
Twin Graph-based Anomaly Detection via Attentive
Multi-Modal Learning for Microservice System

Jun Huang1, Yang Yang1, Hang Yu2∗, Jianguo Li2∗, Xiao Zheng1
1 School of Computer Science and Technology, Anhui University of Technology, Maanshan, China

2 Ant Group, Hangzhou, China
{huangjun.cs,young978,xzheng}@ahut.edu.cn, {hyu.hugo,lijg.zero}@antgroup.com

Abstract—Microservice architecture has sprung up over recent
years for managing enterprise applications, due to its ability
to independently deploy and scale services. Despite its benefits,
ensuring the reliability and safety of a microservice system re-
mains highly challenging. Existing anomaly detection algorithms
based on a single data modality (i.e., metrics, logs, or traces) fail
to fully account for the complex correlations and interactions
between different modalities, leading to false negatives and
false alarms, whereas incorporating more data modalities can
offer opportunities for further performance gain. As a fresh
attempt, we propose in this paper a semi-supervised graph-
based anomaly detection method, MSTGAD, which seamlessly
integrates all available data modalities via attentive multi-modal
learning. First, we extract and normalize features from the
three modalities, and further integrate them using a graph,
namely MST (microservice system twin) graph, where each node
represents a service instance and the edge indicates the scheduling
relationship between different service instances. The MST graph
provides a virtual representation of the status and scheduling re-
lationships among service instances of a real-world microservice
system. Second, we construct a transformer-based neural network
with both spatial and temporal attention mechanisms to model
the inter-correlations between different modalities and temporal
dependencies between the data points. This enables us to detect
anomalies automatically and accurately in real-time. Extensive
experiments on two real-world datasets verify the effectiveness
of our proposed MSTGAD method, achieving competitive perfor-
mance against state-of-the-art approaches, with a 0.961 F1-score
and an average increase of 4.85%. The source code of MSTGAD
is publicly available at https://github.com/alipay/microservice
system twin graph based anomaly detection.

Index Terms—anomaly detection, multi-modal learning, system
twin graph

I. INTRODUCTION

The microservice architecture has gained popularity in
recent years as a method of developing applications. This
methodology involves breaking down a single application into
a suite of small services, each running in its own process
and communicating via lightweight mechanisms [1]. One of
the key advantages of this architecture is that services can
be independently deployed and scaled. As a result, many
industries have adopted this architecture to manage their enter-
prise applications. However, ensuring the reliability and safety
of a Microservice system can be challenging. Traditional
approaches rely on manual inspection, which is impractical for

* Corresponding authors
This work was sponsored by CCF-AFSG research fund.

large-scale distributed systems consisting of numerous services
running on different machines.

Fortunately, various types of data can be monitored in a
microservice system, including service/machine metrics, logs,
traces, etc. These data play a crucial role in ensuring the
reliability and safety of the system. For example, metrics are
real-valued time-series providing information on the status
of services or machines and the associated requirements that
need to be met during runtime operations. Logs are semi-
structured text messages printed by logging statements to
record the system’s run-time status. Traces are hierarchical
descriptions of the modules and services called upon to fulfill
a user request. They are usually recorded with the service
name or category and the time duration of each module. By
leveraging the monitored data of a microservice system, many
works [2], [3] have successfully replaced manual inspection
with automated anomaly detection algorithms, such as the log-
based approaches [4]–[8], metric-based approaches [9]–[15]
and trace-based approaches [16]–[22].

Despite their effectiveness, they are often based on a single
data modality, which can incur both false negatives and false
alarms. Practical abnormal patterns vary across data modal-
ities, with some only being evident in specific modalities.
Failing to account for these modalities can lead to false nega-
tives, which may further cause system outrage and substantial
financial loss. For instance, consider an anomaly related to an
API version, where a service request does not receive a timely
response or is not properly parsed. Such an anomaly may not
be detectable through metrics data alone, as there might not
be any noticeable increase in resource consumption for the
executed service container. However, it is feasible to detect this
anomaly by leveraging trace data. On the other hand, different
modalities can complement each other to filter out false alarms.
For example, when configuring new applications, which is
a normal change, metric-based approaches may interpret in-
creased CPU and memory usage as an anomaly, resulting in
false alarms. However, by incorporating logs and traces, such
false alarms can be reduced. It is essential to acknowledge
that reducing the number of false alarms is of significant
importance in real-world scenarios, as a high volume of false
alarms can obscure true positive detections. In light of these
challenges associated with single-modal anomaly detection
methods, several works have proposed approaches based on

ar
X

iv
:2

31
0.

04
70

1v
1

 [
cs

.L
G

]
 7

 O
ct

 2
02

3

https://github.com/alipay/microservice_system_twin_graph_based_anomaly_detection
https://github.com/alipay/microservice_system_twin_graph_based_anomaly_detection

15/47数据结构 – 第六章 树和二叉树 安徽工业大学 计算机科学与技术学院

MSTGAD

Log

Trace

Edge Features

𝒏 × 𝒏 × 𝑭𝒏

Node Features

𝒏 × 𝑭𝒆

Span A

Span B Span C

Span D Span E Span F

Graph
Sequence 𝔻𝑡

SI: Service Instance

N Add & Normalization

PE Position Encoding

Metric

SAM
Attention

N
TAM

Attention
N FFN N

SAM
Attention

N
Feed

Forward
N

Mask TAM
Attention

CAM
Attention

NN
Input

Embedding

Input
Embedding

L × Encoder

L × Decoder

Reconstruction
MLP &

Softmax
Classification

𝐺𝑡
′ − 𝐺𝑡

𝑃𝑡

PE

ℤ𝑡

Legend

SI1

SI2 SI4

SI3 SI5

Graph structure

Microservice
System Twin Graph

(Graph Structure is fixed, but
edge and node features are
updated at each timestamp)

SAM: Spatial Attention Module MLP: Multi layer perception

CAM: Cross Attention Module
TAM: Temporal Attention Module FFN: FeedForward Neural Network

𝕆𝑡

Fig. 1. Framework of the proposed method MSTGAD

multi-modal data, such as DeepTraLog [1], SCWarn [23], and
HADES [24]. However, they use at most two modalities and do
not fully consider the complex correlations between different
data modalities.

Another problem with the existing works is that they are
typically constructed in an unsupervised way and fail to exploit
the labeling information. However, in real-world scenarios,
anomaly information is usually available [25], particularly
when the anomaly detection algorithm fails to identify a
system failure and further causes a system outage. Utilizing
this labeling information can further enhance the algorithm’s
performance, but it cannot be incorporated into unsupervised
learning methods. On the other hand, unlabeled data is more
abundant and readily available. It is beneficial to consider
a semi-supervised approach that combines both labeled and
unlabeled data.

The key to remedying the above two issues lies in the
extraction of useful information from heterogeneous multi-
source data involved in Microservice systems and the construc-
tion of a semi-supervised model that can accurately identify
anomalies. To move forward to this goal, two major challenges
must be overcome.

1) How to unite and represent heterogeneous multi-source
data and model the complex correlations and interactions
between them? In a Microservice system, service instances
are configured in containers and called upon by user requests.
Concurrently, traces are generated, and logs and metrics
are monitored and recorded for these service instances and
machines by timestamp. Therefore, it is natural to represent
the multi-modal data using a graph to reflect the state of a
Microservice system. The nodes represent service instances,
and the edges correspond to their scheduling relationships.
Since diverse modalities are integrated into a graph, graph
machine learning techniques can be utilized to model com-
plex correlations and interactions between them, such as the
message-passing mechanism.

2) How to construct a semi-supervised anomaly detection
model? In the IT industry, apart from the abundant unlabeled
data, some supervised information can be collected, as some
anomalies can be labeled and reported by users. Therefore, the

supervised information can be utilized to create an efficient
semi-supervised anomaly detection model.

In this paper, we present a novel approach to address
the challenges of anomaly detection in microservice systems.
Our proposed method, MSTGAD, is a microservice system
twin (MST) graph-based anomaly detection method that uses
attentive multi-modal learning. It aims to automatically and
accurately detect anomalies by leveraging metrics, logs, and
traces simultaneously. The framework of MSTGAD is pre-
sented in Fig. 1. We first extract and normalize the features
of metrics, logs, and traces. Then, we propose to integrate the
three modalities together via a graph structure, where each
node represents a service instance, and the edge indicates
the scheduling relationship between different service instances
obtained from the traces. Since logs and metrics are recorded
according to service instances, we use the features of metrics
and logs to represent the node features. Traces describe the
scheduling relationships between service instances within a
microservice system, which are extracted and used to represent
the features of edges. Similar to a digital twin system, for each
timestamp, the information about a microservice system can
be reflected by the graph which can be considered a twin of
the physical microservice system and virtually represent the
status and scheduling relationships among service instances
of a real-world microservice system. Therefore, we name it
a microservice system twin graph, i.e., MST graph. It can be
used to design effective anomaly detection models to improve
the reliability and safety of its physical counterpart.

Next, we construct a transformer-based neural network that
incorporates both spatial and temporal attention mechanisms
based on the MST graphs. The spatial attention module
(SAM) is used to model the inter-correlation between different
modalities, while the temporal attention module (TAM) is used
to model the temporal dependency between data points in a
sliding window. Our proposed method is evaluated on two real-
world datasets, and the results demonstrate its effectiveness in
anomaly detection. To sum up, our contributions include:

• We perform the first empirical study of semi-supervised
anomaly detection via multi-modal learning from metrics,
logs, and traces simultaneously.

• We propose to integrate and represent the three types of
data together via a microservice system twin (MST) graph
which can be taken as a virtual representation of a real-
world microservice system.

• We develop a transformer-based neural network with
both spatial and temporal attention mechanisms based on
the MST graphs to model the inter-correlation between
different modalities and the temporal dependency among
the data points (i.e., the MST graphs) of a sliding window.

• Extensive experiments on two real-world datasets show
that the proposed MSTGAD model achieves competitive
performance against all compared approaches, achieving
0.961 F1-score with an average increase of 4.85%. Addi-
tionally, ablation studies further validate the effectiveness
of each design in our model.

II. RELATED WORK

In the past decades, various techniques [2], [3] have been
proposed for anomaly detection based on metrics (Key Per-
formance Indicators), logs, and traces.

Log data records the system state and significant events
at various critical timestamps, which is an important and
valuable resource for online monitoring, anomaly detection,
and root cause analysis. There have been a lot of studies
on log-based anomaly detection. These logs-based approaches
first parse the unstructured logs into structured representations
through log parsing approaches including Drain [26], AEL
[27], IPLoM [28] and Spell [29], and SemParser [30], then
build the anomaly detection models. Deeplog [4] adopts LSTM
to model a system log as a natural language sequence, which
can automatically learn log patterns from normal execution
and detect anomalies when log patterns deviate from the model
trained from log data under normal execution, and also it can
be incrementally updated in an online manner. LogAnomaly
[5] is an end-to-end framework also using the LSTM network
to automatically detect sequential and quantitative anomalies
simultaneously. To solve log data containing previously unseen
log events or log sequences, LogRobust [31] is proposed to
extract semantic information of log events and represent them
as semantic vectors. It then detects anomalies by utilizing
an attention-based Bi-LSTM model, which has the ability to
capture the contextual information in the log sequences and
automatically learn the importance of different log events.
PLELog [7] is a semi-supervised log-based anomaly detec-
tion approach via probabilistic label estimation based on an
attention-based GRU neural network. To overcome the errors
caused by log parsing, NeuralLog [6] is proposed to extract
the semantic meaning of raw log messages and represent
them as semantic vectors. Existing log anomaly detection
approaches treat a log as a sequence of events and cannot
handle microservice logs that are distributed in a large number
of services with complex interactions.

Inspired by kernel-based one-class classification [9], Deep
SVDD [10] is proposed to train a neural network by mini-
mizing the volume of a hypersphere that encloses the network

representations of the data. Tuli et. al. propose a transformer-
based anomaly detection model TranAD [15] which uses
self-conditioning and an adversarial training process. The
DAGMM [11] method uses a deep autoencoding Gaussian
mixture model for dimension reduction in the feature space
and recurrent networks for temporal modeling. The USAD
[12] method uses an autoencoder with two decoders with
an adversarial game-style training framework. This is one
of the first works that focus on low overheads by using a
simple autoencoder and can achieve a several-fold reduction
in training times compared to the prior art. The GDN [32]
approach learns a graph of relationships between data modes
and uses attention-based forecasting and deviation scoring to
output anomaly scores. In microservice systems, traces are
widely used in anomaly detection and root cause analysis. Seer
[17] is an online cloud performance debugging system that
leverages deep learning and a massive amount of tracing data
to learn spatial and temporal patterns to detect Qos violations.
TraceAnomaly [18] is an unsupervised anomaly detection ap-
proach of microservice through Service-Level Deep Bayesian
Networks. GMTA [19] is a graph-based approach for archi-
tecture understanding and problem diagnosis of microservice
trace analysis. Liu et al. propose a high-efficient root cause
localization approach MicroHECL [20] which dynamically
constructs a service call graph and analyzes possible anomaly
propagation chains by traversing the graph along anomalous
service calls.

Although the above approaches have achieved great per-
formance in anomaly detection. While they are mainly con-
structed based on single-modal data, such as logs, metrics, or
traces respectively. However, as a single source of information
is often insufficient to depict the status of a microservice
system precisely, existing methods could produce many false
alarms and may omit some true positives [24]. Recently,
several studies have been done based on multi-modal data to
further improve the performance of anomaly detection.

DeepTraLog [1] utilizes a unified graph representation to
describe the complex structure of a trace together with log
events embedded in the structure, and trains a GGNNs-based
deep SVDD [10] model and detects anomalies in new traces
and the corresponding logs. SCWarn [23] is proposed for
online service systems to identify the bad software changes
via multimodal learning from heterogeneous multi-source data.
In SCWarn, the temporal dependency in each time series is
captured by the LSTM model, and the inter-correlations among
multi-source data are encoded via multimodal fusion. Similar
to SCWarn, Liu et al. propose HADES [24] which employs a
hierarchical architecture to learn a global representation of the
system status by fusing log semantics and metric patterns, and
a novel cross-modal attention module to capture discriminative
features and meaningful interactions from multi-modal data.

In parallel to our research, several other endeavors have
emerged to explore the combined utilization of logs, metrics,
and traces as modalities, such as [25], [33], [34] Specifically,
Eadro [25] presents an end-to-end framework that seamlessly
integrates anomaly detection and root cause localization based

on multi-source data, specifically designed for troubleshooting
purposes. This framework adeptly models both intra-service
behaviors and inter-service interactions, exploiting shared
knowledge through multi-task learning. AnoFusion [33] offers
an unsupervised failure detection approach that efficiently
identifies instance failures through multimodal data. It employs
a Graph Transformer Network (GTN) to effectively capture
correlations within the heterogeneous multimodal data. Addi-
tionally, it seamlessly integrates a Graph Attention Network
(GAT) with a Gated Recurrent Unit (GRU) to address the
challenges introduced by dynamically changing multimodal
data. DiagFusion [34], on the other hand, employs embedding
techniques and data augmentation to accurately represent mul-
timodal data of service instances. By combining deployment
data and traces, it constructs a dependency graph and subse-
quently employs a graph neural network to localize the root
cause instance and determine the type of failure. It is important
to note that all the aforementioned approaches are either
fully supervised or unsupervised. In contrast, our proposed
method is semi-supervised, which effectively leverages both
labeled and unlabeled data to enhance model performance.
Furthermore, the existing works consider all three modalities
as node features in their graph neural networks for capturing
spatial dependence, but our approach treats traces as edge fea-
tures. Additionally, Eadro [25] and AnoFusion [33] employs
CNN and GRU to capture the temporal dependence, whereas
our proposed method harnesses the power of Transformers.
Transformers have been proven to outperform CNNs and
GRUs for time series modeling [35], [36]. Lastly, it is worth
mentioning that AnoFusion primarily focuses on anomaly
detection, DiagFusion on root cause analysis, while Eadro
tackles both anomaly detection and root cause localization. In
line with our work, our objective here is anomaly detection,
akin to AnoFusion, but distinct from DiagFusion and Eadro.

III. PRELIMINARIES

In our proposed model, MSTGAD, we use various attention
mechanisms to capture the dependencies between different
parts of the input data. Before delving into the details of our
model, we first introduce different attention mechanisms used
in the following sections.

A. Scaled Dot-Product Attention

The fundamental concept of attention is to determine a
series of weights that express the significance or pertinence of
various elements within the input information, depending on
a particular inquiry. These weights can be utilized to calculate
a weighted sum of the input data, which may then be utilized
as an input for the subsequent layer of the model. Specifically,
given the query Q ∈ RLQ×dk , key K ∈ RLK×dk , and value
V ∈ RLV ×dv , a scaled-dot product attention [37] of the three
matrices can be defined as

Attention(Q,K,V) = Softmax(
QK⊤
√
dk

)V, (1)

where Softmax(QK⊤/
√
dk) ∈ RLQ×LK can be considered as

a similarity or attention score matrix, and dk is the number of

features. By selectively focusing on different parts of the input
data, attention can help the model to better capture long-term
dependencies and improve its overall performance.

B. Multi-head Attention

Multihead attention is an extension of the above standard
attention mechanism that allows the model to jointly attend to
information from different representation subspaces. The basic
idea behind multi-head attention is to split the input queries,
keys, and values into multiple heads, and to compute separate
attention scores for each head. The outputs from each head
are then concatenated and passed through a linear projection
to generate the final output. By using multiple heads, the model
can learn to attend to different aspects of the input data, and
the final output is a combination of the outputs from multiple
heads. Mathematically, the multi-head attention function can
be expressed as follows:

MultiHead(Q,K,V) = Concat(H1, . . . ,Hh)W
O, (2)

where each Hi = Attention(QWQ
i ,KWK

i ,VWV
i) is single-

head attention, and h is the number heads. The projections
WQ

i ∈ Rdmodel×dk , WK
i ∈ Rdmodel×dk , WV

i ∈ Rdmodel×dv

and WO ∈ Rhdv×dmodel are learnable parameters.

C. Graph Attention

Graph attention is also an extension of the scaled dot-
product attention mechanism that can be used to process
graph-structured data. Unlike traditional attention mechanisms
where the input is a sequence of vectors, in graph attention,
the input is a graph where each node represents a vector. Each
node is associated with “query” , “key” , and “value” vec-
tors, which are used to compute attention scores between pairs
of nodes. Specifically, For a graph G = (V,A,E), V is the set
of nodes, E is the set of edges and A is the adjacency matrix.
A Graph Attention Network (GAT) [38]–[40] layer updates
each node representation by aggregating the representations
of its neighboring nodes. Each node vi can be updated by

v
′

i =
∑

u∈N(i)

αi,uWvu, (3)

where W ∈ Rdmodel×Fv is a learnable parameter, and the
graph attention weight αij is defined as

αi,j =
e(vi, vj , eij)∑

u∈N(i) e(vi, vu, eiu)
, (4)

where vi ∈ RFv and vj ∈ RFv are the i-th and j-th nodes’
feature representation, and eij is the edge representation
between the two nodes. Different from standard GAT, the
edges are also used to calculate the attention weight. N(i)
includes the i-th node and its directed connected neighbors.
e(vi, vj , eij) indicates the importance of the features of node
j to node i, which is defined as

e(vi, vj , eij) = β⊤LeakyReLU(W[vi∥vj∥eij]), (5)

where β ∈ R3dmodel and W ∈ R3dmodel×(2Fv+Fe) are
learnable parameters, and ∥ denotes vector concatenation.

Equivalently, the above formulations can be written in the
matrix form as

SpatialAtt(V,V,E) = Softmax(e(V,V,E))VW⊤, (6)

where e(V,V,E) = β⊤LeakyReLU(W[V∥V∥E]).

IV. APPROACH

The proposed method, MSTGAD, aims to automatically
and accurately detect anomalies by leveraging multi-modal
learning from metrics, logs, and traces simultaneously. The
approach takes all three modalities as input and trains a graph-
based deep learning model based on an enhanced transformer
structure. The framework of MSTGAD is presented in Fig. 1,
which is mainly composed of two stages, i.e., multi-modal
data fusion and representation, and anomaly detection. In
the first stage, the features of metrics, logs, and traces are
extracted and integrated using an MST graph. The graph
represents service instances as nodes and scheduling rela-
tionships between different instances as edges. In the second
stage, a transformer-based neural network is constructed with
spatial and temporal attention based on the MST graphs, for
the sake of anomaly detection. The network can model the
inter-correlation between different modalities and the temporal
dependency of data points in a sliding window. Next, we
elaborate on these two stages.

A. Pre-Processing and MST graph construction

1) Metric Pre-processing: Metrics provide valuable infor-
mation regarding the status of services and machines, such as
response time, the number of threads, and CPU and memory
usage. In this paper, we focus on multivariate time-series data,
denoted as TMetric = {M1,M2, ...,MT }, which represents
a sequence of timestamped observations of size T . Each data
point Mt ∈ RN×Fm is collected at a specific timestamp t for
N service instances and machines, where Fm is the number
of metrics. We further normalize the data and convert it to
time-series windows for both training and testing purposes.
Specifically, each data point Mt is normalized using min-max
normalization, as follow:

Mt =
Mt −min(TMetric)

max(TMetric)−min(TMetric) + ϵ
, (7)

where max(TMetric) ∈ RFm and min(TMetric) ∈ RFm are
the maximum and minimum vectors in the training time-series,
and ϵ is a small constant vector used to avoid zero-division.

In practice, the number of metrics might be huge. To cope
with the challenge of real-time data collection, we can remove
those metrics whose variances are very low, since anomalies
are reflected by metrics with fluctuation.

2) Log Parsing: Logs are text messages that are semi-
structured and record system states and significant events at
critical timestamps. In this step, we aim to convert unstructured
log messages into structured log events. To achieve this, we use
the widely adopted parser, Drain3 [26], similar to other studies
on anomaly detection [1], [23], [24]. Drain3 can parse logs in
a streaming and timely manner with high parsing accuracy
and efficiency. After parsing, timestamp, service instance ID,

22/47数据结构 – 第六章树和二叉树 安徽工业大学计算机科学与技术学院

L ×
Encoder L ×

Decoder

Input Embedding

Inputs 𝔻𝑡 (Shifted right)

MASK
TAM

CAM

Reconstruction
MLP &

Softmax

𝐺𝑡
′ − 𝐺𝑡𝑃𝑡

Output 𝐺𝑡
′

Prediction

Input Embedding

Inputs 𝔻𝑡

TAM

ℤ𝑡

Time

Fig. 2. Framework of MSTGAD

and log template index are attached to each log event for
further analysis. To enable combined analysis with metrics,
we count the occurrences of each template in each timestamp,
creating log representations consistent with the formulation of
metrics. This yields a timestamped log sequence, denoted as
TLog = {L1,L2, ...,LT } of observation of size T , where each
data point Lt ∈ RN×Fl , and Fl is the number log templates.

Similar to the normalization of metrics, each data point Lt

is also normalized via the min-max normalization as

Lt =
Lt −min(TLog)

max(TLog)−min(TLog) + ϵ
, (8)

where max(TLog) ∈ RFl and min(TLog) ∈ RFl are the
maximum and minimum vectors in the training time-series.

Serializing logs can potentially introduce challenges associ-
ated with long-tail distributions. However, it is possible to miti-
gate this issue to some extent by leveraging the complementary
information from other modalities. For instance, although the
occurrence of out-of-memory anomalies is rare and may be
affected by the long-tail problem, such anomalies can also
be detected through the analysis of metric data. Furthermore,
the performance of our method can be further enhanced by
incorporating more advanced log parsing techniques [41],
including semantic-based approaches [6], [30].

3) Trace Parsing: Each trace in a microservice system
depicts the execution processes of user requests. These pro-
cesses are known as spans, and they possess valuable attributes
such as trace ID, request type, span ID, father span ID,
service instance ID, start time, and duration time. In the spirit
of TraceAnomaly [18], we represent spans as time series.
Within a sliding window, we aggregate the total duration
time of spans sharing the same request type, service instance
launcher, and service instance receiver for each timestamp. It
is important to note that unfinished spans are omitted from
the window. Consequently, we obtain a timestamped trace
sequence TTrace = {S1,S2, ...,ST } of size T , and each data

point St ∈ RN×N×Fs , where N indicates the number of
service instances of a microservice system, and Fs indicates
the dimension of the extracted features of traces. Since not all
service instances are interconnected, we use an approximate
normalization technique to differentiate between small spans
and no spans. Specifically, we define it as:

St =
St

mean(TTrace)
, (9)

where mean(TTrace) ∈ RFs is the average of TTrace

In reality, if tremendous traces are generated, state-of-the-art
head-based and tail-based sampling techniques can be applied
to reduce the processing and storage costs.

4) Graph Construction: After obtaining TMetrics, TLog ,
and TTrace, we can integrate these three modalities together
by constructing an MST graph to virtually represent the status
and scheduling relationships among service instances of a real-
world microservice system. In an MST graph, nodes represent
service instances, and edges represent scheduling relationships
between different instances.

Formally, for each timestamp t, the MST graph is defined
as Gt =< Vt, At, Et >, where Vt is the set of nodes and the
corresponding node features are defined as Vt = Mt∥Lt, i.e.,
the concatenation of metric and log features, and ∥ indicates
the concatenation operator. Et is the set of edges, and Et =
St is used to represent the features of edges, and At is the
adjacent matrix. Each element aij of At is defined as

aij =

 1, if their is scheduling between the i-th
and j-th service instances

0, otherwise
.

In reality, microservice systems undergo constant changes,
such as services scaling up or down. These changes can
be accommodated by updating the adjacency matrix when
services are added or removed. However, it is important to note
that the parameters of the Graph ATtention network (GAT)
used in the proposed model, which will be introduced in the
following sections, can remain unchanged. This is because the
GAT operates on the graph structure itself, rather than being
dependent on the specific services present in the system. As
a result, the model can effectively adapt to changes in the
microservice system without the need for retraining or mod-
ifying the GAT parameters. Furthermore, by considering the
preprocessed metrics and logs as node features, and the traces
as edge features, we can characterize the dynamic behavior
of traces by adjusting the edge features accordingly, without
modifying the underlying graph structure. This property al-
lows for efficient representation of changes in the scheduling
relationships among service instances. Consequently, when a
service is removed from the system, we can alternatively set
the corresponding node and edge features to zero without
removing the service from the graph.

In summary, the real-time status and scheduling relation-
ships among service instances of a real-world microservice
system can be virtually represented by the MST graph, which
can be used to design an effective anomaly detection model to
improve the reliability and safety of its physical counterpart.

To model the temporal dependence of a data point at
timestamp t, we consider a sliding window of length k as

Dt = {Gt−k+1, · · · , Gt}. (10)

For each sliding window Dt, yt ∈ R1×N is the ground truth
label vector, and yti ∈ {−1, 0, 1} is the ground truth label for
the i-th service instance in Gt. The numbers 1 and 0 indicate
abnormal and normal data respectively, and −1 indicates the
corresponding label is unknown for the unlabelled data.

B. Transformer with Spatial and Temporal Attention
MSTGAD is constructed based on the transformer [37]

architecture for anomaly detection via attentive multi-modal
learning. Fig. 2 shows the architecture of the neural network
used in MSTGAD, which consists of encoding (left side) and
decoding (right side) steps with several attention modules.

In the encoding step, the encoder takes the input sequence
Dt with k MST graphs (cf. Eq (10)) and converts it to a
hidden state Zt. To accomplish this, Dt is first subjected
to the Input Embedding operation, a linear layer that maps
multi-source features to appropriate dimensions for multi-head
attention. We also add position encoding [37] of each data
point on the time dimension to provide MSTGAD with local
position information. In order to model the inter-correlation
between different modalities, we propose the spatial attention
module (SAM), which is based on GAT [39]. Moreover, we
propose the temporal attention module (TAM) to model the
temporal dependency between different data points in the
sliding window Dt. Specifically, the workflow of each layer
of the encoder can be defined by a series of operations:

EI1 = Norm(EI0 + SAM(EI0)),

EI2 = Norm(EI1 + TAM(EI1)),

Zt = Norm(EI2 + FFN(EI2)),

where Norm(·) is the normalization operation, and FFN is the
Feed-forward neural network.

In the decoding step, Dt−1 will be used to predict the
representation of Dt. To achieve this goal, Dt is shifted one
timestamp to the right and padded with zero at the first times-
tamp as the input of decoding. After that, the input sequence
Dt−1 is also converted to DI0 via the Input Embedding
operation. The spatial attention module (SAM) is then applied
to model the inter-correlation between different modalities.
Unlike the encoding step, TAM is run with a causal mask
to ensure that each Gt is updated or predicted only based
on its former data points. In addition, we propose a cross-
attention module (CAM) to update Dt with the guidance of
Zt. Correspondingly, the workflow of each layer of the decoder
can be defined as the following operations:

DI1 = Norm(DI0 + SAM(DI0)),

DI2 = Norm(DI1 + Mask(TAM(DI1))),

DI3 = Norm(DI2 + CAM(DI2,Zt)),

Ot = Norm(DI3 + FFN(DI3)).

Finally, we detect anomalies based on the reconstruction
errors between Dt and Ot. The following subsections provide

	��

	��

	��

�
���

�
���
�
���

�
���

�
���

�
���

�
���

	��

�
���

�
���

�
���

�
���

�
���

	��

	��

	��

	��

	��

(a) Update the feature of nodes

	��

	��

	��

�
���

�
���
�
���

�
���

�
���

�
���

�
���

	��

�
���

�
���

�
���

�
���

�
���

	��

	��

	��

	��

	��

(b) Update the feature of edges

Fig. 3. Spatial Attention

further details about the SAM, TAM, and CAM attention mod-
ules. Dt is the input of MSTGAD, and Mt−k+1:t, Lt−k+1:t,
and St−k+1:t are used to represent the features of metrics,
logs, and traces of Dt respectively for convenience.

1) Spatial Attention Module: As mentioned in the introduc-
tion, metrics, logs, and traces are different ways of viewing the
status of a microservice system. By exploiting the complemen-
tary information from these different modalities, we can boost
the generalization ability of anomaly detection algorithms. To
achieve this, we propose a spatial attention module (SAM)
that models the inter-correlation between modalities using two
layers of Graph Attention Network (GAT) [39].

SAM allows for the updating of node and edge features
by incorporating information from their neighbors through
message passing. Fig. 3 provides a toy example, where SI
stands for service instance. In Fig. 3(a), when updating the
representation of a node, the information from its directed
neighbors will be passed to it with an attention weight along
the edges. Similarly, the feature of edges can be updated by
exchanging the roles of nodes and edges in an MST graph
(see Fig. 3(b)). As a result, the representation of each modal
can be updated and improved by absorbing the complementary
information from other modalities.

In this paper, for an input MST graph Gt = (Vt, At, Et), we
apply multi-head attention (see Eq.(2)), and then the features
of nodes of service instances of Gt can be updated by

V
′

t = MultiHead(Vt,Vt,Et), (11)

where each head Hi = SpatialAtt(Vt,Vt,Et) (see Eq.(6)).
Unlike standard GAT [39], our approach incorporates edges in
the calculation of the attention weight. The reasoning behind
this is that edge features represent the features of traces, and
excluding them would result in the loss of valuable trace
information. By exchanging the roles of nodes and edges in
an MST graph, the features Et of edges of service scheduling
in each Gt can be updated in the same manner as

E
′

t = MultiHead(Et,Et,V
′

t), (12)

where each head Hi = SpatialAtt(Et,Et,V
′

t).
The SAM module consists of two layers of GAT which

alternate in updating the features of nodes and edges. This
enables the module to efficiently model the complex inter-
correlation among metrics, logs, and traces by learning the
representation of each MST graph Gt in a sliding window
Dt. Through the thorough integration and fusion of comple-
mentary information among the three modalities, the SAM

9/47数据结构 – 第六章树和二叉树 安徽工业大学计算机科学与技术学院

𝑥𝑚
(𝑙)

𝑥𝑙
(𝑙)

𝑥𝑠
(𝑙)

𝑥𝑚
(𝑙+1)

𝑥𝑙
(𝑙+1)

𝑥𝑠
(𝑙+1)

+

𝐴𝑡𝑡𝑙

𝐴𝑡𝑡𝑚

𝐴𝑡𝑡𝑠

𝐴𝑡𝑡𝑚
′

𝐴𝑡𝑡𝑙
′

𝐴𝑡𝑡𝑠
′

+

+

+

Fig. 4. Framework of the Temporal Attention

module produces an enriched representation G
′

t. Thus, for a
sliding window, we will update all the MST graphs to get a
new representation of Dt as

DSAM
t = (G

′

t−k+1, . . . , G
′

t) = SAM(Dt).

2) Temporal Attention Module: The above SAM module
is designed to model the complex inter-correlation among
different modalities at the local graph level across space.
In this section, we further propose the temporal attention
module (TAM) to capture the complex inter-correlation among
different modalities at the global sequence level across time.
Notice that in a microservice system, multi-source monitored
data are generated sequentially and exhibit temporal trends. To
improve anomaly detection performance, it is crucial to model
temporal dependencies within these sequences. Therefore, we
adopt the TAM module to capture time dependencies for data
points in a sliding window. As a first step, we extend the
attention mechanism in Eq. (1) as

TemporalAtt(Q,K,V,C) = Softmax(
QK⊤
√
dk

+C)V, (13)

where C is the average of attention scores of multi-source data.
This is used to capture the common temporal dependencies
shared by the multi-source data and fuse the complementary
information among them.

Next, we apply the multi-head self-attention across time to
a sequence of the spatial representation of the MST graph
given by the SAM. The structure of TAM is shown in Fig. 4.
By capturing the temporal dependency, the feature of metrics
Mt−k+1:t can be updated as

M
′

t−k+1:t = Multihead(Mt−k+1:t,Mt−k+1:t,Mt−k+1:t,C),

where each Hi = TemporalAtt(Mt−d+1:tW
Q
i ,Mt−d+1:tW

K
i ,

Mt−d+1:tW
V
i ,C), and the average of attention score C is

defined as

(
Mt−k+1:tM

⊤
t−k+1:t√

Fm

+
Lt−k+1:tL

⊤
t−k+1:t√

Fl

+
St−k+1:tS

⊤
t−k+1:t√

Fs

)/3.

Similarly, the feature of logs and traces can be updated as

L
′

t−k+1:t = Multihead(Lt−k+1:t,Lt−k+1:t,Lt−k+1:t,C),

S
′

t−k+1:t = Multihead(St−k+1:t,St−k+1:t,St−k+1:t,C).

In summary, we will update all modalities within Dt as

DTAM
t = TAM(Norm(Dt + DSAM

t))

= (M
′

t−k+1:t,L
′

t−k+1:t,S
′

t−k+1:t).

3) Cross Attention Module: The cross-attention module
CAM is proposed to perform decoding using the hidden state
Zt given by the encoder. This module assists the decoder
in obtaining guidance information from Zt. To achieve this
goal, we adopt the multi-head attention (see Eq.(2)). To
distinguish features between Dt and Zt, we add a superscript,
e.g. MZ

t−k+1:t and MD
t−k+1:t, to indicate the feature of metrics

in the encoding and decoding stages respectively. In CAM,
features of the three modalities are updated by

M
′D
t−k+1:t = MultiHead(MD

t−k+1:t,M
Z
t−k+1:t,M

Z
t−k+1:t),

L
′D
t−k+1:t = MultiHead(LD

t−k+1:t,L
Z
t−k+1:t,L

Z
t−k+1:t),

S
′D
t−k+1:t = MultiHead(SD

t−k+1:t,S
Z
t−k+1:t,S

Z
t−k+1:t).

Similarly to TAM, we can update all modalities by Dt and
Zt to obtain a new representation DCAM

t of the sliding window.

DCAM
t = CAM(Norm(DI1 + Mask(TAM(DI1))),Zt)

= (M
′D
t−k+1:t,L

′D
t−k+1:t,S

′D
t−k+1:t).

where DI1 = Norm(Dt+DSAM
t). This updated representation

is then passed through the feed-forward and normalization
layers to generate the final reconstruction representation.

4) Loss Function: For an anomaly algorithm deployed to
production, given a sliding window Dt = {Gt−k+1, · · · , Gt}
with k MST graphs, our primary concern is whether the
service instances in the last graph Gt is abnormal or not.
Therefore, we only calculate the distance between the input
Gt and the output G

′

t as

∥Gt −G
′

t∥ = R ◦R
where ◦ indicates the element-wise product, R = Concat
((Mt −M

′

t), (Lt − L
′

t),W(St − S
′

t)) ∈ RN×(Fm+Fl+Fs),
and W is a learnable parameter that maps the third item to
the same dimension as the first two items. Using this distance,
we can make predictions for the service instances within an
MST graph via supervised learning (i.e., the probability of
being abnormabl Pt ∈ RN×2) and unsupervised learning (i.e.,
the reconstruction error REt ∈ RN), as follows:

REt = sum(∥Gt −G
′

t∥, 2),
Pt = Softmax(MLP(∥Gt −G

′

t∥)),
where sum(·, 2) indicates the summation by colmuns.

MSTGAD aims to train an efficient anomaly detection
model based on limited labeled data and a substantial amount
of unlabelled data. To this end, we adopt a semi-supervised
reconstruction loss and a supervised classification loss, which
can be combined as follows:

Loss = 1

epoch
L1 + (1− 1

epoch
)L2, (14)

where L1 is the loss for data reconstruction, L2 is the loss for
classification, and epoch represents the current epoch number.
More concretely, the semi-supervised loss L1 is defined as:

L1 =
1

m+ n
(η

m∑
i=1

REi +

na∑
i=1

1

REi
+

nn∑
i=1

REi), (15)

Algorithm 1: The MSTGAD training algorithm

Input: Dataset used for training {Dt}Tt=1, Encoder E,
Decoder D, Iteration limit M ;

Output: Model Coefficients
1 Initialization: Initialize the weights of E and D;
2 i← 1;
3 repeat
4 for t = 1 to T do
5 EIt0, DIt0 ← InputEmbedding(Dt);
6 Zt ← E(EIt0) ;
7 G

′

t ← D(DIt0,Zt);
8 Calculate REt and Pt;
9 L = 1

iL1 + (1− 1
i)L2;

10 Update the weights of E and D using L;

11 i← i+ 1;
12 until i > M ;

where m and n are respectively the numbers of unlabeled and
labeled service instances in the training data, REi indicates
the reconstruction error for the i-th service instance, η is a
hyperparameter that balances the weight between labeled and
unlabeled data, na and nn are the numbers of abnormal and
normal service instances in the training data, respectively, and
n = na + nn. This semi-supervised reconstruction loss helps
the model learn the underlying patterns in the data and detect
anomalies based on deviations from these patterns.

The supervised classification loss, on the other hand, helps
the model to classify the service instances as normal or ab-
normal based on the learned patterns. Specifically, we employ
the binary cross entropy loss:

L2 = − 1

n

n∑
i=1

[
nn

na
yi log(ŷi) + (1− yi) log(1− ŷi)], (16)

where ŷi denotes the predicted probability for the i-th service
instance, nn

na
is introduced to control the trade-off between

normal and abnormal data in the loss function. This loss
function enables the model to learn to distinguish between
normal and abnormal service instances more accurately, which
leads to better performance in detecting anomalies.

Note that in Eq. (14) the weight of the two losses changes
with the number of epochs to balance the relative impor-
tance of the reconstruction loss and the classification loss
during the training process. In the early stages of training,
the model relies more on the reconstruction loss to learn
the underlying patterns in the data and reconstruct the input
data accurately. At this stage, the importance of the classi-
fication loss is relatively smaller, as the model has not yet
learned to distinguish between normal and abnormal service
instances accurately. As the training progresses, the model
becomes better at reconstructing the input data and learning
the underlying patterns. At this stage, the importance of the
classification loss increases, as the model needs to learn to
distinguish between normal and abnormal service instances
more accurately. Therefore, we adjust the weight of the two

losses with the number of epochs, starting with a higher weight
for the reconstruction loss and gradually decreasing it while
increasing the weight of the classification loss. This approach
ensures that the model can learn the underlying patterns in the
data effectively while also accurately identifying anomalies,
ultimately leading to a more robust and accurate anomaly
detection model. The overall training processes of MSTGAD
are summarized in Algorithm 1.

V. EVALUATION

A. Datasets

To evaluate the effectiveness of our proposed method,
we used two multi-modal anomaly detection datasets in our
experiment. Both datasets contain metrics, logs, and traces.

1) MSDS: The multi-modal dataset MSDS1 [42] is com-
posed of distributed traces, application logs, and metrics from
a complex distributed system (Openstack) that is used for
AI-powered analytics. The metrics data contains information
from 5 physical nodes in the infrastructure, each containing 7
metrics such as RAM and CPU usage. The log files are dis-
tributed across the infrastructure and recorded for each node,
with a total of 23 features. The trace information encompasses
various attributes such as host, event name, service name, span
ID, parent ID, and trace ID. Notably, the MSDS also provides
a JSON file containing the ground-truth information for the
injected anomalies, including their start and end times, as well
as their corresponding anomaly types. Hence, by leveraging
this JSON file, the service instances’ label information can be
easily extracted and assigned within an MST graph. The ratio
of normal and abnormal data is approximately 80:1.

2) AIOps-Challenge: The AIOps-Challenge 2 dataset
serves as the foundation for the CCF International AIOps
Challenge organized by CCF (China Computer Federation),
Tsinghua University, and CCB (China Construction Bank) in
2022. This dataset is derived from a simulated e-commerce
system operating on a microservice architecture, with 40 ser-
vice instances deployed across 6 physical nodes. Each service
instance records metrics, encompassing a total of 56 metrics,
of which 25 are utilized in this study, including metrics related
to RAM and CPU usage. Additionally, log files are recorded
for each service instance, containing a collective set of 5
features, such as timestamps and original logs, among others.
The traces within the dataset capture scheduling information
among service instances, including timestamps, types, status
codes, service instance names, span IDs, parent IDs, and
trace IDs. Within the AIOps-Challenge dataset, three levels of
anomalies are intentionally injected, specifically at the service,
pod (service instance), and node levels. The injected anomalies
are accompanied by their start times, levels, service names, and
types. Accordingly, the label information for service instances
can be extracted based on the injected anomalies. In specific
terms, if a service anomaly is injected, the corresponding
service instances are labeled as abnormal. Similarly, if a node

1https://zenodo.org/record/3549604
2https://aiops-challenge.com/

anomaly is injected, the service instances configured within
that node are all labeled as abnormal. It is crucial to note
that the end time of an injected anomaly is not provided. To
address this limitation, we manually set the end time with a
maximum interval of two minutes. The ratio of normal data
to abnormal data in this dataset is approximately 120:1.

B. Experiment Settings

Unless otherwise specified, for all datasets, we allocated
60% of the data for training, 10% for validation, and the
remaining 30% for testing. Since PLELog, HADES, and
our approach MSTGAD are semi-supervised, we randomly
selected 50% of the training data as unlabelled. To evaluate
the performance of all approaches, we utilized precision (PR),
recall (RC), F1-score, average precision (AP), and area under
the receiver operating characteristic curve (ROC/AUC) as the
criteria [1]–[3]. PR indicates how many of the anomalous
events predicted are actual. RC denotes the percentage of
predicted abnormal events versus all abnormal events. The
F1-score is the harmonic mean of precision and recall. AP
indicates the weighted mean of precisions achieved at each
threshold, with the increase in recall from the previous thresh-
old used as the weight.

All experiments are run on a Linux server equipped with
an Intel(R) Xeon(R) Gold 5318Y CPU, 64 GB RAM, RTX
3090 with 24GB GPU memory, and Ubuntu 18.04.6 OS. Our
implementation of MSTGAD is created using Python 3.8.13,
PyTorch 1.12.0 [43] with CUDA 11.3, and PyTorch Geometric
Library 2.2.0 [44]. The encoder and decoder layers were set to
two, the batch size was 50, the window size was 10, and the
Dropout was set to 0.2. We used the AdaBelief [45] optimizer
with an initial learning rate of 0.001 and a step-scheduler with
a step size of 0.9 for training. We trained models for up to
300 epochs and utilized early stopping with a patience of 15.

C. Benchmark Algorithms

To verify the effectiveness of our proposed method MST-
GAD, we conducted a comparative analysis with state-of-
the-art models for multivariate time-series anomaly detec-
tion, including TraceAnomaly [18], PLELog [7], TranAD
[15], USAD [12], SCWarn [23] and HADES [24]. Table I
presents an overview of the distinguishing features of these
models. We utilized the open-source codes provided by their
respective publications for comparisons. For these approaches,
the window size is 10, the batch size is 50, and the other
hyperparameters of them are tuned by grid searching based
on the validation set.

D. Experimental Result

1) Results of Anomaly Detection: The average experimental
results for the benchmark algorithms on the MSDS and
AIOps-Challenge datasets are presented in Table II and III
respectively. Based on the outcomes of the experiments, we
can make the following observations:

MSTGAD, our proposed method, achieves the best per-
formance among all compared approaches and outperforms

TABLE I
CHARACTERISTICS OF THE COMPARING MODELS

Method Data Used Supervised Type Online
TraceAnomaly Trace Unsupervised ×
TranAD Metric Unsupervised �
USAD Metric Unsupervised �
SCWarn Metric & Log Unsupervised �
PLELog Log Semi-supervised �
HADES Metric & Log Semi-supervised �
MSTGAD Metric&Log& Trace Semi-supervised �

TABLE II
EXPERIMENTAL RESULTS ON MSDS DATASET

Method PR RC AUC AP F1
TraceAnomaly 0.903 0.989 0.986 0.894 0.944
PLELog 0.753 0.663 0.826 0.516 0.705
TranAD 0.772 0.815 0.907 0.815 0.793
USAD 0.481 0.463 0.730 0.611 0.472
SCWarn 0.440 0.371 0.679 0.581 0.402
HADES 0.908 0.895 0.947 0.814 0.901
MSTGAD 0.946 0.969 0.996 0.971 0.957

all baselines by a significant margin, attaining F1-score of
0.957 and 0.965 on the two datasets. The high scores of
MSTGAD indicate that there are few instances of missed
anomalies or false alarms, which highlights the effectiveness
of our approach for anomaly detection.

Moreover, compared with single-modal approaches, MST-
GAD achieves superior performance. Previous studies have
shown that metrics, logs, and traces can all reflect anomalies,
and none of them are sufficient when acting alone. Thus,
constructing the model based on a single data modality can
omit important information hidden in the other data modalities,
resulting in performance degradation. Additionally, the log-
based approach PLELog’s performance may be influenced by
the distribution of logs, i.e., the significant difference in the
number of logs in different sliding windows.

On the other hand, compared with multi-modal based ap-
proaches SCWarn and HADES, MSTGAD outperforms them
across all measurements on average. The possible reasons are
summarized from three aspects: 1) SCWarn and HADES only
use two types of data modalities, i.e., metrics and logs. 2)
SCWarn is an unsupervised method and does not use super-
vised information to guide the training process. Furthermore,
it detects anomalies on each modality individually and fails to
identify the hidden correlations among the multi-modal data.
3) HADES is designed with an attention-based module, which
fuses information between metrics and logs. However, it only
detects anomalies for a single service instance and ignores the
interaction between multiple service instances.

In contrast, MSTGAD detects anomalies via multi-modal
learning based on metrics, logs, and traces simultaneously. The
three modalities are effectively integrated via an MST graph,
while spatial and temporal attention modules are proposed
to model the interactions between different data modalities,
and the complementary information among them and specific
information are thoroughly fused and effectively integrated.

In conclusion, MSTGAD effectively detects abnormal pat-

TABLE III
EXPERIMENTAL RESULTS ON AIOPS-CHALLENGE DATASET

Method PR RC AUC AP F1
TraceAnomaly 0.857 0.239 0.619 0.234 0.374
PLELog 0.750 0.173 0.586 0.142 0.281
TranAD 0.661 0.789 0.827 0.738 0.719
USAD 0.667 0.750 0.813 0.728 0.706
SCWarn 0.878 0.625 0.798 0.762 0.730
HADES 0.911 0.937 0.958 0.865 0.924
MSTGAD 1 0.933 0.974 0.977 0.965

TABLE IV
EXPERIMENTAL RESULTS OF ABLATION STUDY ON MSDS DATASET

Method PR RC AUC AP F1
MSTGAD-Metric 0.920 0.957 0.996 0.960 0.937
MSTGAD-Log 0.758 0.917 0.986 0.949 0.830
MSTGAD-Trace 0.720 0.920 0.977 0.876 0.807
MSTGAD-TAM 0.932 0.917 0.960 0.948 0.921
MSTGAD-SAM 0.965 0.929 0.975 0.967 0.947
MSTGAD-C 0.939 0.929 0.967 0.955 0.933
MSTGAD 0.946 0.969 0.996 0.971 0.957

terns in all datasets, significantly proving its superiority over
all baselines in terms of every evaluation criterion.

2) Ablation Study: To comprehensively assess the efficacy
of different modules of MSTGAD, we conducted an ablation
study on the MSDS dataset, and the experimental results are
listed in Table IV, where “MSTGAD-X” indicates that MST-
GAD is executed without the module or data modal “X” . For
example, “MSTGAD-Metric” means MSTGAD is executed
without the metrics data. It can be seen from Table IV that
all modules and data modalities contribute significantly to im-
proving the performance of MSTGAD. Concretely, MSTGAD
exhibits a significant improvement over MSTGAD-Metric,
MSTGAD-Log, and MSTGAD-Trace with an impressive mar-
gin of 3.933% in terms of F1-score on average, showcasing its
exceptional ability to effectively utilize multi-modal data for
anomaly detection. Notably, MSTGAD-Trace performs worse
than MSTGAD-Metric and MSTGAD-Log. Recall that in
MSTGAD, both metrics and logs serve as node features, while
only traces are utilized as edge features. When trace data is
removed, the SAM module can only utilize the node features,
compromising the effectiveness of updating and enhancing
the graph representation. Consequently, the complementary
information from different modalities cannot be effectively
integrated, resulting in suboptimal performance. Remarkably,
similar observations have been reported in Eadro [25], further
emphasizing the fundamental role of trace data in combining
and exploiting information from the other two modalities.

In the meantime, MSTGAD demonstrates statistically sig-
nificant or, at the very least, comparable performance com-
pared to MSTGAD-TAM and MSTGAD-SAM. The impres-
sive performance of MSTGAD validates the effectiveness of
incorporating both spatial and temporal attention mechanisms
in anomaly detection. Moreover, MSTGAD-SAM outperforms
MSTGAD-TAM, indicating that modeling temporal depen-
dencies is crucial and highly effective in addressing anomaly
detection challenges.

(a) Number of layers of encoder and
decoder

(b) Balance weight η

(c) Percent of labelled data (d) Sliding window size

Fig. 5. Parameter Sensitivity Analysis

MSTGAD-C indicates that MSTGAD runs without mod-
eling the common temporal dependency shared by different
modalities, i.e., the matrix C is removed from Eq.(13). As
shown in Table IV, MSTGAD achieves a better performance
than MSTGAD-C. It demonstrates the effectiveness of captur-
ing the common temporal dependencies shared by the multi-
source data and fusing the complementary information among
them.

3) Parameter Sensitivity Analysis: The proposed method,
MSTGAD, incorporates several crucial hyperparameters, in-
cluding the sliding window size k, the number of encoder and
decoder layers, the balance weight η, and the percentage of
labeled data. To evaluate the sensitivity of these parameters, we
conducted experiments on the MSDS dataset, and the results
are displayed in Fig. 5.

Fig. 5(a) demonstrates the impact of the number of encoding
and decoding layers on the performance of MSTGAD. We
observed that a smaller or larger number of layers typically
leads to lower performance, with the optimal range being
between two and six layers. The performance of MSTGAD
decreased with an increase in the number of hidden layers,
probably due to the over-smoothing that makes the features
indistinguishable, leading to reduced classification accuracy.

Fig. 5(b) illustrates the impact of the balance weight η on
the precision, recall, and F1-score of MSTGAD. As described
in Section IV-B, η controls the trade-off between labeled and
unlabeled data in the reconstruction loss. The results indicate
that both precision and F1-score decrease with an increase in
η, primarily due to the model giving more attention to the
noisy unlabeled data points. η is typically set between 10−4

and 10−1, based on the preference for precision and recall.
The impact of the percentage of labeled data for the training

stage on the performance of MSTGAD is depicted in Fig. 5(c).

TABLE V
STATISTICAL CHARACTERISTICS OF THE EXPERIMENTAL DATASETS AND

THE PROCESSING TIME OF MSTGAD

Dataset Interval # Metrics # Logs # Spans(instance*metric)
MSDS 1s 5*3 11 152
AIOps 1min 40*25 9260 6253

Dataset Running Time
Preprocessing Constructing graph Detecting Total

MSDS 0.014s 0.0088s 0.0035s 0.0263s
AIOps 6.7946s 0.173s 0.4648s 7.4324s

The results demonstrated that the performance of MSTGAD
significantly improved with an increase in labeled data. It is
worth noting that most of the labeled data are normal patterns
that are easily obtainable in real-world applications.

Finally, Fig. 5(d) shows the impact of the sliding window
size k on the precision, recall, and F1-score of MSTGAD.
Smaller or larger values of k typically lead to lower perfor-
mance due to insufficient or unrelated features in the window.
We observed that the best performance was achieved when k
was set to 10, as shown in Fig. 5(d).

4) Real-time Detection: In the proposed method, the three
modalities are first extracted and then integrated using an MST
graph structure for anomaly detection. It is essential for the
time consumption of this step to be smaller than the process
interval of a microservice system, ensuring real-time detection
capabilities. In this section, we present experimental results
conducted on the MSDS and AIOps-Challenge datasets to
demonstrate the efficiency of our method. The summarized
results are presented in Table V, where # Metrics, # Logs,
and # Spans correspond to the average number of metrics,
logs, and spans observed within each processing interval.
It is important to note that all experiments were conducted
exclusively using CPU resources, without utilizing GPU or
multithreading techniques for acceleration. The results un-
equivocally illustrate the applicability of the proposed method
to real-world applications, exhibiting its capability to perform
real-time anomaly detection.

VI. CONCLUSION

In this paper, we propose a novel semi-supervised graph-
based anomaly detection method MSTGAD that utilizes at-
tentive multi-modal learning. We fuse the multi-modal data
and represent them via an MST graph, where each node
corresponds to a service instance, and the edge indicates
the scheduling relationship between different service in-
stances. Based on the MST graph sequences, we construct
a transformer-based neural network with both spatial and
temporal attention mechanisms to automatically and accurately
detect anomalies in a timely manner. Experimental results
demonstrate that MSTGAD achieves superior performance
compared to state-of-the-art approaches. Furthermore, our
results verify that effectively modeling the correlation between
different data modalities and the time dependency within each
data modality can further improve the performance of anomaly
detection.

REFERENCES

[1] C. Zhang, X. Peng, C. Sha, K. Zhang, Z. Fu, X. Wu, Q. Lin, and
D. Zhang, “Deeptralog: Trace-log combined microservice anomaly
detection through graph-based deep learning,” in Proceedings of the
IEEE/ACM 44th International Conference on Software Engineering
(ICSE), 2022, p. 623–634.

[2] J. Soldani and A. Brogi, “Anomaly detection and failure root cause
analysis in (micro) service-based cloud applications: A survey,”
ACM Comput. Surv., vol. 55, no. 3, feb 2022. [Online]. Available:
https://doi.org/10.1145/3501297

[3] P. Notaro, J. Cardoso, and M. Gerndt, “A survey of aiops methods for
failure management,” ACM Trans. Intell. Syst. Technol., vol. 12, no. 6,
nov 2021. [Online]. Available: https://doi.org/10.1145/3483424

[4] M. Du, F. Li, G. Zheng, and V. Srikumar, “Deeplog: Anomaly de-
tection and diagnosis from system logs through deep learning,” in
Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. ACM, October 2017, p. 1285–1298.

[5] W. Meng, Y. Liu, Y. Zhu, S. Zhang, D. Pei, Y. Liu, Y. Chen,
R. Zhang, S. Tao, P. Sun, and R. Zhou, “Loganomaly: Unsupervised
detection of sequential and quantitative anomalies in unstructured logs,”
in Proceedings of the Twenty-Eighth International Joint Conference on
Artificial Intelligence. AAAI Press, August 2019, p. 4739–4745.

[6] V.-H. Le and H. Zhang, “Log-based anomaly detection without
log parsing,” in Proceedings of the 36th IEEE/ACM International
Conference on Automated Software Engineering, ser. ASE ’21. IEEE
Press, 2022, p. 492–504. [Online]. Available: https://doi.org/10.1109/
ASE51524.2021.9678773

[7] L. Yang, J. Chen, Z. Wang, W. Wang, J. Jiang, X. Dong, and W. Zhang,
“Plelog: Semi-supervised log-based anomaly detection via probabilistic
label estimation,” in 2021 IEEE/ACM 43rd International Conference
on Software Engineering: Companion Proceedings (ICSE-Companion),
Madrid, ser. ICSE ’21. IEEE Press, 2021, p. 230–231. [Online].
Available: https://doi.org/10.1109/ICSE-Companion52605.2021.00106

[8] V.-H. Le and H. Zhang, “Log-based anomaly detection with deep
learning: How far are we?” in Proceedings of the 44th International
Conference on Software Engineering, ser. ICSE ’22. New York, NY,
USA: Association for Computing Machinery, 2022, p. 1356–1367.
[Online]. Available: https://doi.org/10.1145/3510003.3510155

[9] B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C.
Williamson, “Estimating the support of a high-dimensional distribution,”
Neural Computation, vol. 13, no. 7, pp. 1443–1471, 2001.

[10] L. Ruff, R. Vandermeulen, N. Goernitz, L. Deecke, S. A. Siddiqui,
A. Binder, E. Müller, and M. Kloft, “Deep one-class classification,” in
Proceedings of the 35th International Conference on Machine Learning,
ser. Proceedings of Machine Learning Research, J. Dy and A. Krause,
Eds., vol. 80. PMLR, 10–15 Jul 2018, pp. 4393–4402. [Online].
Available: https://proceedings.mlr.press/v80/ruff18a.html

[11] B. Zong, Q. Song, M. R. Min, W. Cheng, C. Lumezanu, D. Cho,
and H. Chen, “Deep autoencoding gaussian mixture model for
unsupervised anomaly detection,” in Proceedings of the International
Conference on Learning Representations, 2018. [Online]. Available:
https://openreview.net/forum?id=BJJLHbb0-

[12] J. Audibert, P. Michiardi, F. Guyard, S. Marti, and M. A. Zuluaga,
“Usad: Unsupervised anomaly detection on multivariate time series,”
in Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, ser. KDD ’20. New York,
NY, USA: Association for Computing Machinery, 2020, p. 3395–3404.
[Online]. Available: https://doi.org/10.1145/3394486.3403392

[13] Z. Li, Y. Zhao, J. Han, Y. Su, R. Jiao, X. Wen, and D. Pei,
“Multivariate time series anomaly detection and interpretation using
hierarchical inter-metric and temporal embedding,” in Proceedings of
the 27th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, ser. KDD ’21. New York, NY, USA: Association
for Computing Machinery, 2021, p. 3220–3230. [Online]. Available:
https://doi.org/10.1145/3447548.3467075

[14] G. Zerveas, S. Jayaraman, D. Patel, A. Bhamidipaty, and C. Eickhoff, “A
transformer-based framework for multivariate time series representation
learning,” in Proceedings of the 27th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, ser. KDD ’21. New York,
NY, USA: Association for Computing Machinery, 2021, p. 2114–2124.
[Online]. Available: https://doi.org/10.1145/3447548.3467401

[15] S. Tuli, G. Casale, and N. R. Jennings, “Tranad: Deep transformer
networks for anomaly detection in multivariate time series data,” Proc.

VLDB Endow., vol. 15, no. 6, p. 1201–1214, jun 2022. [Online].
Available: https://doi.org/10.14778/3514061.3514067

[16] Z. Ren, C. Liu, X. Xiao, H. Jiang, and T. Xie, “Root cause localization
for unreproducible builds via causality analysis over system call tracing,”
in Proceedings of the 34th IEEE/ACM International Conference on
Automated Software Engineering, ser. ASE ’19. IEEE Press, 2020, p.
527–538. [Online]. Available: https://doi.org/10.1109/ASE.2019.00056

[17] Y. Gan, Y. Zhang, K. Hu, D. Cheng, Y. He, M. Pancholi, and
C. Delimitrou, “Seer: Leveraging big data to navigate the complexity
of performance debugging in cloud microservices,” in Proceedings of
the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems, ser. ASPLOS ’19.
New York, NY, USA: Association for Computing Machinery, 2019, p.
19–33. [Online]. Available: https://doi.org/10.1145/3297858.3304004

[18] P. Liu, H. Xu, Q. Ouyang, R. Jiao, Z. Chen, S. Zhang, J. Yang, L. Mo,
J. Zeng, W. Xue, and D. Pei, “Unsupervised detection of microser-
vice trace anomalies through service-level deep bayesian networks,” in
Proceedings of the IEEE 31st International Symposium on Software
Reliability Engineering (ISSRE), 2020, pp. 48–58.

[19] X. Guo, X. Peng, H. Wang, W. Li, H. Jiang, D. Ding, T. Xie, and L. Su,
“Graph-based trace analysis for microservice architecture understanding
and problem diagnosis,” in Proceedings of the 28th ACM Joint Meeting
on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ser. ESEC/FSE 2020. New York,
NY, USA: Association for Computing Machinery, 2020, p. 1387–1397.
[Online]. Available: https://doi.org/10.1145/3368089.3417066

[20] D. Liu, C. He, X. Peng, F. Lin, C. Zhang, S. Gong, Z. Li, J. Ou, and
Z. Wu, “Microhecl: High-efficient root cause localization in large-scale
microservice systems,” in Proceedings of the 43rd International
Conference on Software Engineering: Software Engineering in Practice,
ser. ICSE-SEIP ’21. IEEE Press, 2021, p. 338–347. [Online].
Available: https://doi.org/10.1109/ICSE-SEIP52600.2021.00043

[21] G. Yu, P. Chen, H. Chen, Z. Guan, Z. Huang, L. Jing, T. Weng,
X. Sun, and X. Li, “Microrank: End-to-end latency issue localization
with extended spectrum analysis in microservice environments,” in
Proceedings of the Web Conference 2021, ser. WWW ’21. New York,
NY, USA: Association for Computing Machinery, 2021, p. 3087–3098.
[Online]. Available: https://doi.org/10.1145/3442381.3449905

[22] Z. Li, J. Chen, R. Jiao, N. Zhao, Z. Wang, S. Zhang, Y. Wu, L. Jiang,
L. Yan, Z. Wang, Z. Chen, W. Zhang, X. Nie, K. Sui, and D. Pei,
“Practical root cause localization for microservice systems via trace
analysis,” in 2021 IEEE/ACM 29th International Symposium on Quality
of Service (IWQOS), 2021, pp. 1–10.

[23] N. Zhao, J. Chen, Z. Yu, H. Wang, J. Li, B. Qiu, H. Xu,
W. Zhang, K. Sui, and D. Pei, “Identifying bad software changes
via multimodal anomaly detection for online service systems,” in
Proceedings of the 29th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of
Software Engineering, ser. ESEC/FSE 2021. New York, NY, USA:
Association for Computing Machinery, 2021, p. 527–539. [Online].
Available: https://doi.org/10.1145/3468264.3468543

[24] C. Lee, T. Yang, Z. Chen, Y. Su, Y. Yang, and M. R. Lyu, “Heteroge-
neous anomaly detection for software systems via semi-supervised cross-
modal attention,” in 2023 IEEE/ACM 45th International Conference on
Software Engineering (ICSE), 2023, pp. 1724–1736.

[25] C. Lee, T. Yang, Z. Chen, Y. Su, and M. R. Lyu, “Eadro: An end-
to-end troubleshooting framework for microservices on multi-source
data,” in 2023 IEEE/ACM 45th International Conference on Software
Engineering (ICSE), 2023, pp. 1750–1762.

[26] P. He, J. Zhu, Z. Zheng, and M. R. Lyu, “Drain: An online log parsing
approach with fixed depth tree,” in Proceedings of the 2017 IEEE
International Conference on Web Services, 2017, p. 33–40. [Online].
Available: https://doi.org/10.1109/ICWS.2017.13

[27] Z. M. Jiang, A. E. Hassan, P. Flora, and G. Hamann, “Abstracting
execution logs to execution events for enterprise applications (short
paper),” in Proceedings of the 2008 The Eighth International Conference
on Quality Software, 2008, pp. 181–186.

[28] A. A. Makanju, A. N. Zincir-Heywood, and E. E. Milios, “Clustering
event logs using iterative partitioning,” in Proceedings of the 15th
ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, ser. KDD ’09. New York, NY, USA: Association
for Computing Machinery, 2009, p. 1255–1264. [Online]. Available:
https://doi.org/10.1145/1557019.1557154

https://doi.org/10.1145/3501297
https://doi.org/10.1145/3483424
https://doi.org/10.1109/ASE51524.2021.9678773
https://doi.org/10.1109/ASE51524.2021.9678773
https://doi.org/10.1109/ICSE-Companion52605.2021.00106
https://doi.org/10.1145/3510003.3510155
https://proceedings.mlr.press/v80/ruff18a.html
https://openreview.net/forum?id=BJJLHbb0-
https://doi.org/10.1145/3394486.3403392
https://doi.org/10.1145/3447548.3467075
https://doi.org/10.1145/3447548.3467401
https://doi.org/10.14778/3514061.3514067
https://doi.org/10.1109/ASE.2019.00056
https://doi.org/10.1145/3297858.3304004
https://doi.org/10.1145/3368089.3417066
https://doi.org/10.1109/ICSE-SEIP52600.2021.00043
https://doi.org/10.1145/3442381.3449905
https://doi.org/10.1145/3468264.3468543
https://doi.org/10.1109/ ICWS.2017.13
https://doi.org/10.1145/1557019.1557154

[29] M. Du and F. Li, “Spell: Streaming parsing of system event logs,” in
Proceedings of the 2016 IEEE 16th International Conference on Data
Mining (ICDM), 2016, pp. 859–864.

[30] Y. Huo, Y. Su, C. Lee, and M. R. Lyu, “Semparser: A semantic parser
for log analytics,” in 2023 IEEE/ACM 45th International Conference on
Software Engineering (ICSE), 2023, pp. 881–893.

[31] X. Zhang, Y. Xu, Q. Lin, B. Qiao, H. Zhang, Y. Dang, C. Xie, X. Yang,
Q. Cheng, Z. Li, J. Chen, X. He, R. Yao, J.-G. Lou, M. Chintalapati,
F. Shen, and D. Zhang, “Robust log-based anomaly detection on unstable
log data,” in Proceedings of the 2019 27th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ser. ESEC/FSE 2019. New York,
NY, USA: Association for Computing Machinery, 2019, p. 807–817.

[32] A. Deng and B. Hooi, “Graph neural network-based anomaly detection
in multivariate time series,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 35, no. 5, 2021, pp. 4027–4035. [Online].
Available: https://doi.org/10.1609/aaai.v35i5.16523

[33] C. Zhao, M. Ma, Z. Zhong, S. Zhang, Z. Tan, X. Xiong, L. Yu, J. Feng,
Y. Sun, Y. Zhang, D. Pei, Q. Lin, and D. Zhang, “Robust multimodal
failure detection for microservice systems,” 2023.

[34] S. Zhang, P. Jin, Z. Lin, Y. Sun, B. Zhang, S. Xia, Z. Li, Z. Zhong,
M. Ma, W. Jin, D. Zhang, Z. Zhu, and D. Pei, “Robust failure diagnosis
of microservice system through multimodal data,” IEEE Transactions on
Services Computing, pp. 1–14, 2023.

[35] S. Li, X. Jin, Y. Xuan, X. Zhou, W. Chen, Y.-X. Wang, and X. Yan, “En-
hancing the locality and breaking the memory bottleneck of transformer
on time series forecasting,” Advances in neural information processing
systems, vol. 32, 2019.

[36] S. Liu, H. Yu, C. Liao, J. Li, W. Lin, A. X. Liu, and S. Dustdar,
“Pyraformer: Low-complexity pyramidal attention for long-range time
series modeling and forecasting,” in International conference on learning
representations, 2021.

[37] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is All you Need,” in Advances
in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, December 4-9, 2017,
Long Beach, CA, USA, 2017, pp. 5998–6008.

[38] P. Velickovic, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio, “Graph Attention Networks,” in 6th International Conference
on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April
30 - May 3, 2018, Conference Track Proceedings. OpenReview.net,
2018. [Online]. Available: https://openreview.net/forum?id=rJXMpikCZ

[39] S. Brody, U. Alon, and E. Yahav, “How attentive are graph atten-
tion networks?” in The Tenth International Conference on Learning
Representations, ICLR 2022, Virtual Event, April 25-29, 2022, 2022.

[40] Z. Wang, J. Chen, and H. Chen, “Egat: Edge-featured graph atten-
tion network,” in Artificial Neural Networks and Machine Learning –
ICANN 2021, I. Farkaš, P. Masulli, S. Otte, and S. Wermter, Eds. Cham:
Springer International Publishing, 2021, pp. 253–264.

[41] T. Zhang, H. Qiu, G. Castellano, M. Rifai, C. S. Chen, and F. Pianese,
“System log parsing: A survey,” IEEE Transactions on Knowledge and
Data Engineering, vol. 35, no. 8, pp. 8596–8614, 2023.

[42] S. Nedelkoski, J. Bogatinovski, A. K. Mandapati, S. Becker, J. Cardoso,
and O. Kao, “Multi-source distributed system data for ai-powered analyt-
ics,” in Service-Oriented and Cloud Computing, A. Brogi, W. Zimmer-
mann, and K. Kritikos, Eds. Cham: Springer International Publishing,
2020, pp. 161–176.

[43] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf,
E. Z. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “PyTorch: An Imperative Style, High-
Performance Deep Learning Library,” in Advances in Neural Information
Processing Systems,December 8-14, Vancouver, BC, Canada, 2019, pp.
8024–8035.

[44] M. Fey and J. E. Lenssen, “Fast graph representation learning
with pytorch geometric,” CoRR, vol. abs/1903.02428, 2019, arXiv:
1903.02428. [Online]. Available: http://arxiv.org/abs/1903.02428

[45] J. Zhuang, T. Tang, Y. Ding, S. Tatikonda, N. C. Dvornek, X. Pa-
pademetris, and J. S. Duncan, “AdaBelief Optimizer: Adapting Stepsizes
by the Belief in Observed Gradients,” in Advances in Neural Information
Processing Systems, December 6-12, virtual, 2020.

https://doi.org/10.1609/aaai.v35i5.16523
https://openreview.net/forum?id=rJXMpikCZ
http://arxiv.org/abs/1903.02428

	Introduction
	Related Work
	Preliminaries
	Scaled Dot-Product Attention
	Multi-head Attention
	Graph Attention

	Approach
	Pre-Processing and MST graph construction
	Metric Pre-processing
	Log Parsing
	Trace Parsing
	Graph Construction

	Transformer with Spatial and Temporal Attention
	Spatial Attention Module
	Temporal Attention Module
	Cross Attention Module
	Loss Function

	Evaluation
	Datasets
	MSDS
	AIOps-Challenge

	Experiment Settings
	Benchmark Algorithms
	Experimental Result
	Results of Anomaly Detection
	Ablation Study
	Parameter Sensitivity Analysis
	Real-time Detection

	Conclusion
	References

