
(66.7%) is comparable to its success rate on QuixBugs
programs (75.0%).
¨ Implication: Differential Prompting performs compara-
bly on QuixBugs and Codeforces programs with similar
complexity.

E. Threat to Validity
Our evaluation can be subject to several validity threats.
1) Data leakage: “Data leakage” refers to the problem

that an evaluation is conducted on a dataset that has been
included in ChatGPT’s training dataset. In this case, overfitting
may occur and cause evaluation results to be biased. For
instance, Differential Prompting’s evaluation is conducted on
QuixBugs, a public benchmark released in 2017 [6]. It is
possible that the benchmark has been used to train ChatGPT
whose training cutoff date is September 2021. If so, the per-
formance of both BASECHATGPT and Differential Prompting
may be overestimated.

Given the low success rate (28.8%) of BASECHATGPT in
finding failure-inducing test cases, the data leakage threat with
ChatGPT is likely to be insignificant. In addition, we miti-
gated the threat with additional experiments on Codeforces

programs, which were created after the training cut-off date
of ChatGPT. The performance of Differential Prompting on
the Codeforces programs is comparable with that on the
QuixBugs programs.

2) Generalizability: Evaluation is made only on QuixBugs
and Codeforces programs. These programs are simple pro-
grams that have less than one hundred lines of code. Hence,
there would be a concern that our evaluation result on Differ-
ential Prompting may not be generalized to large real-world
software. Nonetheless, as pointed out by Weimer et al. [32],
large real-world software is often made up of small programs.
Hence, our evaluation result reveals Differential Prompting’s
potential of being applied to large real-world software. In
addition, Differential Prompting’s enhancement over baselines
is a crucial step towards finding failure-inducing test cases for
large real-world software.

Another possible validity threat is that our evaluation result
based on gpt-3.5-turbo-0301 may not be generalized to other
LLMs such as GPT-4. Nevertheless, we choose gpt-3.5-turbo-
0301 because it is the only LLM providing an API interface
that is not subject to limited access. Besides, the technical
report [33] released by OpenAI shows that GPT-4, the state-
of-the-art LLM, does not outperform ChatGPT (the backbone
model of gpt-3.5-turbo-0301) for code-related tasks. Hence,
our results can provide a useful reference for future related
studies.

3) Reproducibility: Our evaluation is conducted using gpt-
3.5-turbo-0301. One possible threat is that the evaluation
results presented may not be reproducible after the model has
been deprecated in the future. Nevertheless, since Differential
Prompting targets at addressing the fundamental limitations
of LLMs and conventional approaches (e.g., Pynguin) in
finding failure-inducing test cases (§III), Differential Prompt-
ing’s enhancement over existing approaches is unlikely subject
to specific LLMs. Besides, as discussed in §IV-E2, more
advanced LLMs (e.g., GPT-4) do not necessarily outperform
gpt-3.5-turbo-0301. Hence, the results and findings in our
paper can still provide useful references even gpt-3.5-turbo-
0301 is deprecated.

V. DISCUSSION AND FUTURE WORK

Compared to baselines, Differential Prompting has a no-
tably higher success rate in finding failure-inducing test cases
(§IV-A). We analyze the few cases where Differential Prompt-
ing cannot find failure-inducing test cases and find that the
bugs are often located at a buggy branch which can be reached
only by specific test input values (see §IV-A).

A possible enhancement is to augment the prompting with
test coverage guidance. For instance, Differential Prompting
can conversationally inform ChatGPT about uncovered state-
ments, and request ChatGPT to generate test inputs to cover
those statements. In doing so, ChatGPT can have a higher
probability of suggesting failure-inducing test inputs.

Besides augmenting the prompting, Differential Prompting
can be readily adapted to Coverage-based Test Generation by
1) leveraging state-of-the-art coverage-based test generation
techniques, which generate a set of diverse test cases, and 2)
constructing the corresponding test oracles for these test cases
using the reference versions.

Apart from test input generation, in this paper, Differential
Prompting focuses on finding failure-inducing test cases for
relatively simple programs. A future study is to decompose a
large program into small programs, and then deduce failure-
inducing test cases from the failure-inducing test cases found
for these small programs.

VI. RELATED WORK

Related works mainly fall into the three categories below.
A. Finding failure-inducing test inputs

There are many pieces of works that study the problem
of test input generation (e.g., coverage-guided test input gen-
eration [15], [34], symbolic execution [35] etc). However,
not all of them focus on finding failure-inducing test inputs
(e.g., Pynguin [15] focuses on generating test inputs that
achieve high code coverage). To the best of our knowledge,
the most closely-related works would be those target the
problem of failing test reproduction [36], [37], [38], failing test
augmentation [39], [40], or fuzzing [41], [42], [43]. Failing
test reproduction studies the problem of generating failure-
inducing test inputs from bug reports. Failing test augmen-
tation studies the problem of generating failure-inducing test
inputs based on existing failure-inducing test cases. Failing
test augmentation is useful for fault localization. Essentially
these works are orthogonal to Differential Prompting, because
these works assume a PUT is buggy and additional information
(e.g., bug reports or failing tests) is available. In contrast,
Differential Prompting is provided with a PUT only (without
having knowledge of whether the PUT is buggy or not).

Regarding fuzzing, fuzzing techniques focus on inducing
specific types of failures (e.g., crash, security vulnerabilities)
that the corresponding test oracles have been pre-defined [41].
In comparison, Differential Prompting is not restricted to the
detection of specific failure types. Furthermore, it does not
require test oracles to be pre-defined.
B. Addressing Test Oracle problem

Automated test oracle construction is a longstanding chal-
lenge. Several paradigms have been proposed to address
this challenge, such as metamorphic testing [44], [45], [46],

[47] and differential testing [48], [49], [50]. However, these
paradigms often have limited application scenarios [2]. A
recent technique SEER [2] aims to address this limitation by
proposing a framework to train Deep Learning models for
inferring a PUT’s behaviors. SEER and Differential Prompting
are orthogonal because Differential Prompting focuses on
leveraging existing commercial LLMs (e.g., ChatGPT) to
address the test oracle problem, instead of training new models
(which could be cost-prohibitive for LLMs).

C. Studies of ChatGPT and other LLMs

After ChatGPT has been released, several studies are pro-
posed to study its effectiveness in tackling diverse software
engineering problems. Dominik, et al. [3] studies ChatGPT’s
effectiveness in generating patches. We adopt the prompting
convention proposed by this work as the baseline of Differen-
tial Prompting in our evaluation (§IV-C2). There are also other
works studying ChatGPT’s (or other LLMs’) capabilities for
various software engineering tasks, including bug repair [25],
[3], fuzzing [22], code generation [51], [52], code summariza-
tion [53], software testing education [54], and vulnerability
detection [55], [56]. To the best of our knowledge, no existing
works study ChatGPT’s (or other LLMs’) capability in finding
failure-inducing test cases. This paper fills the research gap.

VII. CONCLUSION

In this paper, we propose Differential Prompting, the first
paradigm for finding failure-inducing test cases using Chat-
GPT. The insight is that the program intention inferred by
ChatGPT is insensitive to nuances in code. It allows ChatGPT
to infer correct intention from a buggy program. With this in-
sight, Differential Prompting finds failure-inducing test cases
into three steps: program intention inference, program genera-
tion, and differential testing. Our evaluation result shows that
Differential Prompting significantly outperforms state-of-the-
art baselines in finding failure-inducing test cases.

VIII. DATA AVAILABILITY

We provide a reproduction package at https://differential-
prompting.github.io/ to facilitate future research. The pack-
age includes (1) a dataset containing 470 intentions inferred by
Differential Prompting, 940 reference versions, and all failure-
inducing test cases found by Differential Prompting and the
baselines (2) an available tool Differential Prompting, and (3)
seven Codeforces programs.

ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers for their
comments and suggestions. We would also like to thank DL
library developers for analyzing our reported issues. This work
is supported by the National Science Foundation of China
(Grant No. 61932021, 62141210), the Hong Kong Research
Grant Council/General Research Fund (Grant No. 16205722),
the Hong Kong Research Grant Council/Research Impact Fund
(Grant No. R5034-18), the Fundamental Research Funds for
the Central Universities (Grant No. N2217005), and Open
Fund of State Key Lab. for Novel Software Technology,
Nanjing University (KFKT2021B01).

https://differential-prompting.github.io/
https://differential-prompting.github.io/

REFERENCES

[1] G. Fraser, M. Staats, P. McMinn, A. Arcuri, and F. Padberg, “Does
automated unit test generation really help software testers? a controlled
empirical study,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 24, no. 4, pp. 1–49, 2015.

[2] A. R. Ibrahimzada, Y. Varli, D. Tekinoglu, and R. Jabbarvand, “Perfect
is the enemy of test oracle,” in Proceedings of the 30th ACM Joint
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2022, pp. 70–81.

[3] D. Sobania, M. Briesch, C. Hanna, and J. Petke, “An analysis of
the automatic bug fixing performance of chatgpt,” arXiv preprint
arXiv:2301.08653, 2023.

[4] C. S. Xia and L. Zhang, “Conversational automated program repair,”
arXiv preprint arXiv:2301.13246, 2023.

[5] “Chatgpt: Optimizing language models for dialogue,”
https://openai.com/blog/chatgpt/, 2023, accessed: 2023-04-01.

[6] D. Lin, J. Koppel, A. Chen, and A. Solar-Lezama, “QuixBugs: A multi-
lingual program repair benchmark set based on the quixey challenge,”
in Proceedings Companion of the 2017 ACM SIGPLAN international
conference on systems, programming, languages, and applications:
software for humanity, 2017, pp. 55–56.

[7] Z. Zhang, Y. Wu, H. Zhao, Z. Li, S. Zhang, X. Zhou, and X. Zhou,
“Semantics-aware bert for language understanding,” in Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 34, no. 05, 2020,
pp. 9628–9635.

[8] J. Zhang, W.-C. Chang, H.-F. Yu, and I. Dhillon, “Fast multi-resolution
transformer fine-tuning for extreme multi-label text classification,” Ad-
vances in Neural Information Processing Systems, vol. 34, pp. 7267–
7280, 2021.

[9] T. Jiang, D. Wang, L. Sun, H. Yang, Z. Zhao, and F. Zhuang, “Lightxml:
Transformer with dynamic negative sampling for high-performance
extreme multi-label text classification,” in Proceedings of the AAAI
Conference on Artificial Intelligence, vol. 35, no. 9, 2021, pp. 7987–
7994.

[10] W.-C. Chang, H.-F. Yu, K. Zhong, Y. Yang, and I. S. Dhillon, “Taming
pretrained transformers for extreme multi-label text classification,” in
Proceedings of the 26th ACM SIGKDD international conference on
knowledge discovery & data mining, 2020, pp. 3163–3171.

[11] J. Patra and M. Pradel, “Semantic bug seeding: a learning-based ap-
proach for creating realistic bugs,” in Proceedings of the 29th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, 2021, pp. 906–918.

[12] L. Tan, C. Liu, Z. Li, X. Wang, Y. Zhou, and C. Zhai, “Bug characteris-
tics in open source software,” Empirical software engineering, vol. 19,
pp. 1665–1705, 2014.

[13] K. Liu, A. Koyuncu, D. Kim, and T. F. Bissyandé, “Avatar: Fixing
semantic bugs with fix patterns of static analysis violations,” in 2019
IEEE 26th International Conference on Software Analysis, Evolution
and Reengineering (SANER). IEEE, 2019, pp. 1–12.

[14] “Codeforces,” https://codeforces.com/, 2023, accessed: 2023-04-01.
[15] S. Lukasczyk and G. Fraser, “Pynguin: Automated unit test generation

for python,” in Proceedings of the ACM/IEEE 44th International Con-
ference on Software Engineering: Companion Proceedings, 2022, pp.
168–172.

[16] E. Lahtinen, K. Ala-Mutka, and H.-M. Järvinen, “A study of the
difficulties of novice programmers,” Acm sigcse bulletin, vol. 37, no. 3,
pp. 14–18, 2005.

[17] C. Kelleher and R. Pausch, “Lowering the barriers to programming:
A taxonomy of programming environments and languages for novice
programmers,” ACM Computing Surveys (CSUR), vol. 37, no. 2, pp.
83–137, 2005.

[18] J. Perretta, A. DeOrio, A. Guha, and J. Bell, “On the use of mutation
analysis for evaluating student test suite quality,” in Proceedings of the
31st ACM SIGSOFT International Symposium on Software Testing and
Analysis, 2022, pp. 263–275.

[19] J. Yi, U. Z. Ahmed, A. Karkare, S. H. Tan, and A. Roychoudhury,
“A feasibility study of using automated program repair for introductory
programming assignments,” in Proceedings of the 2017 11th Joint
Meeting on Foundations of Software Engineering, 2017, pp. 740–751.

[20] S. Bhatia, P. Kohli, and R. Singh, “Neuro-symbolic program corrector
for introductory programming assignments,” in Proceedings of the 40th
International Conference on Software Engineering, 2018, pp. 60–70.

[21] Y. Hu, U. Z. Ahmed, S. Mechtaev, B. Leong, and A. Roychoudhury, “Re-
factoring based program repair applied to programming assignments,” in
2019 34th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2019, pp. 388–398.

[22] Y. Deng, C. S. Xia, C. Yang, S. D. Zhang, S. Yang, and L. Zhang,
“Large language models are edge-case fuzzers: Testing deep learning
libraries via fuzzgpt,” arXiv preprint arXiv:2304.02014, 2023.

[23] M. Schäfer, S. Nadi, A. Eghbali, and F. Tip, “Adaptive test generation
using a large language model,” arXiv preprint arXiv:2302.06527, 2023.

[24] R. Widyasari, S. Q. Sim, C. Lok, H. Qi, J. Phan, Q. Tay, C. Tan, F. Wee,
J. E. Tan, Y. Yieh et al., “Bugsinpy: a database of existing bugs in
python programs to enable controlled testing and debugging studies,”
in Proceedings of the 28th ACM joint meeting on european software
engineering conference and symposium on the foundations of software
engineering, 2020, pp. 1556–1560.

[25] C. S. Xia and L. Zhang, “Keep the conversation going: Fixing
162 out of 337 bugs for $0.42 each using chatgpt,” arXiv preprint
arXiv:2304.00385, 2023.

[26] J. Liu, C. S. Xia, Y. Wang, and L. Zhang, “Is your code generated by
chatgpt really correct? rigorous evaluation of large language models for
code generation,” arXiv preprint arXiv:2305.01210, 2023.

[27] J. W. Creswell, Qualitative Inquiry and Research Design: Choosing
Among Five Approaches (3rd Edition). SAGE Publications, Inc., 2013.

[28] J. R. Landis and G. G. Koch, “The measurement of observer agreement
for categorical data,” biometrics, pp. 159–174, 1977.

[29] S. Feng and C. Chen, “Prompting is all your need: Automated
android bug replay with large language models,” arXiv preprint
arXiv:2306.01987, 2023.

[30] A. Ebtekar and P. Liu, “An elo-like system for massive multiplayer
competitions,” arXiv preprint arXiv:2101.00400, 2021.

[31] “How to interpret contest ratings,” https://codeforces.com/blog/entry/
68288, 2023, accessed: 2023-04-01.

[32] W. Weimer, T. Nguyen, C. Le Goues, and S. Forrest, “Automatically
finding patches using genetic programming,” in 2009 IEEE 31st Interna-
tional Conference on Software Engineering. IEEE, 2009, pp. 364–374.

[33] OpenAI, “Gpt-4 technical report,” 2023. [Online]. Available: https:
//arxiv.org/pdf/2303.08774.pdf

[34] G. Fraser and A. Arcuri, “Evosuite: automatic test suite generation for
object-oriented software,” in Proceedings of the 19th ACM SIGSOFT
symposium and the 13th European conference on Foundations of soft-
ware engineering, 2011, pp. 416–419.

[35] R. Baldoni, E. Coppa, D. C. D’elia, C. Demetrescu, and I. Finocchi,
“A survey of symbolic execution techniques,” ACM Computing Surveys
(CSUR), vol. 51, no. 3, pp. 1–39, 2018.

[36] W. Jin and A. Orso, “Bugredux: Reproducing field failures for in-
house debugging,” in 2012 34th International Conference on Software
Engineering (ICSE). IEEE, 2012, pp. 474–484.

[37] M. Soltani, P. Derakhshanfar, A. Panichella, X. Devroey, A. Zaidman,
and A. van Deursen, “Single-objective versus multi-objectivized opti-
mization for evolutionary crash reproduction,” in Search-Based Software
Engineering: 10th International Symposium, SSBSE 2018, Montpellier,
France, September 8-9, 2018, Proceedings 10. Springer, 2018, pp.
325–340.

[38] M. Soltani, P. Derakhshanfar, X. Devroey, and A. Van Deursen, “A
benchmark-based evaluation of search-based crash reproduction,” Em-
pirical Software Engineering, vol. 25, pp. 96–138, 2020.

[39] Z. Zhang, Y. Lei, X. Mao, M. Yan, and X. Xia, “Improving fault
localization using model-domain synthesized failing test generation,”
in 2022 IEEE International Conference on Software Maintenance and
Evolution (ICSME). IEEE, 2022, pp. 199–210.

[40] G. An and S. Yoo, “Human-in-the-loop fault localisation using efficient
test prioritisation of generated tests,” arXiv preprint arXiv:2104.06641,
2021.

[41] V. J. Manès, H. Han, C. Han, S. K. Cha, M. Egele, E. J. Schwartz, and
M. Woo, “The art, science, and engineering of fuzzing: A survey,” IEEE
Transactions on Software Engineering, vol. 47, no. 11, pp. 2312–2331,
2019.

[42] S. Saha, L. Sarker, M. Shafiuzzaman, C. Shou, A. Li, G. Sankaran, and
T. Bultan, “Rare path guided fuzzing,” in Proceedings of the 32nd ACM
SIGSOFT International Symposium on Software Testing and Analysis,
2023, pp. 1295–1306.

[43] J. Liang, Y. Jiang, M. Wang, X. Jiao, Y. Chen, H. Song, and K.-
K. R. Choo, “Deepfuzzer: Accelerated deep greybox fuzzing,” IEEE
Transactions on Dependable and Secure Computing, vol. 18, no. 6, pp.
2675–2688, 2019.

[44] T. Y. Chen, S. C. Cheung, and S. M. Yiu, “Metamorphic test-
ing: a new approach for generating next test cases,” arXiv preprint
arXiv:2002.12543, 2020.

[45] Y. Tian, S. Ma, M. Wen, Y. Liu, S.-C. Cheung, and X. Zhang, “To
what extent do dnn-based image classification models make unreliable
inferences?” Empirical Software Engineering, vol. 26, no. 5, p. 84, 2021.

https://openai.com/blog/chatgpt/
https://codeforces.com/
https://codeforces.com/blog/entry/68288
https://codeforces.com/blog/entry/68288
https://arxiv.org/pdf/2303.08774.pdf
https://arxiv.org/pdf/2303.08774.pdf

[46] J. Cao, M. Li, Y. Li, M. Wen, S.-C. Cheung, and H. Chen, “Semmt:
a semantic-based testing approach for machine translation systems,”
ACM Transactions on Software Engineering and Methodology (TOSEM),
vol. 31, no. 2, pp. 1–36, 2022.

[47] S. Segura, G. Fraser, A. B. Sanchez, and A. Ruiz-Cortés, “A survey
on metamorphic testing,” IEEE Transactions on software engineering,
vol. 42, no. 9, pp. 805–824, 2016.

[48] W. M. McKeeman, “Differential testing for software,” Digital Technical
Journal, vol. 10, no. 1, pp. 100–107, 1998.

[49] R. B. Evans and A. Savoia, “Differential testing: a new approach to
change detection,” in The 6th Joint Meeting on European software
engineering conference and the ACM SIGSOFT Symposium on the
Foundations of Software Engineering: Companion Papers, 2007, pp.
549–552.

[50] Y. Chen, T. Su, C. Sun, Z. Su, and J. Zhao, “Coverage-directed
differential testing of jvm implementations,” in proceedings of the 37th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, 2016, pp. 85–99.

[51] H. Tian, W. Lu, T. O. Li, X. Tang, S.-C. Cheung, J. Klein, and T. F.
Bissyandé, “Is chatgpt the ultimate programming assistant–how far is
it?” arXiv preprint arXiv:2304.11938, 2023.

[52] P. Vaithilingam, T. Zhang, and E. L. Glassman, “Expectation vs. experi-
ence: Evaluating the usability of code generation tools powered by large
language models,” in Chi conference on human factors in computing
systems extended abstracts, 2022, pp. 1–7.

[53] T. Ahmed and P. Devanbu, “Few-shot training llms for project-specific
code-summarization,” arXiv preprint arXiv:2207.04237, 2022.

[54] S. Jalil, S. Rafi, T. D. LaToza, K. Moran, and W. Lam, “Chatgpt
and software testing education: Promises & perils,” arXiv preprint
arXiv:2302.03287, 2023.

[55] H. Pearce, B. Tan, B. Ahmad, R. Karri, and B. Dolan-Gavitt, “Can
openai codex and other large language models help us fix security bugs?”
arXiv preprint arXiv:2112.02125, 2021.

[56] C. S. Xia, Y. Wei, and L. Zhang, “Practical program repair in the era of
large pre-trained language models,” arXiv preprint arXiv:2210.14179,
2022.

	Introduction
	Preliminaries
	Methodology
	Program Generator
	Overview of Program Generator
	Illustration of Program Generator's workflow

	Test Case Generator
	Step 1: Generating test input
	Step 2: Inferring an expected output
	Step 3: Differential testing

	Evaluation
	RQ1: Finding FTs for QuixBugs
	Experiment setup
	Results and findings

	RQ2: Inferring Program Intention
	Experiment setup
	Results and findings

	RQ3: Generating Reference Versions
	Experiment setup
	Results and findings

	RQ4: Finding FT-IA for Codeforces
	Experiment setup
	Results and findings

	Threat to Validity
	Data leakage
	Generalizability
	Reproducibility

	Discussion and future work
	Related Work
	Finding failure-inducing test inputs
	Addressing Test Oracle problem
	Studies of ChatGPT and other LLMs

	Conclusion
	Data Availability
	References

