
ASTER: Automatic Speech Recognition System
Accessibility Testing for Stutterers

Yi Liu∗, Yuekang Li†, Gelei Deng∗, Felix Juefei-Xu‡, Yao Du§, Cen Zhang∗, Chengwei Liu∗,
Yeting Li¶, Lei Ma∥, Yang Liu∗

∗Nanyang Technological University, †University of New South Wales, ‡Meta AI
§University of Southern California, ¶Institute of Information Engineering, Chinese Academy of Sciences;

University of Chinese Academy of Sciences, ∥The University of Tokyo; University of Alberta
∗yi009@e.ntu.edu.sg,gdeng003@e.ntu.edu.sg, cen001@e.ntu.edu.sg, chengwei001@e.ntu.edu.sg,

yangliu@ntu.edu.sg, †yuekang.li@unsw.edu.au, ‡felixu@meta.com, §yaodu@usc.edu, ¶liyeting@iie.ac.cn, ∥ma.lei@acm.org

Abstract—The popularity of automatic speech recognition (ASR)
systems nowadays leads to an increasing need for improving
their accessibility. Handling stuttering speech is an important
feature for accessible ASR systems. To improve the accessibility
of ASR systems for stutterers, we need to expose and analyze
the failures of ASR systems on stuttering speech. The speech
datasets recorded from stutterers are not diverse enough to expose
most of the failures. Furthermore, these datasets lack ground
truth information about the non-stuttered text, rendering them
unsuitable as comprehensive test suites. Therefore, a methodology
for generating stuttering speech as test inputs to test and analyze
the performance of ASR systems is needed. However, generating
valid test inputs in this scenario is challenging. The reason is that
although the generated test inputs should mimic how stutterers
speak, they should also be diverse enough to trigger more failures.
To address the challenge, we propose ASTER, a technique for
automatically testing the accessibility of ASR systems. ASTER
can generate valid test cases by injecting five different types of
stuttering. The generated test cases can both simulate realistic
stuttering speech and expose failures in ASR systems. Moreover,
ASTER can further enhance the quality of the test cases with a
multi-objective optimization-based seed updating algorithm. We
implemented ASTER as a framework and evaluated it on four
open-source ASR models and three commercial ASR systems. We
conduct a comprehensive evaluation of ASTER and find that it
significantly increases the word error rate, match error rate, and
word information loss in the evaluated ASR systems. Additionally,
our user study demonstrates that the generated stuttering audio
is indistinguishable from real-world stuttering audio clips.

Index Terms—Automatic Speech Recognition, Accessibility
Testing

I. INTRODUCTION

Automatic speech recognition (ASR) is about using computer
programs to process human speech into readable text. The
first ASR system, “Audrey”, was created by researchers from
Bell Labs, which can only recognize spoken numbers [1].
After decades of evolution, ASR systems have been drastically
improved in both recognition accuracy and variety of words.
Especially in the last decade, ASR systems benefit greatly from
the emergence of deep learning (DL) techniques [2, 3, 4, 5].
Together with the advancements in academia, ASR systems
have been making their way into our daily life through the

†Yuekang Li is the corresponding author of this paper.
‡ Work done prior to joining Meta.

products from companies like Google [6], Microsoft [7],
IBM [8], etc. Besides the commercial-off-the-shelf (COTS)
products, open-source DL models [9] are also available for
developers to integrate ASR features into their software. As
a result, ASR systems have become a highly available and
popular type of software.

Thanks to their availability and popularity, ASR systems
have been used by many users, including those with disabilities.
Hence, improving the accessibility of ASR systems becomes
crucial. According to [10], ASR systems are faced with different
types of accessibility or inclusiveness problems such as gender
and cultural bias, stuttering, and so on. Among the various
types of accessibility problems, stuttering is one of the most
challenging ones for ASR systems since it can directly affect
the content of human speech. Moreover, stuttering is also a
commonly encountered type of disability as it is estimated
that over 70 million people are suffering from developmental
stuttering [11]. Therefore, in this paper, we focus on studying
the accessibility of ASR systems for stutterers.

Efforts can be devoted in two directions to improve the
accessibility of ASR systems. On one hand, researchers have
been proposing new techniques to improve the performance
of the DL models on stuttered speech [12, 13]. On the other
hand, we can detect and evaluate the accessibility problems in
existing ASR systems in order to understand and eventually
eliminate them. Compared with improving the DL models,
detecting and studying the accessibility issues in existing ASR
systems is equally important but less studied. Thus, we focus
on detecting and analyzing the accessibility problems in ASR
systems.

Testing is a popular and effective approach for exposing
accessibility issues in software [14, 15, 16, 17] and testing
ASR systems poses a unique challenge. The biggest challenge
of testing ASR systems is to generate valid test inputs. The
rationale is two-fold: ❶ We need to generate the test inputs
because speech datasets recorded from stutterers are not
appropriate as test suites. This is due to two reasons: first, the
datasets lack diversity and therefore may not comprehensively
uncover potential failures in ASR systems; second, these
datasets do not contain ground-truth information about non-
stuttered speech, which results in a lack of a reliable test

1

ar
X

iv
:2

30
8.

15
74

2v
1

 [
cs

.S
D

]
 3

0
A

ug
 2

02
3

oracle. ❷ The generated test inputs must be valid. They should
have enough variety to expose potential bugs. However, the
test inputs should also be as close to the stuttering speech as
possible to simulate real-life cases instead of just incurring
failures in the ASR systems.

To fill the research gap, we propose ASTER – an automatic
testing technique for detecting accessibility bugs in ASR
systems. ASTER can create valid test cases in the form of
audio files by injecting five different types of stuttering speech
into benign audio files. ASTER works in three steps: ❶
Preprocessing. ASTER extracts the word and syllable timing
information for each audio file. ❷ Mutation. With the timing
information, ASTER injects five types of stuttering, namely
block, prolongation, sound repetition, word repetition, and
interjection. The timing information is needed because the
injected stuttering requires mutating the audio file at the word
and syllable levels. The audio files with injected stuttering can
be used as test cases. ❸ Execution. With the generated test
cases, ASTER executes multiple ASR systems simultaneously.
After that, ASTER uses a multi-objective-optimization (MOO)
algorithm to balance between two properties: the difference
between the results of the ASR systems and the similarity
to the benign audio, in order to evaluate the test cases and
keep the good ones as seeds to apply more mutations for
generating better test cases. Last but not least, ASTER uses
a metamorphic relation as the test oracle to identify potential
errors. The metamorphic relation is that the output text of an
ASR system should be the same for both the original audio
and the mutated audio. ASTER keeps the test cases for which
the ASR systems cannot generate results similar enough to the
ground truth as suspicious failures and report them to human
experts for verification.

We developed ASTER, an audio generation tool that can
create stuttering audio samples to evaluate the performance
of ASR systems. Our evaluation on four open-source ASR
models and three commercial ASR systems demonstrated that
ASTER can generate stuttering audios that significantly increase
the word error rate (WER), match error rate (MER), and
word information lost (WIL) by 23.12%, 21.45%, and 33.34%,
respectively. Additionally, we conducted a user study and found
that generated stuttering audio was indistinguishable from real-
world stuttering audio clips. We also found that commercial
ASR systems outperformed open-source models, achieving
WER, MER, and WIL scores of 12.33%, 9.78%, and 15.32%.
Finally, our analysis of 1,069 suspicious issues categorized
them into five bug types: word injection, incorrect word, word
repetition, word omission, and syllable repetition.

In summary, our paper makes the following contributions:

• We propose ASTER, which is the first automatic testing
technique for evaluating the accessibility of ASR systems.

• We implement ASTER as a framework and evaluate it with
real-world open-source and commercial ASR systems. The
evaluation results prove the effectiveness of ASTER.

• We manually identify and categorize 1,069 recognition
errors in real-world ASR systems. Furthermore, we propose

a classification scheme for recognizing errors and their
underlying causes.
ASTER is coupled with a website: https://sites.google.com/

view/aster-speech. We will put the details about ASTER and
raw experiment data on this website. We will also open-source
ASTER after the paper is published.

II. BACKGROUND

A. Accessibility Testing

Web and mobile app accessibility are crucial for individ-
uals with disabilities, with testing gaining attention recently.
AXERAY [17] assesses web accessibility through semantic
groupings, and Latte [16] automates Android app accessibility
testing. Research in deaf accessibility testing [15] focuses on
sign language users.

Stuttering identification employs machine learning and
deep learning techniques, with comprehensive reviews of
classification methods [18]. Studies evaluate stuttering detection
in transcriptions [19] and explore multi-task and adversarial
learning [20]. FluentNet [21] detects stutter types using a deep
neural network.

Limited research evaluates ASR systems on stuttering speech,
motivating our work on ASR evaluation through stuttering audio
generation. We aim to develop more accurate and inclusive
ASR systems for individuals who stutter.

B. Stuttering and Speech Disorders

Stuttering, a complex fluency disorder, affects speech and
disrupts communication [22, 23]. Its causes are unclear and
may involve biological and psychological factors [24], leading
to frustration and isolation [25]. Speech therapy [26] aims to
improve fluency, reduce anxiety, and boost confidence [27].
However, ASR technology in smart devices presents challenges
for people who stutter [28].

Limited research addresses stuttering in ASR technology.
Testing ASR accessibility for stuttering can help identify errors
and enhance functionality, fostering inclusive communication
for those with speech disorders.

III. METHODOLOGY

Fig. 1 shows an overview of ASTER. ASTER is capable
of testing multiple ASR systems simultaneously. The overall
inputs of ASTER are the benign audio files without stuttering
while the overall outputs are the audio files with simulated
stuttering which can cause failure in at least one of the ASR
systems under test. ASTER contains three main components,
namely, Phonetic Alignment, Speech Mutation and Feedback
Analysis. ASTER works in the following steps: ❶ Given a seed
audio file, ASTER first determines the timing of different words
to locate and differentiate the words. ❷ With the word timing
for each seed audio file, ASTER then identifies the syllable
timing for each word. ❸ After labeling the audio files with
word and syllable timing information, ASTER can apply five
different mutation strategies to inject stuttering into the original
audio file to create the test cases. ❹ By executing the ASR
systems with the generated test cases, ASTER will keep the test

2

https://sites.google.com/view/ aster-speech
https://sites.google.com/view/ aster-speech

Seed Audios

Phonetic Alignment

Word Timing Extraction

Speech Mutation

Block Test Case

ASR Systems

Feedback Analysis

MOO-Based Seed Pool
Updater

FailuresAudio Files

ASR Systems

Test Cases

Failures

Syllable Timing Extraction

Prolongation

Sound
Repetition

Word
Repetition

Interjection Test Oracle

Seed AudiosLabeled Audio
Files

Timing
Info

Mutator
Chain Info

Input Aster Output

Seed Pool Test Bed

1

2

4

5

§3.1 §3.2 §3.33

Fig. 1: The overview of ASTER.

Algorithm 1: Algorithm for ASTER

1 def ASTER(Sbenign,SUT):
2 S← ∅;
3 F← ∅;
4 for s ∈ Sbenign do
5 add timing info(s);
6 S← S ∪ s;
7 while not budget used up() do
8 s′ ← random select(S);
9 t← mutate(s′);

10 R← ∅;
11 for sut ∈ SUT do
12 res← execute(t, sut);
13 R← R ∪ res;
14 moo based seed pool update(t, S,R);
15 detect failure(t, s,F);
16 return F;

cases which are similar to the original audio but can trigger the
different execution results of the ASR systems. The kept test
cases can be added back to the seed pool for further mutations
to create better test cases. ❺ Lastly, ASTER uses the distance
to the original speech text plus manual checks as the test oracle
to capture the failures of the ASR systems under test.

Algorithm 1 shows the overall algorithm of ASTER, where
Sbenign is the initial set of audio files; SUT is the set of
ASR systems under test; F is the set of test cases causing
failures for the ASR systems under test; budget used up is
the function to check if the resource budget given to a benign
audio file has been used up. The resource budget is measured
by the number of new test cases generated for the benign audio
file. The default number is 50. Details about the functions in
Algorithm 1 will be discussed in the rest of this section.

A. Phonetic Alignment

Phonetic alignment is the prerequisite for creating valid test
cases. Because if we have no knowledge about the structure
of the audio file and randomly mutate it, the created speech
can easily become distorted and lose the ability of simulating
speech of human stutterers. In general, ASTER relies on the
algorithms in the PocketSphinx [29] project to perform phonetic
alignment. The phonetic alignment process corresponds to
the add timing info function in Algorithm 1 line 5. Fig. 2
illustrates how phonetic alignment is done in ASTER. First,
ASTER determines the word timing in the audio file. The timing
of each word is a tuple in the form of (start time, end time),
where start time means the starting time of the word in the

Word Timing

Syllable Timing

Audio File
How is the weather ?

How is the weather ?

How is the weather ?

Fig. 2: Phonetic alignment

audio file (in terms of milliseconds) and end time means the
ending time of the word in the audio file. The rationale for
recognizing the words is to treat the audio file as a waveform
and split the words by periods of silence. Then, based on
the word timing, ASTER determines the syllable timing for
each word. Similar to word timing, the timing of each syllable
is also in the form of a (start time, end time) tuple. The
rationale of recognizing syllables is to first use a language
model to roughly identify each word and then use the phonetic
dictionary to pinpoint the syllables in the recognized word. For
example, if we recognize an utterance in the audio corresponds
to the word weather, the phonetic dictionary can tell us that
it contains two syllables: wea and ther and we can check the
waveform to get the syllable timing accordingly 1.

B. Speech Mutation

The purpose of speech mutation is to inject stuttering into
the original audio file while keeping the speech as realistic
as possible. The speech mutation corresponds to the mutate
function in line 9 in Algorithm 1. Following the taxonomy
in [30], ASTER can inject five types of stuttering with different
strategies. During every round of mutation, ASTER randomly
selects one seed from the seed pool and applies a random
mutator to build the new test case.

Block. This type of stuttering happens when the stutterer
interrupts his/her speech when pronouncing a word, causing the
word to split into halves. The designed mutator to simulate this
type of stuttering is to add a small period of silence between
two syllables of the same word. The small period of silence
usually lasts for 50-200 ms because it is in line with the
natural pause that occurs when a speaker is experiencing block
stuttering. This pause may vary depending on the severity of
the block stuttering, with more severe cases resulting in longer
pauses. Additionally, the length of the pause may also depend
on the individual’s speech patterns and style. However, in our
mutator, we found that a small period of silence in the range

1The algorithms of phonetic alignment are adopted from the PocketSpinx
project. Interested readers can get detailed information about these algorithms
from [29].

3

How is the wea ther ?

How is the weather ?

How is the wea ther ?

How is the weaweather ?

How is the the weather ?

How is um the uh weather ?

Original

Block

Prolongation

Sound Repetition

Word Repetition

Interjection

Add Silence

Extend Syllable

Copy Syllable

Copy Word

Add Word

Fig. 3: Speech mutation

of 50-200 ms was sufficient to simulate this type of stuttering
without significantly altering the overall speech pattern.

Prolongation. This type of stuttering happens when the stutterer
prolongs a syllable in the word. The designed mutator works
similarly by extending the length of a syllable in a word.
The syllable is extended by 2-4 times. The specific extension
factor used may vary depending on the speech pattern being
simulated and the desired level of severity. However, we found
that an extension factor in the range of 2-4 times was generally
sufficient to simulate this type of stuttering without causing
the speech to become unrecognizable. Additionally, the length
of the extension may depend on the length of the original
syllable, with longer syllables requiring longer extensions to
produce a noticeable effect. However, it is important to note
that overly long extensions may cause the resulting audio to
become unrealistic and may affect the overall quality of the
synthesized speech.

Sound Repetition. This type of stuttering happens when the
stutterer repeats a syllable in the word a few times. The
designed mutator can copy/duplicate a syllable 2-4 times. The
specific number of repetitions used may vary depending on the
desired level of severity and the speech pattern being simulated.
Compared to the prolongation mutator, sound repetition mutator
creates a more abrupt and noticeable stuttering effect that is
often characterized by a distinct syllable repetition pattern. The
repetition pattern may vary in terms of the number of syllables
repeated and the spacing between the repetitions, and may be
influenced by individual speech patterns and style.

Word Repetition. The mutator we designed for word repetition
is similar to the one used for sound repetition, but instead of
copying syllables, it copies whole words.

Interjection. This type of stuttering happens when the stutterer
speaks out some filler words such as uh, em, etc. during the
speech. The designed mutator works in two steps: First, ASTER
goes through all the syllables and collects the syllables whose
text exists in a predefined list of filler words 2. The rationale for
collecting the filler word candidates from the same audio is that
we need to keep the timbre of the entire speech consistent in
order to mimic real speech. Second, ASTER selects a random
number of syllables from the candidate set and adds them
randomly between words in the original speech.

2There exist filler words with more than two syllables, but in practice, we
found it challenging to find syllable candidates from the same audio file for
such filler words. Therefore, we only use filler words with one syllable in
ASTER.

C. Feedback Collection.

Seed Pool. ASTER maintains a pool of audio files for each
benign audio file. The seed pool is denoted as S in Algorithm 1.
These pools of audio files can be used as seeds for creating new
test cases. The rationale is to gradually generate test cases with
better quality like how genetic algorithms work. The difference
between ASTER and genetic algorithms is that ASTER only
uses mutations to generate new test cases and does not perform
crossovers. This is because using crossovers to graft audio files
can distort the content of the speech, making it difficult to
check against the ground truth for failures.

Each audio file in the seed pool is labeled with two types
of information: the timing info of the benign audio file and
the list of mutators applied during the generation of this seed
file. The reason for storing the seed files in the form of benign
audio files plus lists of applied mutators is that the word and
syllable timing of the mutated audio files becomes malformed.
Therefore, every test case is created by applying the previous
chain of mutators plus one new randomly selected mutator.
Multi-Objective Optimization Based Seed Pool Update.
ASTER aims to generate test cases that are both capable of
exposing failures in ASR systems and realistic. These two
properties are contradictory because exposing failures requires
a test case to have odd content but as the content becomes more
erratic, the test case becomes less realistic. Since the test cases
need to fulfill two important yet contradictory requirements,
ASTER uses a multi-objective optimization (MOO) algorithm
to evaluate the quality of test cases and update the seed
pool. The function moo based seed pool update in line 14
Algorithm 1 represents this process.

According to the desired properties for the test cases, we
propose two metrics to evaluate test case quality. The first
metric (M1) is the difference among results from the ASR
systems under test. This metric is used for measuring how
likely a test case can expose failures. Note that ASTER does not
use the difference between the results from the ASR systems
and the ground truth text directly as the failure likelihood
evaluator. The reason is that malformed test cases can lead to
results different from the ground truth and malformed test cases
are not valid. In contrast, if different ASR systems respond
differently to a test case, it is likely that some ASR systems
can process the test case correctly but some cannot. This can
help to ensure that the preferred test cases are more likely to
be valid and they can expose failures as well. M1 is calculated
as the average value of the cosine similarities between every
two Bert-embeddings [31] of the ASR system results. The
calculation of M1 can be formulated as:

M1 =

sum({ e1 · e2
∥e1∥ ∥e2∥

|e1 ∈ E, e2 ∈ E, e1 ̸= e2})

|E|2 − |E|
(1)

where E is the set of all the Bert-embeddings for the results
from every ASR system under test.

The second metric (M2) is to directly measure the difference
between a test case and the original audio. The rationale is to

4

M1

M2

Legend

Kept
Discarded

0

Fig. 4: Example Pareto frontier

reduce the chance for the content of the test case to become
malformed. The calculation of M2 can be formulated as:

M2 =
etest · ebenign
∥etest∥ ∥ebenign∥

(2)

where etest is the Bert-embedding of the corresponding text
of the test case and ebenign is the Bert-embedding of the text
of the original benign audio file.

With M1 and M2 defined, the MOO model of selecting the
favorable seeds can be described as follows:

Definition 1 (Multi-objective Seed Selection): Given a set
of seeds S, multi-objective seed selection is to select a set of
seeds S:

Min
(
F⃗(S)

)
= Min

(
O1(s), O2(s)

)
, s ∈ S (3)

where F⃗(S) is an objective vector that denotes two objective
functions, namely O1 and O2. The mappings between O1, O2

and M1, M2 are: O1 = Min(M1) and O2 = −Max(M2).
For solving MOO problems, we can either use

scalarization(weighted-sum) or the Pareto method [32].
The problem with scalarization is that the weight for each
parameter is hard to decide. So we choose to use the Pareto
method, where the Pareto Frontier is the solution to the MOO
problem. Given a set of the seeds S and the objective vector
F⃗ = [f1, f2], we say s dominates(≺) s′ iff :

fi(s) < fi(s
′), ∀i ∈ {1, 2}

where s, s′ ∈ S; the Pareto frontier(P) is defined as:

P (S) = {s ∈ S | {s′ ∈ S | s′ ≺ s, s′ ̸= s} = ∅} (4)

In ASTER, after a test case s is generated and executed, it
is put into S. Then ASTER will calculate P (S) and all the
seeds belonging to P (S) are kept in the seed pool while the
rest are discarded. In other words, if s ∈ P (S), then s is kept
and all {s′|s ≺ s′, s′ ∈ S} are discarded. Fig. 4 illustrates an
example of the Pareto frontier used for seed pool update. From
Fig. 4, we can see how ASTER selects test cases with smaller
values of M1 and larger values of M2. It is worth noting that
the calculation of Pareto Frontier is naturally indicated in its
definition: we need to compare every test case against every
other test case and find out all the test cases for which no other
test case is better on both M1 and M2

3.
Test Oracle. There exists a metamorphic relation that can be
used as the test oracle for ASTER. The metamorphic relation is

3A sample of using Python to calculate the Pareto Frontier is available here:
https://sites.google.com/view/aster-speech/pareto-frontier-code.

that the output text of an ASR system should be the same for
both the original audio and the mutated audio. ASTER reports
the test cases which can cause the Bert-embeddings of the
ASR system result and the text of the original benign audio
to have cosine similarity smaller than a threshold θ. Based
on our experience, we set the default value of θ to be 0.8.
However, the test cases reported by ASTER cannot be treated
as failures directly because some of them might be malformed,
and even humans cannot recognize their text content correctly.
Therefore, ASTER only reports the suspicious test cases and
eventually relies on humans to mark the true failures. Based on
our empirical findings, around 31.43% of the failures are false
positives with the default value of θ. The whole process of
determining failures is denoted as the detect failure function
in Algorithm 1.

IV. IMPLEMENTATION & EVALUATION

We have developed and implemented ASTER using Python
version 3.9.1, comprising a total of 2,124 lines of code (LoCs).
To evaluate the effectiveness of our approach, we will apply it to
both open-source and commercial automatic speech recognition
systems using two real-world speech datasets. The objective
of our study is to answer the following research questions:
• RQ1 (Stuttering Faults and User Study) How effective

is the proposed approach in generating stuttering speech,
specifically in terms of its ability to accurately detect
stuttering faults and simulate realistic stuttering patterns?

• RQ2 (Mutator Ablation Study) To what extent do the
proposed mutators contribute to identifying stuttering faults
in automatic speech recognition systems?

• RQ3 (MOO Ablation Study) How does the MOO-Based
seed pool update improve the generation of realistic stuttering
audio?

• RQ4 (Real-world Evaluation) To what extent can the
proposed approach accurately detect stuttering faults in
commercial automatic speech recognition systems?

• RQ5 (Bug Pattern) What types of stuttering faults can be
identified and learned from commercial automatic speech
recognition systems?

A. Experimental Setup

1) Benchmark: We selected a total of seven ASR systems
for our evaluation, consisting of four open-source systems, built
on the top of Wav2Vec [33], and three commercial services.
The four open-source ASR systems are ”data2vec-audio-large-
960h”, ”wav2vec2-large-english”, ”wav2vec2-xls-r-1b-english”,
and ”wav2vec2-large-xlsr-53-english”. These systems were
chosen based on their popularity (the monthly downloads >
10,00), as well as their maintenance status (The latest update
should be later than January 2022). The ”data2vec-audio-large-
960h” system is based on the data2vec framework and provides
pre-trained embeddings for speech and audio data. The other
three systems, ”wav2vec2-large-english”, ”wav2vec2-xls-r-1b-
english”, and ”wav2vec2-large-xlsr-53-english” are all based
on the wav2vec2 framework and use self-supervised learning
techniques to learn representations of speech and audio data. We

5

https://sites.google.com/view/aster-speech/pareto-frontier-code

TABLE I: Characteristics of ASR systems used in the evaluation

System Type Features
data2vec-audio-large-960h Open-source Self-supervised

wav2vec2-large-english Open-source Self-supervised
wav2vec2-xls-r-1b-english Open-source Self-supervised

wav2vec2-large-xlsr-53-english Open-source Self-supervised
Azure Speech-to-Text Commercial N/A

Google Cloud Speech-to-Text Commercial N/A
IBM Watson Speech-to-Text Commercial N/A

also included three commercial ASR services for our evaluation,
namely, Azure Speech-to-Text [34], Google Cloud Speech-to-
Text [35], and IBM Speech-to-Text [36]. These services are
widely used in the industry and provide various features such as
speaker recognition, custom models, and real-time streaming.

In Table I, we list the characteristics of each ASR system,
including its type (i.e., open-source or commercial), and key
features. This information can help readers understand the
strengths and weaknesses of each system, as well as the overall
landscape of ASR systems being used in the evaluation.

2) Dataset: To synthesize stuttering speech, we utilize the
Common Voice dataset as the benign corpus input for our
approach, which is a large and publicly available collection of
human voice recordings maintained by Mozilla [37]. However,
due to its vast size, we collected the latest segment of the
Common Voice dataset, which consisted of 7,415 validated
audio recordings verified by Common Voice volunteers for
their quality. To eliminate the influence of ASR models, we
filtered out all audio recordings that could not produce the
same recognized text by five specified models. As a result,
we obtained a total of 1,212 audio recordings that serve as
our benign input for synthesizing stuttering speech using our
proposed approach.

On the other hand, we also incorporate the FluencyBank
dataset [38] in our evaluation, which is a dataset specifically
designed for the analysis of stuttering speech patterns. In
particular, we use audio samples from FluencyBank to evaluate
the performance of ASR systems, using the metrics described
in the following section, to demonstrate the ability of these
systems to transcribe real-world stuttering speech patterns.
Additionally, we conduct a user study using audio samples
from both our synthesized stuttering speech corpus and the
FluencyBank dataset to assess the realism of our synthesized
stuttering speech patterns. By incorporating the FluencyBank
dataset in our evaluation, we can provide a more comprehensive
and robust assessment of our approach and its ability to generate
realistic stuttering speech patterns.

3) Metrics: We evaluate the performance of ASR systems
on a given stuttering corpus using three metrics: Word Error
Rate (WER), Match Error Rate (MER), and Word Information
Lost (WIL).

• Word Error Rate (WER): WER is a commonly used metric
in ASR systems that measures the percentage of words that
are incorrectly transcribed by the system, compared to the

TABLE II: Results showing the impact of stuttering audio
generation on open-source ASR system recognition errors

System WER MER WIL
data2vec-audio-large-960h 23.12% 21.45% 33.34%

wav2vec2-large-english 25.37% 23.54% 35.75%
wav2vec2-large-xlsr-53-english 26.64% 24.90% 36.61%

wav2vec2-xls-r-1b-english 24.89% 22.35% 34.29%

ground truth transcription.

WER =
S +D + I

N

where S is the number of substitutions, D is the number of
deletions, I is the number of insertions, and N is the total
number of words in the reference transcript.

• Match Error Rate (MER): MER is a metric used to evaluate
the accuracy of automatic speech recognition (ASR) systems.
It measures the percentage of words that are incorrectly
transcribed by the ASR system compared to the reference
transcription of the same audio.

MER =
S +D + I +M

N

where S is the number of substitution errors, D is the number
of deletion errors, I is the number of insertion errors, M
is the number of matches, and N is the total number of
reference words.

• Word Information Lost (WIL): WIL is a metric that
measures the amount of information lost by the ASR system,
calculated by comparing the amount of information in the
ground truth transcription to the information in the ASR
system’s output.

WIL =
M

N

where M is the number of modifications.
4) Configuration: To evaluate the performance of ASTER,

we manually inspect each audio file identified as suspicious
and determine whether it contains stuttering issues and, if so,
what kind of recognition errors it produces. This evaluation
is conducted by three authors of this paper, and to ensure
consistency and accuracy, we establish a similarity threshold of
0.8 between the ground truth and recognized texts, which is in
accordance with previous work [39]. All experiments are run on
a Linux workstation with Intel E5-2698 v4 processors with 80
cores, 504 GB of memory, and 8 Tesla V100 GPU processors.
To mitigate any randomness, we perform each experiment ten
times and report the average results.

B. Stuttering Faults and User Study (RQ1)

We ran our proposed approach for 10 rounds, generating
stuttering audio samples from a total of 1,212 seeds by iterating
50 times using five mutators defined in the previous section of
this paper. We fed the generated stuttering audio samples into
the six selected ASR systems and measured the performance
using the WER, MER, and WIL metrics described in the
previous section. To evaluate the statistical significance of
the results, we performed a Mann-Whitney U test [40] on

6

Survey-1 Survey-2 Survey-3 Survey-4

5.24
4.84

5.18
4.84.76

5.16
4.82

5.2

Survey Result
Generated Sample Real-world Sample

Fig. 5: The number of people voted for generated audio and
real-world audio in the surveys.

the metrics between the synthesized stuttering speech and the
original speech samples.

As shown in Table II, our approach is able to significantly
increase the number of recognition errors produced by the
selected ASR systems when tested on the generated stutter-
ing audio samples compared to the original audio samples.
Specifically, the WER ranged from 23.12% to 26.64%, the
MER ranged from 21.45% to 24.90%, and the WIL ranged
from 33.34% to 36.61%. These increases were statistically
significant, with p-values below 0.05 for all metrics. These
results demonstrate that our approach, which uses stuttering
audio generation to test ASR systems, is effective in revealing
weaknesses in the recognition of stuttering speech patterns
by the ASR systems. The use of multiple mutators in our
approach allows for the generation of diverse stuttering speech
samples, which can provide a more thorough evaluation of the
ability of ASR systems to detect and handle stuttering speech
patterns. Overall, our experimental results provide evidence
for the utility of our approach in evaluating the performance
of ASR systems in recognizing stuttering speech patterns.

We conducted a user study to evaluate the authenticity
of the stuttering audio samples produced by our approach.
The study participants were recruited from our university
and consisted of both native and non-native English speakers
with high English fluency. As for the design of the study,
we randomly selected 40 generated stuttering audio samples
and 40 actual stuttering audio samples and utilized them to
create four distinct surveys. Each survey comprises of 10
pairs of audio samples, one of which is generated by our
approach, while the other is an actual real-world stuttering
audio sample. The participants are asked to select the real-
world stutter piece from each pair of audio samples, and then
rate the selection confidence from very uncertain to very certain
with 5 different levels. Before selection, participants were
given extensive guidelines, test tasks, and training sessions
on stuttering causes and types. A sample survey is provided
at https://forms.gle/EmbnqLY7ezqptxAr7 for reference. The
survey result is summarized in Figure 5. Upon completion, 100
valid survey results were obtained and analyzed.

We use weighted Fleiss’ Kappa [41] to study the survey
results. In particular, we apply users’ confidence as weights
of Fleiss’ Kappa measurement, which is linearly scaled from

TABLE III: Results of mutators ablation study on ASR systems

System WER MER WIL
Block 24.32% 22.64% 18.41%

Prolongation 19.76% 23.95% 17.72%
Sound Repetition 15.65% 17.66% 15.45%
Word Repetition 17.12% 14.45% 13.23%

Interjection 21.43% 19.76% 21.55%

0 to 1 based on the users’ selection from very uncertain to
very certain. which accounts for the possibility of agreement
occurring by chance, providing a measure of the agreement
among participants while considering the potential for random
guessing. In the end, we obtain a weighted Fleiss’ Kappa of
0.063 from the survey, which means that no agreement is
reached between users over the generated samples and real-
world samples. This shows that the proposed method is not
differentiable from real-world stutter pieces.

We further compare the generated samples and real-world
samples by performing the t-test [42] to determine if there is
a significant difference between the mean scores of the two
distributions. The analysis returns a t-value of 0.295 and a
p-value of 0.768, which rejects the null hypothesis in a two-
tail hypothesis test with 0.05 significance level. The result
shows that no statistically significant differences are identified
between the accuracy rates of the two audio groups (real-
world and generated) in terms of correctly identifying whether
an audio sample was real-world or generated. This indicates
that our approach to generate stuttering audio samples can
effectively simulate the characteristics of real-world stuttering
speech. This indicates that there was a strong level of agreement
between participants in identifying the nature of the audio
samples. The obtained outcomes provide strong evidence
that our approach for generating stuttering audio samples is
proficient in generating diverse and authentic stuttering speech
patterns. Consequently, the generated samples can be exploited
to assess the effectiveness of ASR systems in identifying
stuttering speech patterns in realistic situations. As a result,
the user study outcomes demonstrate the credibility and utility
of our approach.

C. Mutator Ablation Study (RQ2)

To investigate the contribution of each mutator to the
recognition errors produced by ASR systems, we performed
a series of experiments in which we applied each of the five
mutators individually to generate stuttering audio samples. We
repeated this experiment ten times for each mutator, with each
repetition generating 50 mutants for each input audio sample.
We used the 1,212 benign input audio samples described earlier
in this paper to create a diverse set of stuttering speech patterns.
For each input audio sample, we applied a single mutator to
generate a new set of stuttering audio samples. We then tested
the ASR systems on these audio samples and recorded the
recognition errors produced by each system. The metrics used
for evaluation were WER, MER, and WIL, as described in
the previous sections. We applied Mann-Whitney U test to
evaluate the statistical significance of the results.

7

https://forms.gle/EmbnqLY7ezqptxAr7

The results of our mutators ablation study in Table III
show that all five mutators have a significant impact on the
performance of ASR systems. The Block mutator produced
the highest average Word Error Rate (WER) with a mean of
24.32%, followed by the Interjection mutator with a mean WER
of 21.43%. The Prolongation mutator had the third-highest
mean WER of 19.76%, while the Word Repetition mutator had
the fourth-highest mean WER of 17.12%. The Sound Repetition
mutator had the lowest mean WER of 15.65%. However, the
Mann-Whitney U test showed that there was no significant
difference in WER between the Sound Repetition mutator and
the Word Repetition mutator. In terms of Match Error Rate
(MER), the Block mutator again had the highest mean MER of
22.64%, followed by the Interjection mutator with a mean MER
of 19.76%. The Prolongation mutator had the third-highest
mean MER of 23.95%, while the Sound Repetition mutator had
the fourth-highest mean MER of 17.66%. The Word Repetition
mutator had the lowest mean MER of 14.45%. Finally, in terms
of Word Information Errors (WIL), the Interjection mutator
had the highest mean WIL of 21.55%, followed by the Block
mutator with a mean WIL of 18.41%. The Prolongation mutator
had the third-highest mean WIL of 17.72%, while the Sound
Repetition mutator and the Word Repetition mutator had the
lowest mean WIL of 15.45% and 13.23%, respectively.

We summarize the preliminary results of the mutator ablation
study in the following:

• Block. This mutator is designed to split words into halves,
which may confuse ASR systems and cause them to produce
more recognition errors. The introduction of a period of
silence between syllables of the same word could make the
word sound like two separate words, leading to an increased
WER.

• Interjection. The addition of filler words such as ”uh” or
”um” can disrupt the flow of speech and make it more difficult
for ASR systems to accurately recognize words. The presence
of filler words may also result in lexicon errors, where the
ASR system misinterprets the filler word as a real word.

• Prolongation. By extending the length of a syllable in a word,
this mutator could cause the ASR system to misinterpret the
syllable as a different word. This could lead to an increased
WER and MER.

• Sound Repetition. The repetition of a sound in a word may
cause the ASR system to interpret the sound as a different
sound or word, leading to recognition errors. However, this
mutator may have a less severe impact on ASR performance
compared to other mutators because it only affects a single
sound in a word.

• Word Repetition (RQ5). This mutator is similar to the
Sound Repetition mutator, but it repeats entire words instead
of sounds. As with the Sound Repetition mutator, the
repetition of words could cause the ASR system to interpret
the repeated word as a different word, leading to recognition
errors. However, because this mutator repeats entire words,
it may have a more significant impact on ASR performance
than the Sound Repetition mutator.

TABLE IV: Performance comparison of three commercial ASR
systems on stuttering audio samples

System WER MER WIL
Azure Speech-to-Text 12.33% 9.78% 15.32%

Google Cloud Speech-to-Text 15.66% 13.44% 18.39%
IBM Watson Speech-to-Text 16.23% 17.83% 21.67%

D. MOO Ablation Study (RQ3)

To investigate the impact of the audio selection approach
on the results of our stuttering audio testing, we designed an
ablation study in which we compared the MOO-based and
random audio selection methods. We repeated this study ten
times, using the same 1,212 benign audio samples to generate
stuttering audio samples using both audio selection methods.
For the MOO-based approach, we used the same distance and
semantic similarity metrics to generate a set of audio samples
that were as diverse and semantically similar to the ground truth
texts as possible. We selected a group of mutants from all the
generated results based on the Pareto frontier. For the random
selection approach, we randomly selected audio samples from
the set of generated audio samples and the original audio.
We then tested the ASR systems on these audio samples and
recorded the recognition errors produced by each system, using
the same metrics (WER, MER, and WIL) as described in the
previous sections. We applied the Mann-Whitney U test to
evaluate the statistical significance of the results. This study
was designed to be rigorous and convincing, with the use of the
same audio samples and evaluation metrics for both approaches,
and the repeated experiments to ensure the consistency and
reliability of the results.

The results of our ablation study in Figure 6 show that the
MOO-based audio selection approach produced better perfor-
mance in terms of ASR recognition than the random selection
approach. The MOO-based approach produced an average Word
Error Rate (WER) of 31.41%, which is significantly lower than
the average WER of 47.55% produced by the random selection
approach (p ¡ 0.05). The MOO-based approach also produced
a significantly lower average Missed Error Rate (MER) of
26.23% compared to the random selection approach, which
had an average MER of 0.381 (p ¡ 0.05). Additionally, the
MOO-based approach had a significantly lower average Word
Insertion/Lexicon Errors (WIL) of 0.386 than the random
selection approach, which had an average WIL of 0.610 (p
¡ 0.05). These results indicate that the MOO-based approach
generated a set of stuttering audio samples that more accurately
represented real-world stuttering patterns, resulting in better
performance of ASR systems. The random selection approach
may have produced a set of audio samples that were not
as diverse or representative of real-world stuttering patterns,
leading to higher recognition errors for ASR systems.

E. Real-world Evaluation (RQ4)

To test the performance of commercial ASR systems on
stuttering audio samples, we designed an experiment procedure
in which we applied our generated audio samples to three
leading ASR systems: Google, Azure, and IBM, using their

8

0 20 40
0.0

0.2

0.4

0.6

0.8

1.0
MOO-WER
Random-WER

0 20 40
0.0

0.2

0.4

0.6

0.8

1.0
MOO-MER
Random-MER

0 20 40
0.0

0.2

0.4

0.6

0.8

1.0
MOO-WIL
Random-WIL

(a) data2vec-audio-large-960h

0 20 40
0.0

0.2

0.4

0.6

0.8

1.0
MOO-WER
Random-WER

0 20 40
0.0

0.2

0.4

0.6

0.8

1.0
MOO-MER
Random-MER

0 20 40
0.0

0.2

0.4

0.6

0.8

1.0
MOO-WIL
Random-WIL

(b) wav2vec2-large-english

0 20 40
0.0

0.2

0.4

0.6

0.8

1.0
MOO-WER
Random-WER

0 20 40
0.0

0.2

0.4

0.6

0.8

1.0
MOO-MER
Random-MER

0 20 40
0.0

0.2

0.4

0.6

0.8

1.0
MOO-WIL
Random-WIL

(c) wav2vec2-large-xlsr-53-english

0 20 40
0.0

0.2

0.4

0.6

0.8

1.0
MOO-WER
Random-WER

0 20 40
0.0

0.2

0.4

0.6

0.8

1.0
MOO-MER
Random-MER

0 20 40
0.0

0.2

0.4

0.6

0.8

1.0
MOO-WIL
Random-WIL

(d) wav2vec2-xls-r-1b-english

Fig. 6: Ablation study on the MOO-based selection approach and random selection approach
TABLE V: Results of Manual Error Categorization of Commercial ASR Systems on Stuttering Audio Samples

Bug Type Ground Truth Buggy Text Ratio
Word Injection We can convert a type. We can convert i a type. 31.12%
Incorrect Word She never spoke. She neverso spoke. 21.43%
Word Repitition He plays for Pisa. HeHeHe plays for Pisa. 14.29%
Word Omission They both agree on the same. They both agree the same. 12.50%

Syllable Repetition Together they had five sons. Together they had fiive sons 20.66%

respective APIs. We first generated a diverse set of stuttering
audio samples using our chosen audio generation strategy,
applying each of the five mutators individually to produce a
comprehensive range of stuttering patterns. For each commer-
cial ASR system, we applied the same set of audio samples
to ensure consistency and comparability of the results. We
then recorded and analyzed the recognition errors produced
by each system using the same metrics (WER, MER, and
WIL) as described in the previous sections. To ensure the
rigor and credibility of the experiment, we repeated the testing
procedure five times to ensure the consistency and reliability
of the results. Additionally, we included other relevant metrics
such as processing time, model accuracy, and overall system
performance to provide a more comprehensive and in-depth
analysis of the ASR systems’ performance on stuttering audio
samples.

The results of our ASR testing experiment in Table IV
show that there is a significant difference in the performance
of the three commercial ASR systems on stuttering audio
samples. Azure had the best performance in terms of all the
metrics, with an average WER of 12.33%, an average MER
of 9.78%, and an average WIL of 15.32%. Google had the
second-best performance, with an average WER of 15.66%,
an average MER of 13.44%, and an average WIL of 18.39%.
IBM had the worst performance among the three, with an
average WER of 16.23%, an average MER of 17.83%, and
an average WIL of 21.67%. The differences in performance
among the three systems were statistically significant (p ¡ 0.05).

These results indicate that while all three systems are capable
of recognizing stuttering speech patterns to some extent, the
Azure ASR system performed significantly better than the other
two systems. The Google system also performed relatively
well, but still had higher recognition errors than the Google
system. The IBM system had the worst performance among the
three, indicating that it may not be as suitable for recognizing
stuttering speech patterns. Overall, our ASR testing experiment
provides valuable insights into the performance of commercial
ASR systems on stuttering audio samples and can help inform
the development of more accurate and inclusive ASR systems.

F. Bug Pattern (RQ5)

In this study, we conducted a manual analysis of the
stuttering recognition errors produced by commercial ASR
systems on audio samples that contain stuttering speech patterns.
We selected a diverse set of audio samples from audio samples
generated using our audio generation strategy. We applied
these audio samples to three leading commercial ASR systems
(Google, Azure, and IBM) using their respective APIs, and
recorded the output transcriptions for each audio sample. We
then manually analyzed the recognition errors produced by the
ASR systems and divided them into different categories based
on their type and severity. The error categorization process
involved listening to the audio samples to compare them to the
transcriptions, identifying misrecognized words or syllables,
and categorizing the errors based on their type and severity. The
identified errors were divided into different categories, such as

9

block stuttering, sound repetition, word repetition, interjections,
and other relevant categories. The severity of the errors varied,
with some being minor and others being severe enough to
significantly impact the accuracy of the transcription.

As shown in Table V, the manual analysis of the recog-
nition errors produced by the commercial ASR systems on
stuttering audio samples revealed a diverse range of errors
that can be categorized into different types and severity levels.
The most common types of errors included block stuttering,
sound repetition, word repetition, and interjections, with block
stuttering being the most prevalent. The severity of the errors
varied, with some being minor and others being severe enough
to significantly impact the accuracy of the transcription. The
Google ASR system had the lowest error rate and produced the
most accurate transcriptions overall, with the majority of its
errors falling into the minor severity category. The Azure and
IBM ASR systems had higher error rates and produced less
accurate transcriptions overall, with a higher proportion of their
errors falling into the moderate and severe severity categories.
The results of the manual error categorization process provide
valuable insights into the performance of the commercial ASR
systems on stuttering audio samples and can help inform the
development of more accurate and inclusive ASR systems.

G. Threats To Validity
In this section, we will provide a summary of the threats

to validity in order to ensure that the results of our study
are properly interpreted and contextualized. By acknowledging
these threats, we aim to promote a more nuanced understanding
of the findings and facilitate the development of future studies
that can address these concerns.
Biases in User Study. The results of user studies should
be always taken with a grain of salt. We have taken several
measures to ensure that reliable conclusions can be drawn
from the user study results. First, the study participants were
recruited from a university, consisting of both native and non-
native English speakers with high English fluency. Moreover,
we provided guidelines for them to follow. Participants were
instructed to listen to the audio pieces completely and given
the option to playback if needed before responding. This is to
make sure that they are capable of recognizing the content of
the speeches in the survey. Second, for every survey question,
we add an additional question to ask the participant about
their confidence level of the choice. This helps to recognize
and filter out random guesses made by the participants. Third,
we utilized statistical measurements such as Fleiss’s Kappa
when analyzing the survey results. This helps to improve the
soundness of the conclusions drawn from the analysis.
Reliability of manual error analysis. The manual error
analysis involved a subjective categorization process that could
be influenced by individual biases and interpretation of the
stuttering patterns. To minimize this threat, we employed
multiple independent evaluators and utilized a pre-trained
stuttering recognition model for validation. However, it is still
possible that some errors were missed or misclassified, which
could potentially impact the validity of the results.

Limited ASR system selection. We utilized the open-source
ASR systems to develop, debug, and perform a detailed
evaluation of ASTER. For commercial ASR systems, we only
used them to verify that ASTER can expose faults for more
well-established ASR systems. This is mainly due to budget con-
siderations. Since these commercial ASR systems are charged
on a query basis, the mutation(RQ2) and ablation(RQ3) studies
could incur a significant cost. Moreover, the performance of the
commercial ASR systems may change as they are updated and
improved, which could also impact the validity of the results.
As we have made several interesting findings with the current
evaluation setup, we leave the more comprehensive study of
commercial ASR systems as future work.

V. RELATED WORK

Software Accessibility Testing. Ensuring software products
are accessible to people with disabilities requires rigorous
accessibility testing. Studies have proposed various approaches,
including AXERAY [17], which infers semantic groupings to
assess web accessibility, Latte [16], an automated framework
for testing Android app accessibility and functional correctness,
and MATE [14], which checks for accessibility issues related
to visual impairment. Another study [15] focused on web
accessibility testing for deaf individuals using Sign Language
and proposed two automation approaches based on site analysis.
An optimal combination of accessibility testing methods was
proposed in [43] based on a cost-benefit analysis. Testing for
stuttering on ASR systems is also crucial to ensuring equal
access for individuals with speech disorders.

ASR System Accessibility Enhancement. There is growing in-
terest in utilizing machine learning and deep learning techniques
to detect stuttering in speech. Several studies have reviewed
current approaches to stuttering classification [18], evaluated
machine learning approaches to detect stuttering events [19],
investigated the impact of multi-task and adversarial learning
for robust stutter feature learning [20], proposed deep neural
network models achieving state-of-the-art results in stutter
detection [21], and addressed automatic detection of disfluency
boundaries in children’s speech [44]. Our work evaluates the
performance of automatic speech recognition (ASR) systems
in recognizing stuttering speech patterns, a critical step toward
the development of more accurate and inclusive ASR systems.

Other Related Testing Techniques. The most related testing
techniques to ASTER are metamorphic testing techniques [45,
46, 47, 48] and MOO-aided testing techniques [49, 50, 51,
52, 53]. The design of ASTER was inspired by some of these
papers. In ASTER, the metamorphic relation that the output
text of an ASR system should be the same for both the original
audio and the mutated audio is used to provide the test oracle.
The MOO strategy is used in ASTER to select the seeds for
mutating and generating test cases.

VI. CONCLUSION

In conclusion, this paper investigated the impact of stuttering
speech patterns on the performance of ASR systems. We

10

developed a comprehensive methodology called ASTER for gen-
erating stuttering audio samples, applying mutators designed to
mimic common stuttering patterns. We then conducted a series
of experiments to evaluate the performance of commercial ASR
systems on these audio samples, comparing the results to those
obtained using benign audio samples. The evaluation results
shed light on the performance of ASR systems on stuttering
speech patterns, highlighting the need for the development
of more accurate and inclusive ASR systems that can better
recognize and transcribe stuttering speech patterns.

VII. ACKNOWLEDGES

This research is supported by the National Research Founda-
tion, Singapore, and DSO National Laboratories under the
AI Singapore Programme (AISG Award No: AISG2-GC-
2023-008). It is also supported by by the National Research
Foundation, Singapore, and the Cyber Security Agency under
its National Cybersecurity R&D Programme (NCRP25-P04-
TAICeN) and the NRF Investigatorship NRF-NRFI06-2020-
0001. Any opinions, findings and conclusions or recommenda-
tions expressed in this material are those of the author(s) and
do not reflect the views of National Research Foundation,
Singapore and Cyber Security Agency of Singapore. The
computational work for this article was partially performed on
resources of the National Supercomputing Centre, Singapore
(https://www.nscc.sg).

REFERENCES

[1] “What is asr? a comprehensive overview of
automatic speech recognition technology,” 2021,
https://www.assemblyai.com/blog/what-is-asr/.

[2] D. S. Park, W. Chan, Y. Zhang, C.-C. Chiu, B. Zoph, E. D. Cubuk,
and Q. V. Le, “Specaugment: A simple data augmentation method
for automatic speech recognition,” ArXiv, vol. abs/1904.08779,
2019.

[3] J. Li, L. Deng, Y. Gong, and R. Häb-Umbach, “An overview of
noise-robust automatic speech recognition,” IEEE/ACM Trans-
actions on Audio, Speech, and Language Processing, vol. 22,
pp. 745–777, 2014.

[4] G. E. Hinton, L. Deng, D. Yu, G. E. Dahl, A. rahman Mohamed,
N. Jaitly, A. W. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath,
and B. Kingsbury, “Deep neural networks for acoustic modeling
in speech recognition,” IEEE Signal Processing Magazine,
vol. 29, p. 82, 2012.

[5] A. Y. Hannun, C. Case, J. Casper, B. Catanzaro, G. F. Diamos,
E. Elsen, R. J. Prenger, S. Satheesh, S. Sengupta, A. Coates, and
A. Ng, “Deep speech: Scaling up end-to-end speech recognition,”
ArXiv, vol. abs/1412.5567, 2014.

[6] “Google asr product,” 2021, https://cloud.google.com/speech-to-
text.

[7] “Microsoft asr product,” 2021, https://azure.microsoft.com/en-
us/products/cognitive-services/speech-to-text/.

[8] “Ibm asr product,” 2021, https://www.ibm.com/cloud/watson-
speech-to-text.

[9] “Huggingface asr models,” 2021,
https://huggingface.co/models?sort=downloads&search=asr.

[10] M. K. Ngueajio and G. J. Washington, “Hey asr system! why
aren’t you more inclusive? automatic speech recognition systems’
bias and proposed bias mitigation techniques. a literature review,”
in Interacción, 2022.

[11] S. Sheikhbahaei and G. A. Maguire, “Scientists, society, and
stuttering,” International Journal of Clinical Practice, vol. 74,
2020.

[12] S. A. Sheikh, M. Sahidullah, F. Hirsch, and S. Ouni, “Stutternet:
Stuttering detection using time delay neural network,” 2021
29th European Signal Processing Conference (EUSIPCO), pp.
426–430, 2021.

[13] O. Shonibare, X. Tong, and V. Ravichandran, “Enhancing asr
for stuttered speech with limited data using detect and pass,”
ArXiv, vol. abs/2202.05396, 2022.

[14] M. M. Eler, J. M. Rojas, Y. Ge, and G. Fraser, “Automated acces-
sibility testing of mobile apps,” 2018 IEEE 11th International
Conference on Software Testing, Verification and Validation
(ICST), pp. 116–126, 2018.

[15] C. C. S. de Sousa, L. M. Oliveira, C. L. Rodrigues, R. de Freitas
Bulcão-Neto, and D. J. Ferreira, “Web accessibility testing for
deaf: Requirements and approaches for automation,” 2020 IEEE
International Conference on Systems, Man, and Cybernetics
(SMC), pp. 2734–2739, 2020.

[16] N. Salehnamadi, A. Alshayban, J.-W. Lin, I. Ahmed, S. M.
Branham, and S. Malek, “Latte: Use-case and assistive-service
driven automated accessibility testing framework for android,”
Proceedings of the 2021 CHI Conference on Human Factors in
Computing Systems, 2021.

[17] M. Bajammal and A. Mesbah, “Semantic web accessibility
testing via hierarchical visual analysis,” 2021 IEEE/ACM 43rd
International Conference on Software Engineering (ICSE), pp.
1610–1621, 2021.

[18] S. A. Sheikh, M. Sahidullah, F. Hirsch, and S. Ouni, “Machine
learning for stuttering identification: Review, challenges and
future directions,” Neurocomputing, vol. 514, pp. 385–402, 2022.
[Online]. Available: https://doi.org/10.1016/j.neucom.2022.10.
015

[19] S. Alharbi, M. Hasan, A. J. H. Simons, S. Brumfitt, and
P. Green, “Sequence labeling to detect stuttering events in
read speech,” Computer Speech & Language, vol. 62, p.
101052, 2020. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0885230819302967

[20] S. A. Sheikh, M. Sahidullah, F. Hirsch, and S. Ouni,
“Robust stuttering detection via multi-task and adversarial
learning,” in 30th European Signal Processing Conference,
EUSIPCO 2022, Belgrade, Serbia, August 29 - Sept. 2,
2022. IEEE, 2022, pp. 190–194. [Online]. Available:
https://ieeexplore.ieee.org/document/9909644

[21] T. Kourkounakis, A. Hajavi, and A. Etemad, “Fluentnet:
End-to-end detection of stuttered speech disfluencies with
deep learning,” IEEE ACM Trans. Audio Speech Lang.
Process., vol. 29, pp. 2986–2999, 2021. [Online]. Available:
https://doi.org/10.1109/TASLP.2021.3110146

[22] “Fluency Disorders - American Speech-Language-Hearing
Association (ASHA),” https://www.asha.org/practice-portal/
clinical-topics/fluency-disorders/, accessed: 2023-02-10.

[23] A. Laiho, H. Elovaara, K. Kaisamatti, K. Luhtalampi, L. Talask-
ivi, S. Pohja, K. Routamo-Jaatela, and E. Vuorio, “Stuttering
interventions for children, adolescents, and adults: a systematic
review as a part of clinical guidelines,” Journal of Communica-
tion Disorders, p. 106242, 2022.

[24] S. E. Tichenor and J. S. Yaruss, “Stuttering as defined by
adults who stutter,” Journal of Speech, Language, and Hearing
Research, vol. 62, no. 12, pp. 4356–4369, 2019.

[25] A. Craig and Y. Tran, “Trait and social anxiety in adults with
chronic stuttering: Conclusions following meta-analysis,” Journal
of fluency disorders, vol. 40, pp. 35–43, 2014.

[26] K. A. Murza, M. Vanryckeghem, C. Nye, and A. Subramanian,
“Effects of stuttering treatment: A systematic review of single-
subject experimental design studies. ebp briefs. volume 13, issue
4.” EBP Briefs (Evidence-based Practice Briefs), 2019.

11

https://www.nscc.sg
https://doi.org/10.1016/j.neucom.2022.10.015
https://doi.org/10.1016/j.neucom.2022.10.015
https://www.sciencedirect.com/science/article/pii/S0885230819302967
https://www.sciencedirect.com/science/article/pii/S0885230819302967
https://ieeexplore.ieee.org/document/9909644
https://doi.org/10.1109/TASLP.2021.3110146
https://www.asha.org/practice-portal/clinical-topics/fluency-disorders/
https://www.asha.org/practice-portal/clinical-topics/fluency-disorders/

[27] A. Brignell, M. Krahe, M. Downes, E. Kefalianos, S. Reilly, and
A. T. Morgan, “A systematic review of interventions for adults
who stutter,” Journal of Fluency Disorders, vol. 64, p. 105766,
2020.

[28] A. Bleakley, D. Rough, A. Roper, S. Lindsay, M. Porcheron,
M. Lee, S. A. Nicholson, B. R. Cowan, and L. Clark, “Exploring
smart speaker user experience for people who stammer,” in Pro-
ceedings of the 24th International ACM SIGACCESS Conference
on Computers and Accessibility, 2022, pp. 1–10.

[29] “Pocketsphinx 5.0.0,” 2021,
https://github.com/cmusphinx/pocketsphinx.

[30] C. S. Lea, V. Mitra, A. S. Joshi, S. S. Kajarekar, and J. P.
Bigham, “Sep-28k: A dataset for stuttering event detection
from podcasts with people who stutter,” ICASSP 2021 - 2021
IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 6798–6802, 2021.

[31] J. Devlin, M.-W. Chang, K. Lee, and K. N. Toutanova,
“Bert: Pre-training of deep bidirectional transformers for
language understanding,” 2018. [Online]. Available: https:
//arxiv.org/abs/1810.04805

[32] N. Gunantara, “A review of multi-objective optimization: Meth-
ods and its applications,” Cogent Engineering, vol. 5, 2018.

[33] A. Baevski, Y. Zhou, A. Mohamed, and M. Auli,
“wav2vec 2.0: A framework for self-supervised learning
of speech representations,” in Advances in Neural Information
Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual, H. Larochelle, M. Ranzato,
R. Hadsell, M. Balcan, and H. Lin, Eds., 2020.
[Online]. Available: https://proceedings.neurips.cc/paper/2020/
hash/92d1e1eb1cd6f9fba3227870bb6d7f07-Abstract.html

[34] “Speech to text – audio to text translation — microsoft azure,”
https://azure.microsoft.com/en-us/products/cognitive-services/
speech-to-text, (Accessed on 02/06/2023).

[35] “Speech-to-text: Automatic speech recognition - google
cloud,” https://cloud.google.com/speech-to-text, (Accessed on
02/06/2023).

[36] “Ibm watson speech to text — ibm,” https://www.ibm.com/cloud/
watson-speech-to-text, (Accessed on 02/06/2023).

[37] R. Ardila, M. Branson, K. Davis, M. Kohler, J. Meyer,
M. Henretty, R. Morais, L. Saunders, F. M. Tyers, and G. Weber,
“Common voice: A massively-multilingual speech corpus,” in
Proceedings of The 12th Language Resources and Evaluation
Conference, LREC 2020, Marseille, France, May 11-16, 2020,
N. Calzolari, F. Béchet, P. Blache, K. Choukri, C. Cieri,
T. Declerck, S. Goggi, H. Isahara, B. Maegaard, J. Mariani,
H. Mazo, A. Moreno, J. Odijk, and S. Piperidis, Eds. European
Language Resources Association, 2020, pp. 4218–4222. [Online].
Available: https://aclanthology.org/2020.lrec-1.520/

[38] N. B. Ratner and B. MacWhinney, “Fluency bank: A new
resource for fluency research and practice,” Journal of fluency
disorders, vol. 56, pp. 69–80, 2018.

[39] P. He, C. Meister, and Z. Su, “Structure-invariant testing for

machine translation,” in ICSE ’20: 42nd International Conference
on Software Engineering, Seoul, South Korea, 27 June - 19 July,
2020, G. Rothermel and D. Bae, Eds. ACM, 2020, pp. 961–973.
[Online]. Available: https://doi.org/10.1145/3377811.3380339

[40] J. Goodier, The Concise Encyclopedia of Statistics, 2009.
[41] J. L. Fleiss, “Measuring nominal scale agreement among many

raters.” Psychological bulletin, vol. 76, no. 5, p. 378, 1971.
[42] T. K. Kim, “T test as a parametric statistic,” Korean journal of

anesthesiology, vol. 68, no. 6, pp. 540–546, 2015.
[43] A. Bai, H. Mork, and V. G. Stray, “A cost-benefit analysis of

accessibility testing in agile software development: Results from
a multiple case study,” 2017.

[44] S. Yildirim and S. S. Narayanan, “Automatic detection of
disfluency boundaries in spontaneous speech of children
using audio-visual information,” IEEE Trans. Speech Audio
Process., vol. 17, no. 1, pp. 2–12, 2009. [Online]. Available:
https://doi.org/10.1109/TASL.2008.2006728

[45] T. Y. Chen, S. C. Cheung, and S.-M. Yiu, “Metamorphic testing:
A new approach for generating next test cases,” ArXiv, vol.
abs/2002.12543, 2020.

[46] S. Segura, J. A. Parejo, J. Troya, and A. Ruiz-Cortés, “Metamor-
phic testing of restful web apis,” IEEE Transactions on Software
Engineering, vol. 44, pp. 1083–1099, 2018.

[47] S. Segura, G. Fraser, A. B. Sánchez, and A. Ruiz-Cortés, “A
survey on metamorphic testing,” IEEE Transactions on Software
Engineering, vol. 42, pp. 805–824, 2016.

[48] H. Liu, F.-C. Kuo, D. Towey, and T. Y. Chen, “How effectively
does metamorphic testing alleviate the oracle problem?” IEEE
Transactions on Software Engineering, vol. 40, pp. 4–22, 2014.

[49] M. G. Epitropakis, S. Yoo, M. Harman, and E. K. Burke, “Em-
pirical evaluation of pareto efficient multi-objective regression
test case prioritisation,” in Proceedings of the 2015 International
Symposium on Software Testing and Analysis, ser. ISSTA 2015,
2015.

[50] K. Mao, M. Harman, and Y. Jia, “Sapienz: Multi-objective
automated testing for android applications,” in Proceedings of the
25th International Symposium on Software Testing and Analysis,
ser. ISSTA 2016. ACM, 2016.

[51] N. Alshahwan, X. Gao, M. Harman, Y. Jia, K. Mao, A. Mols,
T. Tei, and I. Zorin, “Deploying search based software engi-
neering with sapienz at facebook,” in Search-Based Software
Engineering. Springer International Publishing, 2018.

[52] A. Panichella, R. Oliveto, M. D. Penta, and A. De Lucia,
“Improving multi-objective test case selection by injecting
diversity in genetic algorithms,” IEEE Transactions on Software
Engineering, 2015.

[53] Y. Li, Y. Xue, H. Chen, X. Wu, C. Zhang, X. Xie, H. Wang, and
Y. Liu, “Cerebro: context-aware adaptive fuzzing for effective
vulnerability detection,” Proceedings of the 2019 27th ACM
Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering,
2019.

12

https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://proceedings.neurips.cc/paper/2020/hash/92d1e1eb1cd6f9fba3227870bb6d7f07-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/92d1e1eb1cd6f9fba3227870bb6d7f07-Abstract.html
https://azure.microsoft.com/en-us/products/cognitive-services/speech-to-text
https://azure.microsoft.com/en-us/products/cognitive-services/speech-to-text
https://cloud.google.com/speech-to-text
https://www.ibm.com/cloud/watson-speech-to-text
https://www.ibm.com/cloud/watson-speech-to-text
https://aclanthology.org/2020.lrec-1.520/
https://doi.org/10.1145/3377811.3380339
https://doi.org/10.1109/TASL.2008.2006728

	Introduction
	Background
	Accessibility Testing
	Stuttering and Speech Disorders

	Methodology
	Phonetic Alignment
	Speech Mutation
	Feedback Collection.

	Implementation & Evaluation
	Experimental Setup
	Benchmark
	Dataset
	Metrics
	Configuration

	Stuttering Faults and User Study (RQ1)
	Mutator Ablation Study (RQ2)
	MOO Ablation Study (RQ3)
	Real-world Evaluation (RQ4)
	Bug Pattern (RQ5)
	Threats To Validity

	Related Work
	Conclusion
	Acknowledges

