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Abstract—Software developers often struggle to update APIs,
leading to manual, time-consuming, and error-prone processes.
We introduce MELT, a new approach that generates lightweight
API migration rules directly from pull requests in popular library
repositories. Our key insight is that pull requests merged into
open-source libraries are a rich source of information sufficient
to mine API migration rules. By leveraging code examples
mined from the library source and automatically generated code
examples based on the pull requests, we infer transformation
rules in Comby, a language for structural code search and replace.
Since inferred rules from single code examples may be too
specific, we propose a generalization procedure to make the rules
more applicable to client projects. MELT rules are syntax-driven,
interpretable, and easily adaptable. Moreover, unlike previous
work, our approach enables rule inference to seamlessly integrate
into the library workflow, removing the need to wait for client
code migrations. We evaluated MELT on pull requests from
four popular libraries, successfully mining 461 migration rules
from code examples in pull requests and 114 rules from auto-
generated code examples. Our generalization procedure increases
the number of matches for mined rules by 9×. We applied these
rules to client projects and ran their tests, which led to an overall
decrease in the number of warnings and fixing some test cases
demonstrating MELT’s effectiveness in real-world scenarios.

I. INTRODUCTION

Developers often make use of third-party libraries [1], which
provide modular functionality to clients through an Appli-
cation Programming Interface (API). The API is a contract
between the library and its clients, separating the concrete
implementation of library features from its specification.

Ideally, APIs should remain stable. However, they change
frequently, and API contracts are often broken [2], [3], [4],
for reasons ranging from bug fixes, to changes in library
requirements [5]. APIs may become deprecated or obsolete
[6], requiring clients to adapt their code to reflect the newest
library version. These kinds of non-functional code changes
are known as software refactoring [7], a primarily manual [8]
and error-prone [9] task. To migrate to a new library version,
clients must examine the library changes such as by inspecting
documentation or source code. This task’s complexity often

deters library clients from updating altogether, despite the
security risks posed by outdated dependencies [10] [11].

The widespread prevalence of deprecations and breaking
changes in the software ecosystem motivates research efforts
in automating migration [12], [13], [14], [15], [16], [17]. Tools
for API migration typically either mine commits from library
client projects that have undergone migrations [15], [16], [12],
or are supplemented by information from new client projects
in the most up-to-date APIs [14]. The effectiveness of these
tools is hindered by their reliance on mining data from client
projects that have either already migrated across versions, or
are already using up-to-date APIs. Unfortunately, this data is
scarce: a recent study found that 81.5% [18] of projects keep
outdated dependencies. Additionally, the mining process can
only occur after clients begin transitioning between versions,
precluding use shortly after a new version of the library is
released [19], [20].

To overcome these limitations, we propose a new approach
called MELT. Unlike previous methods, MELT does not require
external data from clients. Instead, it leverages the fact that
the development process of open-source libraries provides a
wealth of high-quality information that is sufficient to generate
transition examples and mine transformation rules. At a high
level, our idea is to use pull requests (PRs) submitted to a
library’s repository to learn code transformation rules for
updating client code. This allows the integration of transfor-
mation rule mining into the development process.

Pull requests have become the de facto standard for open-
source software development on collaborative platforms like
GitHub [21], [22]. Pull requests typically include a title, a
natural language description of the proposed changes and how
they relate to project milestones or issues, and a set of commits
(i.e., code file changes). These are reviewed by a core group
of maintainers who determine to accept, request revisions, or
reject the changes.

We use information from pull requests merged into open-
source libraries to mine transformation rules that adapt client
code in light of breaking changes or deprecations. First, MELT
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uses natural language descriptions from PRs to identify API
changes by searching for keywords such as “deprecated”,
“breaking change”, and “API change”. If the PR corresponds
to such an API change, MELT first uses the commits in the
PRs that contain changes to the library code to generate
transformation rules. The internal updates to the library source
code and test cases serve as the ground truth for mining
transformation rules.

However, the code-level changes alone do not always pro-
vide sufficient information to mine thorough transformation
rules for a given breaking change. MELT therefore additionally
leverages the natural language text in pull requests to generate
additional code examples for mining. Specifically, we prompt
a state-of-the-art large language model (LLM) pre-trained on
open-source code to generate concise code examples that
clearly illustrate how to transition from the old API to the
new one. Using its prior knowledge of the library (obtained
from pretraining) and the additional information in the prompt,
the model can often infer how to transition from old APIs and
provide useful concrete examples.

Using the code examples mined from the library source and
the code examples automatically generated from the natural
language descriptions, we infer transformation rules in Comby

[23], [24], a tool and a language for structural code search
and replace. We choose to represent our transformation rules
in Comby because: (1) it allows us to express find-and-replace
rules in a concise and interpretable format; (2) it is a stable
widely adopted tool for syntax-driven code transformations.

There are multiple key advantages to our approach. Firstly,
MELT does not require client projects to infer transformation
rules. This contrasts with previous work [25], [26], [27], [28],
which require large datasets of training data containing multi-
ple migration examples to mine rules. Indeed, MELT can mine
migration rules even for changes that have not been in a library
release yet (i.e., they are due to future milestones). Secondly,
MELT uses Comby to express migration rules, which results in
easy-to-interpret, adaptable, and maintainable transformations.

In summary, our main contributions are as follows:

• We introduce a novel approach to extract rules that ad-
dress deprecations and breaking changes in open-source
software libraries that does not rely on client data.

• An LLM-driven approach for generating code examples
and test cases for transformation rule mining.

• A generalization procedure for transformation rules en-
hances their applicability in client projects.

• To facilitate integration into existing workflows, we
prototype a continuous integration (CI) solution using
GitHub Actions for library maintainers, so they can
integrate MELT in their workflows.1

• We evaluate MELT on four open-source libraries to infer
a total of 461 migration rules from code examples and
114 from auto generated code examples. We also evaluate
MELT end-to-end by migrating client code.

1https://github.com/squaresLab/melt action

Fig. 1: Code change in pull request #44539 [29] from the
pandas-dev/pandas repository.

TABLE I: Top: Comby rules extracted from pandas pull request
#44539, deprecating DataFrame.append and Series.append. Bottom:
Rules extracted from sci-py pull request #14419, including original
specific (“Spec”) and generalized (“Gen”) versions. Template variable
constraints are omitted for brevity.

Match Template Rewrite Template

:[[s2]].append(:[[s1]])
pd.concat([:[[s2]],
:[[s1]]])

where :[[s1]].type == Series
:[[s2]].type == Series

:[[df]].append(:[[s]])
pd.concat([:[[df]],
DataFrame(:[[s]]).T.
infer_objects()])

where :[[df]].type == DataFrame
:[[s]].type == Series

Type Match Template Rewrite Template

Spec :[[s]].spline. :[[s]].cspline2d(
cspline2d(:[[x]],:[y]) :[[x]], :[y])

Gen :[[s]].spline :[[s]].cspline2d(
cspline2d(:[args]) :[args])

II. MOTIVATION AND OVERVIEW

Figure 2 provides a high-level overview of MELT and
its main components. We delve into the specifics of each
component in Sections III and IV.

Pull requests are the input of MELT, as they are the key
source that informs our approach. Pull requests generally
contain all the code changes related to a given new feature.
For example, Figure 1 shows an example code change from a
pull request [29] submitted to pandas [30] that deprecates two
popular APIs: DataFrame.append and Series.append.2 MELT
identifies code changes, such as the one shown in Figure 1,
within the pull request using its Code Change Analyzer (Sec-
tion III-A) and inputs them into the Rule Inference algorithm
(Section IV-A) to generate rules. The top portion of Table I
shows two of the rules MELT infers from the code changes
for this specific pull request.

The rules in Table I are expressed in Comby’s domain specific
language [24]. The match template (left column) is the code
structure for which Comby searches. The rewrite template (right
column) shows how to transform the matched code based on
the variables in the match template [23]. Comby uses template
variables, i.e., placeholders that can be matched with certain

2Both APIs were later removed from pandas in version 2.0.0.
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Fig. 2: MELT overview. MELT takes as input a pull request (PR) and outputs a set of rules. The PR is processed in two ways: (1) the Code
change analyzer identifies relevant code changes; (2) the Code generation model generates additional code examples. Rules are inferred from
the code changes and examples using the rule inference algorithm, then filtered and generalized.

Fig. 3: Pull Request #14419 [33] from scipy/scipy. This pull
request was part of SciPy 1.8, released in February 2022.

language constructs. For example, a template variable to match
alphanumeric characters is represented by :[[x]], where x is
the name of the template variable. The template variables in
the match template can be constrained in multiple ways using
a where clause. In particular, to prevent spurious matches,
template variables can be constrained to be a certain type (like
:[[s2]].type == DataFrame). Although type information is not
strictly required, it is especially useful when working with
common API names such as append and concat, since both
are part of Python’s builtins list.

Code diffs in pull requests provide valuable information,
however, they do not always contain the necessary code exam-
ples for rule inference. Fortunately, pull requests offer alterna-
tive sources of information that can be used to extract further
details about the changing APIs. Figure 3 shows an informative
comment left by a developer in a code file when deprecating
namespace scipy’s [31] namespace scipy.signal.spline in
favor of scipy.signal. To leverage all available information
in the pull request, MELT uses a Code Generation Model
to generate additional code examples and test cases for this
change (Section III-B). Figure 4 shows a simplified version of
code GPT-4 [32] (a state-of-the-art model) generates from the
pull request in Figure 3. The generated examples enable us to
both infer and test the rules.

Since the test case executes successfully, MELT uses the
code example to generate a rule by abstracting concrete
identifiers and literals. For this case, MELT generates the

def old_usage1(image):
return signal.spline.cspline2d(image , 8.0)

def new_usage1(image):
return signal.cspline2d(image , 8.0)

class TestEquiv(unittest.TestCase):
def test_assert1(self):

np.random.seed (181819142)
image = np.random.rand(71, 73)
assert np.allclose(

old_usage1(image),
new_usage1(image))

Fig. 4: Code generated by GPT-4 showing how to transition from
the deprecated namespace for cspline2d and a test case.

rule in the third row of Table I. This rule accurately reflects
the deprecation made in the pull request (i.e., replaces the
deprecated namespace with the new one). Nevertheless, a
closer inspection reveals that the rule is too specific: it will
only match usages where: (1) the first argument of cspline2d is
an identifier (:[[s]] only matches with identifiers), and (2) the
function is called with two or more arguments. The cspline2d

function can accept multiple combinations of arguments, in-
cluding keyword arguments with default values.

To guard against overly-specific rules, MELT applies Rule
Generalization (Section IV-C). For example, the template
holes :[[x]] and :[y] in the rule in the first row of the
bottom of Table I remain unchanged in the match and rewrite
templates, indicating that they are not relevant to the change at
hand. To enhance the rule’s applicability, MELT generalizes the
specific argument combination, resulting in an updated version
of the rule (shown in the last row of Table I). The revised rule
uses a more permissive match template using :[args], which
can match any number of function arguments.

III. MINING PULL REQUESTS

In this section, we describe MELT’s approach to identify
and create code examples for rule inference.
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A. Extracting Code Examples from Code Diffs

MELT’s input is a pull request P , which contains both
natural language descriptions and a set of code diffs P.diffs,
each of which corresponds to changed code snippets. However,
not all diffs in a pull request are relevant to an API change, as
they may encompass unrelated refactoring actions. Therefore,
MELT first identifies which changes in the pull request are
relevant to the API of interest.

MELT determines which code changes are relevant using
its Code Change Analyzer. MELT starts by pinpointing which
public APIs are affected by the pull request by examin-
ing the scope of each code diff to identify the affected
function and its corresponding class. For example, for the
code change in Figure 1, MELT identifies the function name
test datatimeindex and the class where the function comes
from TestSeriesFormatting. MELT filters out test functions
and private namespaces, to exclude API names that are not
the main focus of the change.3 On this example, the test class
and method will be filtered, but other changes in the same PR
(not shown) affect the append and concat methods, so MELT
considers those methods relevant.

MELT then filters the code diffs to retain only those diffs
and surrounding code that contain at least one of the relevant
keywords. This produces a set of code examples to serve as
inputs to rule inference. For the pandas example, although the
test method itself is not a relevant API name, the code change
in that test method does concern relevant API calls, and so
these diffs will be retained for use in inference. A strength of
this approach is its generalizability across multiple libraries
and languages, since it works at token level.

B. Generating Additional Code Examples

As illustrated in Section II, pull requests sometimes lack
sufficient code examples to infer migration rules. In a pre-
liminary study, we analyzed 174 pull requests related to
breaking changes and deprecations from pandas’ release notes.
We discovered that only 41 (23.6%) of these pull requests
contained at least one meaningful code example showcasing
the transition from old to new usage. However, pull requests
offer other information sources about API changes, including
natural language descriptions in comments, developer dis-
cussions, and documentation. Our key insight is that this
additional data can also be leveraged to generate and test
more code examples. MELT uses a Code Generation Model
to produce extra code examples from this data. Generating
code examples rather than the rules directly is advantageous,
because we can test and validate the generated code, enhancing
confidence in the rules inferred from it. Additionally, the code
examples may enhance interpretability by demonstrating the
provenance of inferred rules to MELT users.

Algorithm 1 outlines our approach. Given a pull request and
a code generation model, MELT iterates for a fixed number

3Although our experiments do not exercise this setting, developers can also
provide the names of affected APIs when submitting the pull request, which
MELT can use directly to eliminate irrelevant code changes.

{library_name}.

{additional_requirements}.

{pr_data}

ѫѫѫpython

# Summary: Summary of the breaking changes

import pandas as pd
import numpy as np

def old_usage(x):
  pass

def new_usage(x):
  pass

(ҎҎɷ)

ѫѫѫ

{concrete_example}

Fig. 5: Prompt template for the GENERATEEXAMPLE function in
Algorithm 1, featuring four placeholders: (1) library name, (2)
additional requirements for format consistency and correctness,
(3) a concrete example with summary and examples from pandas,
and (4) pr data, the PR information including title, description,
changed files, and corresponding diffs, as JSON.

of times N (based on the desired number of samples) and
asks the model to generate a transition example (line 3). Our
GENERATEEXAMPLE implementation prompts GPT-4 8K [32],
which is well-versed in our target libraries’ code, to process
PR information (code diffs, title, description, discussion) and
generate transition examples for the APIs affected in that PR.
Figure 5 shows the template used for the prompt.4 MELT
uses the model to generate a pair of code examples, eold and
enew, representing the old and new usages, respectively. While
eold uses the old API, enew is implemented using the new
API. Both examples are functions with identical signatures
but different implementations.

However, simply asking the model to generate a code exam-
ple is not enough, as there are no guarantees that enew has the
same semantics of eold. As a subsequent step, MELT generates
test cases that assess the equivalence between eold and enew
(line 4). In our implementation of GENERATETESTCASES,
MELT follows up with GPT-4 for test generation. The request
includes the original prompt, the model’s response, and the
text from Figure 6. GPT-4 generates test inputs and computes

4Full prompts are provided in the artifact at Zenodo [34].
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Please generate tests for the examples above, to test 
whether they are equal. You do not need to include the 
old and new usage examples in the code block.

================= Output format ==================

================= Example output ================

ѫѫѫpython

import unittest # Do not forget appropriate imports.

class TestEquiv(unittest.TestCase):

  def test_assert1(self):
    # Input initialization
    assert old_usage1(x1) Ҏϳ new_usage1(x1)

  def test_assert2(self):
    # Input initialization
    assert np.allclose(old_usage2(x2), new_usage2(x2),
                       rtol=1e-2, atol=1e-2)

(ҎҎɷ)

if ҎʢnameҎʢ Ҏϳ "ҎʢmainҎʢ":
  unittest.main(verbosity=2, buffer=True)

ѫѫѫ

Fig. 6: Test case generation prompt. MELT concatenates the prompt
from Figure 5, the model’s response, and this prompt to ask the model
for tests for the generated examples.

Algorithm 1 GENERATETRANSITIONEXAMPLES(P,M, N )

Input: P: pull request,M: gen model, N : number of samples
Output: E: transition examples

1: E ← ∅
2: for i = 1 to N do
3: (eold, enew)← GENERATEEXAMPLE(M,P)
4: TE ← GENERATETESTCASES(M,P, eold, enew)
5: E ← E ∪ {(eold, enew)}
6: for each test ∈ TE do
7: if FAILS(test) then
8: E ← E \ {(eold, enew)}
9: end if

10: end for
11: end for
12: return E

their output on eold, which serve as an oracle to test enew.
The test case asserts that enew produces the same output as
eold for the same set of inputs.

After generating test cases, MELT checks whether any test
fails (lines 6-10). If any test case fails, the transition examples
for that test are discarded (line 8), as the new usage does not
behave similarly to the old one. MELT only considers examples
for which test cases were generated. This procedure outputs
a set of transition examples (when possible) that can then be
used to infer migration and test rules.

IV. RULE GENERATION

MELT uses the Comby language [23] and toolset for searching
and refactoring source code [24] to express migration rules.

(a) Code before migration

r = pd.read_csv(
filename ,
compression=comp ,
encoding=enc ,
index_col=0,

- squeeze=True)

(b) Code after migration

r = pd.read_csv(
filename ,
compression=comp ,
encoding=enc ,
index_col =0).

+ squeeze()

Fig. 7: Example code change from PR #43242 [36] in pandas

We introduced some elements of the language in Section II,
with examples of Comby’s syntax-driven match and rewrite
templates. Formally, a rewrite rule in Comby is of the form M −→
R where c1, c2, ..., cn, where M is the match template, R

is the rewrite template, and c1, c2, ..., cn are constraints in the
rule language. The key structure of Comby rules are template
variables, which are holes in the match and rewrite templates
that can be filled with code. Template variable types include,
e.g., :[[x]] matching alphanumeric characters (similar to \w+

in regex), and :[x] matching anything between delimiters
(e.g., [],(),{}). Comby also supports a small rule language
to add additional constraints, like types or regular expression
matches, on the template variables. Comby’s website [24] pro-
vides the full syntax reference. Although language agnostic,
Comby is still language aware, and can deal with comments and
other language-specific constructs. Its rules are also close to
the underlying source, and thus typically easier to read than,
e.g., transformations over abstract syntax trees.

The rest of this section describes rule inference.

A. Rule Inference

Given a set of code examples, MELT infers a set of Comby

rules that can be used to automatically migrate APIs in client
code. First, MELT parses the code files corresponding to each
code diff into an abstract syntax tree (AST), identifying the
nodes corresponding to the change before and after. MELT
then uses a variation of InferRules’s algorithm [35] (adapted
to Python) that always returns a single rule, and never abstracts
away class names, method names, and keyword arguments.

To illustrate, consider the code change in Figure 7, where
a library maintainer transforms a keyword argument into a
function call. The smallest unit MELT considers for a Comby

rule is a source code line. Given the two assignment nodes
corresponding to the change, rule inference then abstracts
away child nodes with template variables. When a construct
has the same character representation, MELT uses the same
template variable. For the example, MELT abstracts the left-
hand side and right-hand side of both assignments, yielding:

:[[a]] = :[b], and :[[a]] = :[c].
Notice that the template variable for the target of both

assignments is the same, :[[a]], because their source rep-
resentation is the same. However, MELT cannot match the
right-hand side of the assignments (:[[b]], and :[[c]]). It,
therefore further decomposes the AST nodes’ children:

5



:[[a]] =
:[[i]].read_csv(
[[d]],
compression=:[e],
encoding=:[f], −→
index_col=:[[g]],
squeeze=:[[h]])

:[[a]] =
:[[i]].read_csv(
:[[d]],
compression=:[e],
encoding=:[f],
index_col=:[[g]])

squeeze ()

MELT never abstracts away class names, function names,
and keyword arguments, as preserving these details is crucial
for API migration. Additionally, MELT consistently yields
a single, all-encompassing rule. In this case, MELT can
match every template variable in the match template with
a corresponding node in the rewrite template except :[[h]].
Consequently, it attempts to further decompose the nodes,
but still fails to match :[[h]], ultimately reverting it and
generating the final rule:

:[[a]] =
:[[i]].read_csv(
[[d]],
compression=:[e],
encoding=:[f], −→
index_col=:[[g]],
squeeze=True)

where :[[h]].type == int ,
:[[i]].type == pandas

:[[a]] =
:[[i]].read_csv(
:[[d]],
compression=:[e],
encoding=:[f],
index_col=:[[g]])

squeeze ()

After inferring a rule, MELT incorporates type guards.
The goal is to constrain each template hole to its respective
observed type. This step is crucial in preventing the mis-
application of rules for common API names (e.g., match-
ing List.append when the rule targets DataFrame.append).
In contrast to previous rule synthesis approaches [35], [37],
MELT directly incorporates type constraints into Comby’s rule
language. This integration is possible because we extend Comby

to support Language Server Protocol (LSP) type inference.
MELT uses the Jedi [38] type inference language server,
making it available for client usage.

B. Rule Filtering

Occasionally, MELT infers spurious rules (e.g., rules that
contain variables in the rewrite template that might not be in
scope). First, MELT discards duplicate rules within the same
pull request (post generalization, as well). A rule is considered
a duplicate if all of the match, rewrite template and template
variable constraints are the same. MELT then further filters by:

1) API Keywords: MELT discards transformation rules that
do not contain the name of any affected APIs. This can occur
when a developer modifies the surrounding context of a code
block, for example, by wrapping a statement in a try-catch
block (e.g., :[x] −→ try:\n:[x]). These rules are considered
spurious because they can match arbitrary code and are not
specific to API migration.

2) Unsafe Variable and Private Namespaces: MELT dis-
cards rules where a rewrite template uses either variables
from private namespaces (indicated by calls with underscores,

Python’s convention for private attributes/functions/names-
paces), or variables not present in the match template. This
ensures that the rules do not rely on private or internal
functionality that is not accessible to client code.

C. Generalizing Rules

Rules inferred from single code examples may be too
specific, as demonstrated in our rule for the squeeze exam-
ple so far. This change is specific to a particular argument
combination. However, the read_csv function has numerous
optional arguments, and the rule should therefore be versatile.
Moreover, it can only be applied to assignments, even though
the migration applies to other contexts.

Therefore, our approach generalizes rules for broader ap-
plicability by abstracting irrelevant context and generalizing
arguments. Algorithm 2 overviews the process. MELT obtains
AST nodes corresponding to the match and rewrite templates
(lines 1-2), and isolates and eliminates all constructs unre-
lated to the actual code transformation (line 3). Specifically,
REMOVECOMMONCONTEXT unwraps return statements, re-
moves targets on assignments (when possible), and unwraps
conditionals, asserts, and other statements, provided they are
identical in both the match and rewrite templates. If there
are multiple ways to unwrap a statement (e.g., the rule is
comprised of two assignments statements), MELT returns the
first possible unwrapping.

Next, API call arguments are generalized wherever possible.
MELT uses matchings obtained from the Hungarian algorithm
during the rule inference process (further explained in [35]) to
find matchings between call nodes. MELT examines matching
call nodes and generalizes common arguments (line 5). The
GENERALIZEARGUMENTS function operates by examining
pairs of arguments and keyword arguments. If there are
multiple consecutive arguments between the match and rewrite
templates, we replace the arguments with a generic template
variable :[args]. Once the arguments of the call pair have
been generalized, MELT replaces it in the original templates
(lines 6-7). MELT also ensures that keyword arguments always
appear at the end of the rewrite template. For example,
when a developer turns a positional argument into a keyword
argument, the rewrite template moves the positional argument
to the position of the last keyword argument. For our running
example, the final rule is:

:[[i]].read_csv(
:[args], −→
squeeze=True)

where :[[i]].type == pandas

:[[i]].read_csv(
:[args])

squeeze ()

. . . where MELT removed the assignment target and abstracted
irrelevant arguments.

Generalization is crucial to ensuring broader rule ap-
plicability. However, over-generalization does occur, espe-
cially when type information is lost. As a result, gener-
alized rules may need extra validation. However, MELT
does allow users to generate rule variations to explore

6



Algorithm 2 GENERALIZE(r)

Input: r: a rewrite rule
Output: generalized rewrite rule

1: n1 ← GETBEFORENODE(r)
2: n2 ← GETAFTERNODE(r)
3: n1, n2 ← REMOVECOMMONCONTEXT(n1, n2)
4: for (c1, c2) ∈ GETCALLPAIRS(n1, n2) do
5: c1

′, c2
′ ← GENERALIZEARGUMENTS(c1, c2)

6: n1 ← REPLACENODE(n1, c1, c
′
1)

7: n2 ← REPLACENODE(n2, c2, c
′
2)

8: end for
9: return CREATERULE(n1, n2)

alternative generalizations, such as a rule with a match
template :[[i]].read_csv(squeeze=True) or another with
more arguments after squeeze :[[i]].read_csv(:[args0],

squeeze=True, :[args1]). We leave a detailed investigation of
these concerns to future work.

V. EVALUATION

We answer the following research questions:
RQ1. How effectively can MELT generate transformation

rules from code examples in pull requests?
RQ2. How do code examples generated automatically com-

plement code examples in pull requests?
RQ3. What is the impact of rule generalizability?
RQ4. Are the rules effective for updating client code?

A. Experimental Setup

1) Implementation: Although our approach is largely
language-agnostic, we implement it for Python libraries be-
cause: (1) Python is one of the most popular programming
languages [39], and (2) there exists a gap in migration tools
for Python [20]. We implemented rule inference using the
Python abstract syntax tree (AST) module. InferRules [35]
was originally implemented for Java AST; we brought native
implementation to Python. We also perform rule generalization
at the Python AST level. For code generation, we used the
state-of-the-art GPT-4 [32]. We extended Comby to support
Language Server Protocol (LSP)-based type inference over
match templates [40] with Jedi [38], a state-of-the-art static
analysis tool. MELT’s source code, data, and logs used for the
evaluation are available at Zenodo [34].

2) Methodology: We evaluated MELT using four of the
most popular Python data science libraries: numpy, scipy,
sklearn, and pandas. We collected a total of 722 pull requests
for pandas, 141 for sklearn, 186 for numpy, and 130 for
scipy using the GitHub QL API and web crawlers over release
notes. We took a convenience sampling approach to find PRs
concerning API or breaking changes, or deprecation-related
PRs, moving backwards from the version of each library (as
of April 2023); this includes merged PRs intended for future
library releases, as well as those that have been released. We
collected more PRs for pandas than other libraries because it
had a higher number of pull requests, and breaking changes

TABLE II: RQ1. Left: Pull requests per library, with mined rules
and correct rules. Right: Filtered and generalized rules mined per
library, with total and correct counts.

PRs with

Library # PRs Mined Correct Mined Rules
Rules Rules Total Correct (%)

pandas 722 169 102 521 359 (68.9%)
scipy 130 21 11 33 19 (57.6%)
numpy 186 20 10 47 27 (57.4%)
sklearn 141 38 21 82 56 (68.3%)

Total 1179 248 144 683 461 (67.5%)

in pandas are particularly well documented. We then executed
MELT on each pull request.

For our manual assessment of rule correctness and rele-
vancy, two authors of this paper manually labeled a set of
rules independently. We defined a rule to be correct if (1) it
correctly reflects the change in the pull request, and (2) it is
generally applicable to client code and does not overgeneralize
(i.e., it will not produce incorrect migrations even if it matches
the correct APIs in some cases). This procedure requires ana-
lyzing the pull request discussion, changes, source code, and
documentation when necessary. The annotators discussed five
representative examples together and then individually labeled
151 unique rules, achieving an inter-rater reliability (IRR) with
a Cohen’s kappa of 0.84 (almost perfect agreement) [41]. Due
to the high agreement, the first author labeled the remaining
rules to cover all research questions.

B. RQ1: Mining Rules from Code Examples in PRs

Table II summarizes MELT’s rule inference algorithm on
1179 PRs (722 pandas, 130 scipy, 186 numpy, 141 sklearn).
MELT’s ability to extract code examples from pull requests
largely depends on the libraries’ testing practices. Nonethe-
less, a significant number of pull requests contain valuable
examples for rule extraction. Previous studies [42] found
that only 27.1% of migrations in a different set of libraries
were potentially fully automatable. MELT generates correct
migration rules for 12.2% of analyzed pull requests, indicating
room for improvement (further explored in RQ2).

Running MELT’s rule inference algorithm to the 1179 PRs
results in 5504 rules. After filtering and generalization, we
ended up with 683 rules. The right-most columns of Table
II show the number of mined rules after generalization and
filtering for each library, and their correctness based on
manual validation. On 67.5% of the cases, our mined rules
are correct and do not overgeneralize. However, on 32.5% of
the cases, MELT derived incorrect, non-generally applicable,
or over general rules. We observed three primary reasons for
incorrect rules: (1) Code change not generally applicable,
such that the rule cannot capture the context in which it
is applicable. For example, in numpy PR #9475 [43], the
np.rollaxis is deprecated in favor of np.moveaxis. Migrating
from one API to another depends on the actual content of the
variables used in the API, as it behaves differently depending
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TABLE III: RQ2. Left: Code examples generated and passing tests
per library. Middle: Pull requests with mined and correct (“Corr.”)
rules from generated examples. Right: Filtered and generalized rules
per library. Note: Limited to 50 PRs per library for budgetary reasons.

Code PRs with Mined Rules
Examples Rules Correct

Library Total # pass Total Corr. Total Prev New

pandas 285 134 25 19 45 7 30
scipy 194 68 15 13 30 4 18
numpy 222 114 21 14 46 2 31
sklearn 187 63 21 13 35 5 17

Total 888 379 82 59 156 18 96

on the variables’ content. Our rule cannot capture this, as
it only considers types, not content. (2) Overgeneralization
of rule arguments. For instance, pandas PR #21954 [44]
says “read table is deprecated. Instead, use pandas.read csv
passing sep=‘t’ if needed.”. However, one of the inferred rules
is read_table(:[args]) 7→ read_csv(:[args]), because the
algorithm abstracts all arguments based on the code example.
and, (3) Unrelated changes not caught by filtering.

MELT generates 461 correct migrations rules directly
from code examples for 144 (12.2%) out of 1179 pull
requests from four popular data-science libraries.

C. RQ2: Automatically generated code examples

To evaluate the role example generation played in rule in-
ference, we sampled 50 pull requests for each library (limited
by budget). We used a template to create a prompt to ask the
model to generate both code examples and test cases/inputs for
the examples, per pull request. The prompt includes the title,
description, discussion, and code changes. We used OpenAI’s
API to prompt GPT-4, with a (default) temperature of 0.2, and
sampled the model with N = 5 in Algorithm 1.

The left side of Table III shows the number of unique
examples generated for each library and the number of ex-
amples that passed the test suite. MELT produced 248 unfil-
tered and ungeneralized rules on these examples; filtering and
generalization produced 156 unique rules. We also assessed
whether these rules could have been generated from the pull
request code directly, by checking (1) whether they were
mined in RQ1 (Section V-B), or (2) whether they could be
directly applied to their corresponding pull request (meaning
that they could have been mined in RQ1, but may have been
heuristically filtered away).

Table III summarize rule mining success using generated
examples by pull request (middle columns); the right-hand
side shows the number of rule mined. We categorized
correct rules into those that could have been mined without
new examples (prev), and those that are new with the
generated examples. Like in the previous RQ, MELT
can generate incorrect rules in some scenarios. Consider
the following example rule: :[[aah]].shift(:[aae],

fill_value=:[aaf]) −→ :[[aah]].shift(:[aae],

fill_value=pd.Timestamp(:[aaf])). 5 This rule is derived
from pandas pull request number #49362 [45]. The release
notes for the PR state: “Enforced disallowing passing
an integer fill value to DataFrame.shift and Series.shift
with datetime64, timedelta64, or period dtypes”. This
transformation is only valid if the series has a datetime64

dtype object, a condition not captured by the rule. While the
transformation correctly preserves behavior in this instance, it
is incorrect for general application. More diverse tests for the
code example could likely increase coverage and filter more
incorrect rules.

MELT generated 114 correct rules out of the 156
generated rules (73.1%) from auto-generated transition
examples. 96 (61.5%) of those rules would not have
been generated otherwise.

D. RQ3: Generalizability

Of the 156 rules we manually validated in RQ2, 41 had
generalized arguments, and only 9 (22%) were incorrect.
To further evaluate the impact of generalizability with an
ablation study, by disabling the generalization procedure.
We selected 15 rules that had been generalized, along with
their non-generalized counterparts. Using Sourcegraph’s code
search [46],6 we searched for repositories containing a given
keyword in the rule (e.g., for readcsv(..., squeeze=True), we
searched for squeeze=True). We then cloned up to 50 random
repositories for each rule, and ran the generalized and non-
generalized rules on these repositories, counting matches.

Table IV shows matches for original and generalized rules,
showing that generalization significantly improves rules appli-
cability. For instance, the number of matches for the set_index

case increased from 2 to 370 (185x) with generalization. Gen-
eralization is important because it abstracts context unrelated
to API changes. As we focus on API migration in Python,
where there can be many argument combinations (e.g., APIs
with as many as 10 keyword arguments), generalization helps
capture the essence of the change by abstracting arguments.
Some rules had 0 matches because Comby was unable to infer
types (Comby does not apply rules when it cannot infer types
of a template match), or the query was poorly constructed.

Generalization led to a 9.07x increase in rule matches,
boosting potential rule applications from 162 to 1469 in
our sample. This demonstrates the significant impact of
generalization on rule applicability.

E. RQ4: Updating client code

To evaluate the effectiveness of our approach to updating
developer code, we migrated outdated library API usage in
developer projects found on GitHub for the sklearn, pandas,
and scipy libraries. Collecting and running client projects

5Template variables are omitted for brevity.
6Note SourceGraph only indexes repositories with at least two stars.
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TABLE IV: RQ3. Comparison of Non-General and Generalized Rules

Library Original Rule Generalized Rule

Match Template Matches Match Template Matches

pandas

:[[x]].set_index(:[a], drop=:[[b]], inplace=True) 2 :[[x]].set_index(:[args], inplace=True) 370

:[[x]].read_csv(:[[a]], compression=:[[b]],
encoding=:[[c]], index_col=:[d], squeeze=True)

0 :[[x]].read_csv(:[args], squeeze=True) 21

:[[aai]].apply(:[a], axis=:[[b]], reduce=True) 3 :[[aai]].apply(:[args], reduce=True) 4

scipy

jaccard_similarity_score(:[[a]], :[[b]]) 94 jaccard_similarity_score(:[args]) 226

:[[x]].filters.gaussian_filter(:[a],
:[b], mode=:[[c]])

0 :[[x]].filters.gaussian_filter(:[args]) 86

:[[x]].query(:[[a]], :[[b]], n_jobs=:[c]) 0 :[[x]].query(:[args], n_jobs=:[y]) 0

:[[x]].hanning(:[[a]], :[[b]]) 0 :[[x]].hanning(:[args]) 0

numpy

:[[x]].alltrue(:[a], axis=:[b]) 7 :[[x]].alltrue(:[args]) 208

:[[x]].histogram(:[[a]], bins=:[b], range=:[c],
normed=:[y])

2 :[[x]].histogram(:[args], normed=:[y]) 66

:[[x]].complex(:[[a]], :[[b]]) 17 :[[x]].complex(:[args]) 20

sklearn

BaggingClassifier(base_estimator=:[[a]],
n_estimators=:[[b]], random_state=:[[c]])

26 BaggingClassifier(base_estimator=:[x], :[args]) 220

BaggingRegressor(base_estimator=:[[a]],
n_estimators=:[[b]], random_state=:[[c]])

7 BaggingRegressor(base_estimator=:[x], :[args]) 116

KMeans(n_clusters=:[a], init=:[[b]],
n_init=:[[c]], algorithm=’full’)

0 KMeans(:[args], algorithm=’full’) 38

AgglomerativeClustering(n_clusters=:[a],
linkage=:[b], affinity=:[c])

4 AgglomerativeClustering(:[args], affinity=:[c]) 28

OneHotEncoder(sparse=:[[aac]],
categories=:[[aan]], drop=:[[aaz]])

0 OneHotEncoder(sparse=:[x], :[args]) 66

TABLE V: RQ4. Effects of rule application on developer projects.

Library Total
Projects

Affected
Projects

Unique
Rules

Rule
Applications

Additional
Warnings

Resolved
Warnings

Additional
Passing Tests

Additional
Failures

Resolved
Failures

sklearn 20 10 6 27 9 598 2 1 1
pandas 20 10 4 23 0 44 7 81 7
scipy 20 6 5 23 0 266 0 1 0

Total 60 26 15 73 9 908 9 83 8

requires significant manual effort: many projects do not specify
dependencies or provide tests. We therefore did not evaluate
numpy API usage, but we can expect similar results.

We found client projects by searching GitHub for public
repositories that used outdated versions of each library, and
included code that matched to at least one of the match
templates of an inferred rule from RQs 1 and 2. We applied a
total of 15 unique rules across the three libraries. We provide
detail on specific rules and projects in Zenodo [34]. For each
library, we identified 20 client projects that used outdated
versions, and between one and three rules applied. We cloned
each project, updated its library dependencies to a version with
the breaking change, installed necessary dependencies, and ran
all tests to note passing tests, failures, errors, and warnings.
We then used Comby to automatically update the outdated API
usage, and reran the tests to compare results post-migration.
We did this separately for each applicable rule.

Table V summarizes results. Total Projects refers to the

total number of projects to which we applied rules and tested.
Affected Projects refers to the number of evaluated projects
that had a change in the tests after rule application from new
or resolved warnings, passed tests, or failures. Not all of the
projects had tests affected by rule application, either because
test coverage was incomplete or because persistent failing tests
in developer projects obscured the effect of rule application.

For sklearn, slightly less than half the developer project
tests were affected by rule application. Only two of the projects
showed a negative impact of rule application, where one
project had an additional failing test and another project had
nine new warnings. The sklearn rules were applied without
type information, which is one potential cause for the negative
impact. The other affected projects had warnings resolved,
ranging from 1 to 563 warnings resolved for a single project.
One project had additional passing tests.

For pandas, rule application affected half of client projects.
While there were 81 additional failures from pandas rules,
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they were isolated to four projects and a single rule. These
new failures occurred because of a lack of type informa-
tion, meaning one rule was erroneously applied to API calls
unrelated to the pandas library. In other projects, the same
rule was applied correctly, even without type information, and
successfully resolved warnings. The other three unique pandas

rules were applied with type information. No pandas rules
introduced new warnings.

For scipy, rules were also applied absent type information,
but only one application introduced an error. All six affected
scipy projects had warnings resolved by rule application, and
none of the scipy rule applications caused additional warnings.

Of the 60 evaluation repositories, 34 had no change in the
tests or warnings. However, this does not indicate that rule
transformation was incorrect or unnecessary: most projects
had failing tests and errors unrelated to API usage, which can
obscure the effect of rule application. Overall, the resolved
warnings and failures demonstrate MELT’s potential to help
developers more easily maintain large projects.

VI. DISCUSSION

In this section, we address the main limitations of our
method and possible future work.

A. Limitations and threats

Rule correctness. We used manual validation to assess rule
correctness, with a process that entailed high IRR kappa in-
dicating agreement. One approach for further validation could
involve upgrading client projects to newer library versions
and applying the rules on projects using these libraries. In
RQ4, we use this method to demonstrate that some rules are
indeed correct. However, this process is challenging. MELT
does not mine rules for all breaking changes in a given release,
so upgrading client projects may break multiple aspects in
ways automatic find-and-replace rules cannot address [42].
However, automating a large part of migration in ways that
entail minimal additional technology or effort on the part of
the client developer holds promise for reducing the challenge
of upgrading library dependencies. Our rules could also po-
tentially be validated using differential testing techniques or
by requesting more tests from the code generation model.

Code generation model. Our approach relies on a code
generation model to generate examples when none are avail-
able. We selected GPT-4, a state-of-the-art model trained on
data before September 2021. We successfully evaluated on
pull requests opened after September 2021, demonstrating
the risk of data leakage in these experiments is low. The
model, however, is paid and not open-source. As AI research
advances, we anticipate better models being made public.
We opt for a model-based code generation approach over
generating Comby rules directly because rules can be validated
with code examples (if the code does not pass, we discard
the example). Additionally, the model is not fine-tuned and
has limited exposure to Comby, and is likely to work better
on commonly-used languages like Python. For less popular

APIs, however, fine-tuned versions of the model on library
code might be necessary.

Generalization. Our generalization procedure removes con-
text and arguments that appear unrelated to the change, only
considering diffs. Removing too much context and type infor-
mation may result in spurious rules. Conversely, insufficient
generalization can make the rule too specific. MELT can return
both rules to the user, allowing them to decide what to keep.
Currently, developers must manually validate rules to ensure
they make sense. To facilitate this, we developed a CI solution
on GitHub for integrating our tool. Rules can be validated
and modified, if necessary, by whoever merges the PR, or
automatically validated, as previously discussed.

B. Comparison against prior work

Few API migration tools target Python, challenging direct
comparison to prior work. MELT adapts its inference algo-
rithm from InferRules [35], designed for type migration in
Java. Consequently, MELT without generalization and filtering
serves as a baseline equivalent to InferRules. The most closely
related approach, PyEvolve [37], builds on InferRules using
Comby as an intermediate representation. PyEvolve focuses
on general refactoring, and adapts rules to different control
variants, requiring more complex analysis, and client code
analysis. This is in contrast to MELT’s lightweight approach,
which aims to minimize overhead on client developers. Since
most of our rules are 1:1 and 1:n transformations, adapting
rules for control flow variants is less relevant. Overall, while
PyEvolve is more powerful in the types of rules it can infer,
fundamentally it serves a different goal as compared to MELT.

Our evaluation differs from closely-related prior work [12],
[14] in two ways. First, our manual validation process is able
to consider more information in the form of the PR and library
documentation. That is, rather than looking at rules in isolation
or limiting attention to syntactic validity, we can consider
whether the change actually reflects PR intent. Second, we
provide an end-to-end evaluation of automatically inferred
rules on a number of client code repositories, complementing
manual rule validation.

As we discuss in Section VII, most prior approaches for
automatic API migration (or code evolution generally) mine
migration examples from client projects or their source control
histories. MELT relies solely on the changed library, looking
at internal code changes to inform rule mining. This allows
MELT to apply earlier in the library update process. However,
libraries do not always include sufficient changed code exam-
ples to inform migration, which is why MELT also prompts an
LLM to generate extra examples, along with tests to validate
those examples. Other approaches may also benefit from using
LLMs this way, particularly those whose use cases entail fewer
available examples, like A3 [16] (focusing on Android API
migration), or APIFix [14] (evaluated on changes to library
code, similar to MELT). APIFix in particular could likely bene-
fit from the LLM-generated examples and tests, because it uses
edit examples in its program synthesis algorithm. Other tools
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are evaluated across many more example changes to client
code, like Meditor [12]. These approaches may not require
new examples, but leveraging LLMs may allow them to apply
earlier in the update process, or in scenarios where migration
examples are scarce. Indeed, as models with larger context
windows become available (e.g., CLAUDE 100K token con-
text [47]), it becomes possible to include more comprehensive
data in prompts, such as full API documentation. This suggests
a promising avenue for generating higher-quality, context-rich
examples for rule mining, particularly when extant migration
examples are scarce.

VII. RELATED WORK

Empirical studies on API evolution. API evolution has long
been a challenging software engineering concern without a
definitive solution. Developers often lag in updating their
software to the latest APIs, leading to compatibility issues
and hindering maintenance [19]. Recent work identifies a
significant need for more support for API evolution tools in
languages other than Java, particularly Python [20]. MELT
aims to address this gap. Moreover, Dilhara et al. [48] further
reinforce the need for migration tools for Python, finding that
Python data library clients tend to need to update dependencies
frequently and face significant challenges in doing so.

A study of API migration in four popular Java libraries
found that only 27.1% of these migrations were fully au-
tomatable [42]. This suggests that achieving 100% safe and
automated migration rules is unlikely, as some transforma-
tions are complex and need more context than rule-based
approaches can provide. MELT’s imperfect accuracy aligns
with these findings, as some rules are incorrect simply due
to the difficulty in capturing them with purely syntax-driven
transformations. However, MELT’s approach can provide semi-
automated support for migration, easing the overall burden.

Meanwhile, refactoring tools that require developers to use
complex domain-specific languages are often difficult to use
and, consequently, often poorly-adopted [49]. This observation
emphasizes the need to develop user-friendly and ergonomic
API migration tools and techniques that seamlessly integrate
into developers’ workflows, as MELT aims to do.

Library evolution. Automated API migration research has
primarily focused on mining client repositories, usually tar-
geting object-oriented languages (namely Java and C#). For
example, A3 [16] and Meditor [12] mine client repositories
for examples to create rules, which are then customized
to new clients. APIFix [14] mines transition examples from
both previously-migrated and new client repositories and uses
Refazer’s [50] engine to learn rules. Refazer’s transformations
are expressed as AST edits, which are more difficult to un-
derstand [51]. Unlike previous approaches, MELT emphasizes
simplicity via lightweight find-and-replace transformations.

APIMigrator [15] and AppEvolve [17] also mine client repos-
itories for transition examples and apply them directly to
clients. Both tools use differential testing to validate edits on
clients. MELT focuses on generating rules rather than updating

client code directly, however, it could similarly benefit from
incorporating differential testing [52] to validate inferred rules.

Approaches like Semdiff [53] recommends API changes to
developers by presenting a ranking of potential replacements.

Code Refactoring. Catchup! [54] records refactorings made
by library developers during development and replaces them
in client code. LASE [55] and SYEDIT [56] mine code examples
for systematic edits, generating edit scripts at the AST level
rather than using find-and-replace rules. InferRules [35], [57]
inspired our rule inference algorithm. However, InferRules

primarily targets type migration and extensively mines client
repositories for refactoring examples.

PyEvolve [37], developed concurrently with this work, also
uses InferRules’s algorithm to infer Comby rules from code
changes. However, its purpose is different, as we discussed in
detail in Section VI-B. Most migrations are either 1:1 (47.2%)
or 1:n (48.1%) [42], and control-flow awareness is not neces-
sary for API evolution. MELT focuses on rule generalization
instead. This reduces analysis overhead, especially for large
code bases, as only Comby needs to be run.

SOAR [13] uses program synthesis to refactor client code
rather than generate find-and-replace rules, aiming to support
migration between libraries. Unlike MELT, SOAR refactors
client code as a blackbox, which can be less interpretable. It
can handle more complex migrations, but is commensurately
less performant. To the best of our knowledge, PyEvolve and
SOAR are the only two tools besides MELT that can infer and
apply refactorings for Python code.

VIII. CONCLUSION

Selecting and maintaining APIs is critical yet challenging in
software development. Developers may have to manually up-
date APIs due to evolving libraries, which is time-consuming
and error-prone process. We present MELT, which assists
developers by generating lightweight API Migration rules in
Comby. Unlike previous approaches, MELT mines rules directly
from library pull requests instead of client projects. This
approach allows rule inference to be integrated directly into
the library workflow, eliminating the need to wait for clients
to migrate their code. Furthermore, MELT rules are purely
syntax-driven, and require no additional tooling on client side
(besides Comby). We evaluated MELT on pull requests from
four popular libraries: pandas, scipy, numpy, and sklearn. We
assessed rule accuracy by examining the pull request descrip-
tions, discussions, and more. We discovered 461 accurate rules
from code examples in pull requests and 114 rules from auto-
generated code examples. To show practical applicability, we
applied the rules to client projects and ran their tests, proving
their effectiveness in real-world situations.
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