
From Misuse to Mastery: Enhancing Code
Generation with Knowledge-Driven AI Chaining

1st Xiaoxue Ren
School of Software Technology

Zhejiang University
Hangzhou, China
xxren@zju.edu.cn

2nd Xinyuan Ye
School of Computing

Australian National University
Canberra, Australia

xinyuan.ye@anu.edu.au

3rd Dehai Zhao
CSIRO’s Data61
Sydney, Australia

dehai.zhao@data61.csiro.au

4th Zhenchang Xing
CSIRO’s Data61

& Australian National University
Sydney, Australia

zhenchang.xing@data61.csiro.au

5th Xiaohu Yang
College of Computer Science and Technology

Zhejiang University
Hangzhou, China

yangxh@zju.edu.cn

Abstract—Large Language Models (LLMs) have shown
promising results in automatic code generation by improving
coding efficiency to a certain extent. However, generating high-
quality and reliable code remains a formidable task because
of LLMs’ lack of good programming practice, especially in
exception handling. In this paper, we first conduct an empirical
study and summarize three crucial challenges of LLMs in
exception handling, i.e., incomplete exception handling, incorrect
exception handling and abuse of try-catch. We then try prompts
with different granularities to address such challenges, finding
fine-grained knowledge-driven prompts works best. Based on our
empirical study, we propose a novel Knowledge-driven Prompt
Chaining-based code generation approach, name KPC, which
decomposes code generation into an AI chain with iterative check-
rewrite steps and chains fine-grained knowledge-driven prompts
to assist LLMs in considering exception-handling specifications.
We evaluate our KPC-based approach with 3,079 code genera-
tion tasks extracted from the Java official API documentation.
Extensive experimental results demonstrate that the KPC-based
approach has considerable potential to ameliorate the quality of
code generated by LLMs. It achieves this through proficiently
managing exceptions and obtaining remarkable enhancements
of 109.86% and 578.57% with static evaluation methods, as well
as a reduction of 18 runtime bugs in the sampled dataset with
dynamic validation.

Index Terms—Large Language Model, Code Generation,
Knowledge-driven Prompt, API Misuse

I. INTRODUCTION

Large Language Models (LLMs) have gained significant
attention in the field of natural language processing (NLP)
for their ability to generate coherent and contextually relevant
text [1]–[6]. Recently, there has been growing interest in
using LLMs for code generation. LLMs, such as Codex [7],
AlphaCode [8], CODEGEN [9], and INCODER [10], use
sophisticated algorithms to generate code based on natural
language input, enabling developers to considerably automate
the coding process. The use of LLMs in code generation holds
great promise for improving software development processes

Rewrite

Generate

Check

Task

Code

 How to swap two elements in a vector?

Prompting LLMs to generate code meet requirements.
e.g., please write a Java method to swap two elements in a
 vector.

API information and exception-handling collection.
e.g., What Java JDK methods are used in the method you
provided? Is the ArrayIndexOutOfBoundException handled for
java.util.Vector.get(int index)?

Using fined-grained knowledge-driven prompts to
rewrite code.
i.e., Please check if the index is out of range (index < 0 || index
>= size()), otherwise throw ArrayIndexOutOfBoundException.

public static void swap(Vector<Integer> v, int i, int j)
throws ArrayIndexOutOfBoundsException {
 if (i < 0 || i >= v.size() || j < 0 || j >=v.size())
{throw new ArrayIndexOutOfBoundsException();}
 …}

Fig. 1. High-level Overview of KPC-based Code Generation.

by reducing the time and effort required for coding tasks and
increasing developers’ productivity [11], [12].

Nevertheless, generating high-quality and reliable code re-
mains a formidable task [12]–[15]. One significant limitation
of LLMs in code generation is the lack of good programming
practice. LLMs are based on statistical patterns and lack
the ability to understand the underlying logic and structure
of programming languages. Therefore, they may generate
code that is syntactically correct but not semantically correct,
resulting in poor programming practices. Particularly, LLMs
have challenges in generating reliable, maintainable and robust
code in terms of exception handling, which has been proven
to be essential in software development [16]–[18].

Three crucial exception-handling challenges of code gener-
ated by LLMs have been summarized by our empirical study
in Section II-A, including incomplete exception handling,
incorrect exception handling, and abuse of try-catch. For

ar
X

iv
:2

30
9.

15
60

6v
1

 [
cs

.S
E

]
 2

7
Se

p
20

23

example, code in Figure 2 (A) demonstrates an incomplete ex-
ception handling example, as both java.util.Vector.get(int index)
and java.util.Vector.set(int index, E element) may encounter
exceptions. Code in Figure 2 (B) shows an incorrect exception
handling example, in which ArrayIndexOutOfBoundsException
should be handled instead of IndexOutOfBoundsException.
Moreover, the usage of try-catch statements in Figure 2 (C) is
not considered to be the best practice for exception handling.
Such challenges will result in serious consequences, including
software crashes and reliability and security issues [19], [20].

In order to obtain ideal results from LLMs, prompt engi-
neering [21]–[24] is one of the most effective solutions and
has been widely studied. This technique focuses on designing
proper prompts that guide LLMs to take desired actions, with
the goal of improving the quality of output. In the context
of software engineering, prompt engineering can help LLMs
complete a series of development tasks with improved user
experiences, reduced errors and support costs, and increased
user adoption and satisfaction [23], [25]. In our work, a well-
designed prompt can make LLMs understand the expected be-
havior of coding and find the best solution to handle exceptions
in the code. With different prompts in the empirical study (see
Section II-B), we can explore various possible scenarios and
edge cases, and enable LLMs to iterate and address potential
exceptions autonomously. Figure 2 (B), (C), and (D) show
responses of LLMs with the different granularities of prompts,
where we find fine-grained knowledge-driven prompts are
most effective in preventing incomplete or incorrect exception
handling, as well as the abuse of try-catch statement.

In this paper, we propose a novel Knowledge-driven Prompt
Chaining-based code generation approach, named KPC, which
utilizes fine-grained exception-handling knowledge extracted
from API documentation to assist LLMs in code generation.
This approach follows the divide-and-conquer strategy and
iterative coding practice, which improves the generated code
from misuse to mastery by formulating a chain of modular
prompts for LLMs. To this end, we first construct an API
knowledge base from official API documentation [26]. Then,
based on the original code generated by LLMs, we chain
knowledge-driven prompts to check whether there exists any
unhandled exception in the generated code. Whenever such
exceptions are identified, we rewrite the code with fine-grained
exception-handling knowledge prompts until all exceptions are
properly handled, as shown in Figure 1.

The API knowledge base constructed for our KPC-based
code generation approach includes 19,057 exceptions with
corresponding conditions, covering 11,477 Java SDK & JDK
APIs, which is available in our replication package [27].
We conduct experiments to evaluate the efficiency and ef-
fectiveness of our KPC-based code generation approach for
exception handling. Our experiments are based on 3,079 Java
coding tasks obtained from Java SDK & JDK API functional
descriptions [26]. To evaluate the efficiency, we analyze the
distributions of unhandled exceptions and checking-rewriting
loops. We find that our KPC-based approach can efficiently
handle exceptions for the majority of coding tasks using a

small number of iterative checking-rewriting loops. Specifi-
cally, 90.35% of the generated code can be effectively handled
within ten loops when dealing with exceptions. To evaluate
the effectiveness, we use three evaluation methods, including
both static and dynamic validations. For static validations,
on one hand, we leverage the ability of LLMs to automati-
cally evaluate the exception-handling practice of the generated
code. On the other, we manually review a subset of the
tasks. For dynamic validation, we employ EvoSuite [28] to
generate test cases for detecting runtime bugs. The results
of all three evaluation methods show that our KPC-based
approach outperforms the state-of-the-art code generator (i.e.,
ChatGPT) in exception handling. Specifically, we observed
improvements of 109.86% and 578.57% in the two static
evaluation methods, and a reduction of 18 runtime bugs in
the dynamic validation. In addition to these evaluations, we
also conduct a user study to determine how our KPC-based
approach can help developers in practice. Results show that
our approach can effectively remind developers of exception-
handling specifications, leading to a high level of correctness
(75.00%) in handling potential exceptions.

In summary, we make the following contributions:

• We are the first to propose the fine-grained knowledge-
driven prompt chaining approach (i.e., KPC) for LLMs
in code generation tasks.

• We conduct an empirical study to investigate the chal-
lenges of LLMs in exception handling, and design the
most appropriate prompts to address these challenges.

• Experimental results demonstrate that our KPC-based
approach is highly efficient and effective in handling
exceptions. And our user study also shows KPC can assist
developers in effectively handling exceptions in practice.

• We open source our replication package [27], including
the dataset, the source code of KPC, and experimental
results, for follow-up works.

II. AN EMPIRICAL STUDY ON EXCEPTION HANDING FOR
LLMS CODE GENERATION

Despite the great success of LLMs in the software engineer-
ing field, there still exist some issues that have not been well
studied in the literature, leading to unexpected errors when
solving tasks such as code generation in this work. Therefore,
we conduct an empirical study to facilitate the understanding
of knowledge-driven prompts chaining for LLMs in code
generation by answering the following two research questions.
• RQ1: What challenges do LLMs face in handling excep-

tions when generating code? By analyzing the generated
code from LLMs, we manually summarize the challenges
related to exception handling.

• RQ2: How to help LLMs address the challenges ef-
fectively? After summarizing the challenges, we leverage
prompt engineering to address them by trying different
prompts related to exception handling.

A. Challenges of LLMs in Exception Handling (RQ1)
To explore the challenges that LLMs encounter in handling

exceptions, we first collect 92 Java code generation tasks
from Tutorialspoint [29], which may have potential exceptions.
We then rephrase (see Section III-B1) the tasks as inputs
of ChatGPT to generate Java code. Afterward, two of the
authors collaborate to review the generated code manually
with the goal of identifying the challenges that LLMs might
encounter when handling exceptions in code generation tasks.
Both authors have more than five years of experience in Java
development and a thorough understanding of official Java
API documentation. We summarize the challenges into three
crucial aspects, which are elaborated as follows.

1) Incomplete exception handling: Exceptions are an es-
sential part of programming that signal the occurrence of an
error during program execution. It’s common for a single code
snippet to encounter multiple exceptions. However, failing to
handle all of these exceptions can have severe consequences,
such as crashes, data corruption, and security vulnerabilities.
Unfortunately, results of the empirical study show that the
incomplete exception handling phenomenon is very common
in the code generated by ChatGPT, since there are 88.04% (81
out of 92) of the coding tasks have such issues. In fact, such
a fault is very likely to be avoided because official documen-
tation clearly describes the exception-handling specifications
for each API. For example, the code in Figure 2 (A) involves
the incomplete exception-handling issues for the two APIs,
java.util.Vector.get(int index) and java.util.Vector.set(int index, E
element), and we can find the exception-handling specification
“Throws: ArrayIndexOutOfBoundsException - if the index is
out of range (index < 0 || index >= size())” in Java API
documentation [30], [31].

2) Incorrect exception handling: This issue occurs when
an exception is handled incorrectly in the code, such as
catching the wrong type of exceptions. According to the
statistical results of our empirical study, 4.35% (4 out of 92)
of the code examples generated by ChatGPT contain such
issues. Although these fault examples account for a small
part of the overall coding tasks, we cannot ignore this issue,
especially for those code examples that are able to run without
any error, which would be very hard to localize the root
cause of the problem. Figure 2 (B) shows an example of
incorrect exception handling, which catches IndexOutOfBound-
sException. Referring to Java API documentation [30], [31],
it is recommended to use ArrayIndexOutOfBoundsException
instead of IndexOutOfBoundsException in this scenario, as
ArrayIndexOutOfBoundsException is a subclass of IndexOutOf-
BoundsException and is specifically designed for cases where
an array or vector index is out of bounds.

3) Abuse of try-catch: It refers to situations where try-
catch statements are used excessively or inappropriately, e.g.,
using them to handle non-exceptional situations or to handle
exceptions that should be handled by a specific piece of code.
We observe from the empirical study that ChatGPT attempts
to use try-catch statements to solve 5.43% (5 out of 92) of
the coding tasks, which constitutes a small percentage of the

Please pay attention to potential exceptions.

public static void swap(Vector<Integer> v, int i, int
j) throws IndexOutOfBoundsException {
 try {
 int temp = v.get(i);
 v.set(i, v.get(j));
 v.set(j, temp);
 } catch (IndexOutOfBoundsException e) {
 throw e;
 }
}

Sure, here are the fully qualified names of the methods used in the
method I provided:
• java.util.Vector.get(int index)
• java.util.Vector.set(int index, E element)

• java.util.Vector.get(int index)：
{Exception: ArrayIndexOutOfBoundsException, Condition: if the index is out
of range (index < 0 || index >= size())}

• java.util.Vector.set(int index, E element)：
{Exception: ArrayIndexOutOfBoundsException, Condition: if the index is out
of range (index < 0 || index >= size())}

You're right, there are potential exceptions that could be thrown
in the method I provided. Here's an updated version of the
method that handles those exceptions:

C

Please write a Java method to swap two elements in a vector.

public static void swap(Vector<Integer> v, int i, int
j) {
 int temp = v.get(i);
 v.set(i, v.get(j));
 v.set(j, temp);
}

Here's a Java method that swaps two elements in a vector:

A Direct Generating Knowledge-driven Prompting

General Prompting

c1

please pay attention toPlease pay attention to ArrayIndexOutOfBoundsException.

You're right, ArrayIndexOutOfBoundsException is a more specific
subclass of IndexOutOfBoundsException and would be more
appropriate to use in this case. Here's an updated version of the method
that uses ArrayIndexOutOfBoundsException instead:

public static void swap(Vector<Integer> v, int i, int j)
throws ArrayIndexOutOfBoundsException {

 try {
 int temp = v.get(i);
 v.set(i, v.get(j));
 v.set(j, temp);
 } catch (ArrayIndexOutOfBoundsException e) {
 throw e;
 }
}

Co
ar

se
-g

ra
in

ed

Please check if the index is out of range (index < 0 || index >= size()),
otherwise throw ArrayIndexOutOfBoundsException.

You're correct, it would be more appropriate to check if the indices are
out of range using the size() method of the Vector class. Here's an
updated version of the method that includes this check:

public static void swap(Vector<Integer> v, int i, int j)
throws ArrayIndexOutOfBoundsException {
 if (i < 0 || i >= v.size() || j < 0 || j >= v.size()) {
 throw new ArrayIndexOutOfBoundsException();
 }

 int temp = v.get(i);
 v.set(i, v.get(j));
 v.set(j, temp);
}

Fi
ne

-g
ra

in
ed

What Java JDK methods are used in the method you provided?
Please list the fully qualified names of the methods.

B

c2

Please write a Java method to swap two elements in a vector.

public static void swap(Vector<Integer> v, int i, int j) {
 int temp = v.get(i);
 v.set(i, v.get(j));
 v.set(j, temp);
}

Here's a Java method that swaps two elements in a vector:

A
Please write a Java method to swap two elements in a vector.

Direct Generating

B
Please pay attention to potential exceptions.

General prompting

C
Please pay attention to ArrayIndexOutOfBoundsException.

Coarse-grained Knowledge-driven prompting

D

Please check if the index is out of range (index < 0 || index >= size())
for java.util.Vector.get(int index) and java.util.Vector.set(int index, E
element), otherwise throw ArrayIndexOutOfBoundsException.

Fine-grained Knowledge-driven prompting

 public static void swap(Vector<Integer> v, int i, int j)
 + throws IndexOutOfBoundsException {
 + try {
 int temp = v.get(i);
 v.set(i, v.get(j));
 v.set(j, temp);
 + } catch (IndexOutOfBoundsException e) {
 + throw e;
 + }
 }

 public static void swap(Vector<Integer> v, int i, int j)
 + throws ArrayIndexOutOfBoundsException {
 try {
 int temp = v.get(i);
 v.set(i, v.get(j));
 v.set(j, temp);
 + } catch (ArrayIndexOutOfBoundsException e) {
 + throw e;
 + }
 }

 public static void swap(Vector<Integer> v, int i, int j)
 + throws ArrayIndexOutOfBoundsException {
 + if (i < 0 || i >= v.size() || j < 0 || j >= v.size()) {
 + throw new ArrayIndexOutOfBoundsException();
 + }
 int temp = v.get(i);
 v.set(i, v.get(j));
 v.set(j, temp);
}

Incomplete exception handling

Incorrect exception handling

Abuse of try-catch

Good Practice

+

+

+

Fig. 2. A walkthrough example demonstrating the difference between direct
generating (A), general prompting (B), and both coarse-grained (C) and
fine-grained (D) knowledge-driven promoting, using the coding task from
Tutorialspoint.

whole dataset, but we can not take this issue lightly, as this
practice will reduce the readability and maintainability of the
code. Typically, a try-catch statement enables code to run with-
out errors, but it may not always lead to logically sound code.
Hence, it’s often necessary to find a more effective solution
to handle exceptions. For example, the code in Figure 2 (C)
implements the function of throwing exceptions if there exists
any error with the input, but it lacks the ability to determine
the explicit conditions to throw exceptions. Instead, using an
if-condition checking mechanism implemented in Figure 2 (D),
is generally considered to be a better practice in the software
development process.

Answer to RQ1: Code generated by LLMs mainly en-
counters three challenges, including incomplete exception-
handling, incorrect exception-handling and abuse of try-
catch statements.

B. Prompt Engineering for Exception Handling (RQ2)

As shown in RQ1, LLMs have great potential to solve
software engineering tasks such as code generation, but the

three challenges are still significant barriers to exception
handling. It is believed that prompt engineering is the key
to unlocking the magic of LLMs to generate high-quality
solutions. However, prompt engineering involves much more
than just developing prompts. It requires a deliberate and
systematic approach to designing and refining prompts and
the underlying data structures that control LLMs. In this RQ,
we apply a three-granularity (i.e. general, coarse-grained and
fine-grained) prompt design strategy, which adds exception-
handling relevant information to prompts gradually, to inves-
tigate the impact of prompts to exception handling in LLM-
based code generation tasks.

1) General prompting: The most straightforward way to
make LLMs pay attention to the exceptions in code is asking
them to do so directly, which is named as general prompting
in our work. This method only uses generic warnings to raise
concerns about exception to LLMs without providing excep-
tion types and conditions. Figure 2 (B) shows an example of
general prompting, in which we give the prompt “Please pay
attention to potential exceptions.” to ChatGPT. By reviewing
the code generated in the last round, ChatGPT realizes there
exists potential exceptions involving “out of bounds” and
solves this problem by catching IndexOutOfBoundsException.
Although this method tries to solve problems with minimal
effort, it can solve a part of the exception-handling issues.
According to the experiment results in Table I, general prompt-
ing helps ChatGPT to reduce incomplete exception handling
examples from 81 to 35. Nevertheless, this solution may
introduce other problems, such as incorrect exception handling
(Section II-A2) and abuse of try-catch (Section II-A3) because
the general prompting fails to provide sufficient information
about the types of exceptions in the code and appropriate
measures to handle them. As presented in Table I, comparing
general prompting with direct generating, the number of
incorrect exception handling increases from 4 to 23, and the
number of abusing try-catch goes up from 5 to 20. Without
comprehensive exception-handling specifications, LLMs cre-
ate low-quality solutions to the coding tasks, which go against
the best practices in the software development process.

2) Coarse-grained prompting: Compared with general
prompting which provides zero exception-handling informa-
tion, coarse-grained prompting offers a part of such infor-
mation to the input prompts of ChatGPT. Specifically, this
strategy applies exception-handling specifications from API
documentation and indicates what exception ChatGPT should
pay attention to exactly. As shown in Figure 2 (C), the prompt
is updated to “Please pay attention to ArrayIndexOutOfBound-
sException.” from the naive version. ChatGPT understands
clearly that it should focus on the given exception and revises
the code by catching ArrayIndexOutOfBoundsException with
a try-catch block. Based on the statistical results in Table I,
coarse-grained prompting achieves a significant reduction of
incomplete exception-handling issues by 95.06% (from 81 to
4). Moreover, the number of incorrect exception handling is
completely eliminated. Theoretically, if ChatGPT is provided
with explicit exception information, there will be no chance to

exist incomplete or incorrect exception handling. We investi-
gate the reason why there still exist four incomplete exception-
handling examples and find they use APIs whose exception-
handling specifications are incomplete in the official documen-
tation. For example of java.lang.String.split(String regex) [32],
neither of the object string nor parameter regex can be null,
otherwise NullPointerException will happen. Therefore, the
prompts are not given such information, and the corresponding
exceptions cannot be handled. We also observe some side
effects of this strategy from Table I, in which the number
of abusing try-catch statements by coarse-grained prompting
increases from 5 to 41 compared with direct generating.
The main reason lies in the lack of condition information
of the exceptions, so ChatGPT is unable to handle them in
appropriate manners.

3) Fine-grained prompting: From the previous prompting
strategies, we find that the more detailed information given to
prompts, the higher quality can ChatGPT solve the problems.
Therefore, in the final edition of prompt engineering, we
introduce all the exception-handling information obtained from
official Java API documentation and propose fine-grained
prompting strategy, which contains not only the exception
types, but also corresponding conditions to trigger the ex-
ceptions. As shown in Figure 2 (D), the prompt is formu-
lated as “Please check if the index is out of range (index
< 0 || index >= size()) for java.util.Vector.get(int index)
and java.util.Vector.set(int index, E element), otherwise throw
ArrayIndexOutOfBoundsException.”. ChatGPT leverages the
key information from the prompt and provides the code
solution by adding an if-condition statement to throw an Ar-
rayIndexOutOfBoundsException, which is considered as a type
of best practice in the software development process. Table I
illustrates the experimental results of fine-grained prompting,
from which we observe that this strategy solves the three
challenges perfectly, with incorrect exception handling and
abuse of try-catch to be completely eliminated. Similar to
the result of coarse-grained prompting, there still exist three
(instead of four) examples that have incomplete exception
handling issues, which share the same reason stated previously.
One of the coding tasks is solved by ChatGPT accidentally,
and the primary cause is the uncertainty of ChatGPT’s outputs.
Even the same prompt could trigger different activities of this
model, and we will discuss it in Section VII.

Answer to RQ2: Fine-grained prompts with specific excep-
tions and corresponding conditions enable LLMs to identify
and handle exceptions accurately, which follows the best
practice of the software development process.

III. THE APPROACH

Figure 3 illustrates the overall framework of our approach,
which consists of one off-line phase and one online phase: API
knowledge base construction (i.e., step-0 in Figure 3) is off-
line and KPC-based code generation (i.e., step-1, step-2 and
step-3 in Figure 3) is online. Specifically, we first construct an
API knowledge base from Java official documentation. Then,

API Document Knowledge Base

Please write a Java method to swap two elements in a vector.

public static void swap(Vector<Integer> v, int i, int
j) {
 int temp = v.get(i);
 v.set(i, v.get(j));
 v.set(j, temp);
}

Here's a Java method that swaps two elements in a vector:

API
Information
Collection

What Java SDK & JDK methods are used in the method you
provided? And please list the fully qualified names of the methods.

Sure, here are the fully qualified names of the methods used in the
method I provided:
• java.util.Vector.get(int index)
• java.util.Vector.set(int index, E element)

Is the [Exception] handled for [API] in the code snippet? (Y/N)
• Is the ArrayIndexOutOfBound Exception handled for

java.util.Vector.get(int index) ? yes or no
• Is the ArrayIndexOutOfBound Exception handled for

java.util.Vector.set(int index, E element)? yes or noException-
handling

Collection

Please check [Condition] for [API], otherwise throw [Exception].
• Please check if the index is out of range (index < 0 || index >= size()) for

java.util.Vector.get(int index), otherwise throw ArrayIndexOutOfBound Exception.
• Please check if the index is out of range (index < 0 || index >= size()) for

java.util.Vector.set(int index, E element), otherwise throw ArrayIndexOutOfBound
Exception.

public static void swap(Vector<Integer> v, int i, int j)
 throws ArrayIndexOutOfBoundsException {
 if (i < 0 || i >= v.size() || j < 0 || j >= v.size())
{
 throw new ArrayIndexOutOfBoundsException();
 }

 int temp = v.get(i);
 v.set(i, v.get(j));
 v.set(j, temp);
}

Is there any unhandled
exception?

Step-1: Generating

Step-2: CheckingStep-0: API Knowledge Base
Knowledge Extraction

Output Code
Handed Exceptions Unhanded Exceptions

Yes
No

+

+

Yes No

Task How to swap two elements in a vector?

Step-3: Rewriting

Fig. 3. The Overall Framework of KPC-based Code Generation

TABLE I
QUALITY STATISTICS OF GENERATED CODE WITH VARIOUS PROMPTS

Quality
of code

Direct
generating

General
prompting

Knowledge-driven
prompting

Coarse-
grained

Fine-
grained

Incomplete
exception
handling

81 35 4 3

Incorrect
exception
handling

4 23 0 0

Abuse of
try-catch 5 20 41 0

Good
practice 2 14 47 89

*Note: There is no overlap among the three challenges, and we label them according

to a priority of incomplete exception handling, incorrect exception handling and
abuse of try-catch.

we work on top of ChatGPT and design a Knowledge-driven
Prompt Chaining (KPC)-based code generation approach to
improve the code quality with regard to exception handling.

A. API Knowledge Base Construction
As investigated in Section II-B, fine-grained prompts that

provide specific exceptions and corresponding conditions can
significantly boost the ability of LLMs to generate effective so-
lutions for exception handling, avoiding the fault of incomplete
or incorrect handling. Previous works [33], [34] demonstrate
the feasibility of extracting high-quality knowledge from the
official documentation. We follow such methodologies to mine
API exception handling knowledge from Java documentation.

1) Knowledge schema: We construct the API knowledge
base as triples of <entity, relation, entity> and only con-
sidered method-level APIs. The entities have three types of
components: API, exception and condition, and the relations
between entities include: throw and trigger. Specifically, the
API knowledge base only has two forms: an API throws excep-
tions, and a condition triggers an exception. For example, the
task in Figure 2 is related to two APIs in our API knowledge
base: java.util.Vector.get(int index) and java.util.Vector.set(int
index, E element). Both of them throw ArrayIndexOutOfBound-
sException, which is triggered by the condition of “if the index
is out of range (index < 0 || index >= size())” [30], [31].

2) Knowledge extraction: In this work, we use Java SDK
& JDK API specification [26] to construct the API knowl-
edge base. The API documentation is collected from online

resources by a web crawling tool [35], and each crawled
web page is treated as an API document. We only keep
the semi-structured API declarations and exception-handling
specifications, but ignore other contents on the crawled web
pages (e.g., code snippets and other textual descriptions), as
this work focuses on exception-handling issues brought by API
calls. API declarations describe the API’s fully qualified name,
which acts as an index of a specific API. Exception-handling
specifications are usually in the form of “Throw: [Exception]
- [Condition].” and we can use a rule-based method to extract
exceptions and conditions from them. Different from previous
works [33], [34], which conduct a series of pre-processing
such as splitting and tokenizing to the natural language de-
scriptions of the conditions, no further operation is required
in this work because of the semantic interpretation capability
of LLMs applied by our method.

B. KPC-based Code Generation

Given a natural language described coding task as input, our
method takes three steps (i.e., generating, checking-rewriting),
which are all supported by prompting the LLM in an AI chain
workflow, to output the code with all exceptions being handled
(see Figure 3). The three steps share the same state-of-the-art
(SOTA) LLM, namely ChatGPT, and we elaborate the AI chain
workflow as shown in Figure 1.

1) Generating: Typically, a coding task is a sentence of
natural language description in the form of “How to ...”. The
sentence is rephrased into “Please write a Java method to...
” as a prompt in order to clarify the requirement for LLMs
explicitly.

As one of the most representative techniques to promote
the revolution of artificial general intelligence (AGI), ChatGPT
performs well on a large variety of natural language as well as
software tasks. For example, previous work [12] has demon-
strated the ability of ChatGPT to generate high-quality code,
inspiring us to take advantage of it to implement the generating
step. This step is responsible for generating the initial version
of code according to a given coding task. Furthermore, the
context-aware semantic interpretation of ChatGPT offers the
potential for inter-model collaboration and interaction, which
will be applied in the checking-rewriting loop.

2) Checking: After the first step of generating, we obtain
a piece of code to solve the task (e.g., code of step-1 in

Figure 3). However, there is a high possibility that the code
contains defects such as unhandled exceptions, as the input
coding task does not provide any domain-specific information
about exception handling, which usually appears in API doc-
umentation and has been stored in our knowledge base. We
adopt the constructed API knowledge base and formulate a
checking step with two parts to collect the exception-handling
results.
• API Information Collection. It has been shown that LLMs

can achieve good performance on program understand-
ing [36], which simplifies the process of API extraction.
To obtain the APIs’ fully qualified names, we present the
generated code to ChatGPT and ask it with the prompt
“What Java SDK & JDK methods are used in the method
you provided? Please list the fully qualified names of the
methods.” This API information collection part of step-2 in
Figure 3 illustrates an example of how to extract the two API
fully qualified names, i.e., java.util.Vector.get(int index) and
java.util.Vector.set(int index, E element), from the generated
code. We also use the extracted API names to construct links
with the API knowledge base for further analysis.

• Exception-handling Collection. We first create a prompt
template “Is the [Exception] handled for [API] in the
code snippets? (Y/N)”, in which the [Exception] and [API]
are placeholders. Then the prompt template is instanti-
ated by filling placeholders with related APIs and their
corresponding exceptions according to information in the
API knowledge base. For example, the prompt template
in Figure 3 (step-2) is instantiated into two sub-questions,
i.e., “Is the ArrayIndexOutOfBoundException handled for
java.util.Vector.get(int index)?” and “Is the ArrayIndexOut-
OfBoundException handled for java.util.Vector.set(int index,
E element)?”. Similar to the previous part (i.e., API informa-
tion collection), we provide ChatGPT with code and ask it
questions with the aim of acquiring the exception-handling
information. This operation is conducted on each extracted
API, and all the handled/unhandled exceptions are collected
in this step.
3) Rewriting: This step is technically similar to generating

and checking, which applies the proper prompt to make
ChatGPT generate the required code. The main difference
between them is the prompt creation strategy. Specifically, we
design a new prompt template “Please check [Condition] for
[API], otherwise throw [Exception].” for this step. If there
exist any unhandled exceptions in the code collected in step-
2, the prompt template is instantiated with the information
from the API knowledge base. We integrate all the exceptions
into one prompt and ask ChatGPT to handle the exceptions
at one time and rewrite the code. For example, in Figure 3
(Rewriting), we instantiate the prompt template into “Please
check if the index is out of range (index < 0 || index >= size())
for java.util.Vector.get(int index), otherwise throw ArrayIndex-
OutOfBoundsException. Please check if the index is out of
range (index < 0 || index >= size()) for java.util.Vector.set(int
index, E element), otherwise throw ArrayIndexOutOfBound-
sException”.

The checking-rewriting steps will keep going iteratively
until no more unhandled exception remains in the generated
code.

IV. EXPERIMENTAL SETUP

A. Research Question

In the evaluation, we study the following research questions:
• RQ3: How effective is our KPC in identifying and han-

dling exceptions during code generation tasks? To answer
this question, we perform a detailed statistical analysis to
determine the number of potential exceptions that may arise
in the generated code, as well as the number of checking-
rewriting loops required by KPC to address these exceptions.

• RQ4: To what extent can our KPC effectively assist
in handling exceptions in LLM code generation? We
compare our approach with the state-of-the-art (SOTA) code
generator, i.e.,ChatGPT, and employ both static and dynamic
evaluation methods to assess the improvements in exception-
handling issues in the generated code.

B. Task Collection and Implementation

The coding tasks of our experiments are collected from
Java SDK & JDK API specification [26]. Following previous
work [15], [37], we also use the API functional descriptions as
the coding tasks. However, not all tasks are considered in this
work. We only considered the tasks that LLMs can generate
code using Java SDK & JDK APIs with potential exceptions.
Thus, by analyzing code generated by LLMs, we collect 3,079
Java coding tasks from 11,259 API functional descriptions.

Both our KPC-based code generation approach and our
baseline (i.e., ChatGPT) are implemented on top of the GPT-
3.5-turbo model [38], which has been proven to achieve the
best performance in code generation [12].

V. EVALUATION

A. Efficiency of KPC (RQ3)

1) Method: Our KPC-based code generation approach is
an iterative process, it is crucial to evaluate its efficiency in
dealing with exception-handling issues. As our approach is
implemented on top of model-3.5-turbo, whose response time
cannot be artificially controlled, the best way to assess our
approach’s efficiency is to measure the number of exceptions
that must be addressed in each loop during exception handling,
and how many loops are necessary to complete the exception
handling tasks.

Note that the initial round of checking-rewriting steps is
considered as the first loop. Additionally, it’s important to
highlight that various exceptions that arise from the same API
are identified as distinct exceptions.

2) Result: Figure 4(a) shows the distribution of checking-
rewriting loops for all coding tasks completed by our KPC-
based code generation approach. In our experiment, the num-
ber of checking-rewriting loops required ranges from a mini-
mum of 2 to a maximum of 28. Among the 3,079 coding tasks,
90.35% (2,782) tasks could be completed within 10 loops, and
58.46% (1,800) tasks require only two loops for completion.

(a) Distribution of Checking-Rewriting Loops (b) Distribution of Unhandled Exceptions

Fig. 4. Distributions of KPC-based Code Generation

In this case, the results suggest that exceptions in the majority
of coding tasks can be efficiently handled by our KPC within
a limited number of checking-rewriting loops.

Figure 4(b) displays the average number of unhandled
exceptions collected within each loop, which refers to the
average number of unhandled exceptions per loop across all
tasks that can be completed in the same number of loops. It is
obvious that the average number of unhandled exceptions per
loop ranges from 1.61 to 3.35, which indicates that each loop
is simple and not required to handle too many exceptions.

We also observe that the average number of unhandled
exceptions per loop can fluctuate (e.g., 5 loops and 6 loops
in Figure 4(b)), which is because once the generated code
is rewritten, new unhandled exceptions may be introduced.
However, all unhandled exceptions can be resolved by the
end of the loop, resulting in zero unhandled exceptions upon
completion.

Answer to RQ3: Our KPC-based code generation approach
is designed to efficiently handle the majority of exceptions
using a small number of checking-rewriting loops, typically
within 10 simple loops.

B. Effectiveness of KPC (RQ4)
1) Method: To evaluate the effectiveness of ChatGPT and

our KPC-based approach in exception handling from both
static and dynamic perspectives, we select three evaluation
methods: LLMEva, CodeReview, and EvoSuite. LLMEva and
CodeReview use static code analysis to evaluate the generated
code, and EvoSuite generates test cases to make the dynamic
validation.

Details of the three evaluation methods are as follows:
• LLMEva: It leverages LLMs’ capability of comprehend-

ing code to evaluate the performance of generated code.
Specifically, LLMEva evaluates the exception-handling per-
formance of the generated code by posing the prompt to
ChatGPT: “Can the code handle all exceptions in good
practice? (Y/N)?”.

• CodeReview: It is a manual code review method. Two of
the authors independently label whether all exceptions in
the generated code are handled in accordance with good
practice. After completing respective labels, they compared
their assessments and discussed any disagreements to arrive
at a consensus. Note this process was conducted by the same
authors who have conducted the empirical study before,
which adds to the reliability and validity of our results.

TABLE II
THE NUMBER OF CODE WITH GOOD EXCEPTION-HANDLING PRACTICES

of Tasks ChatGPT KPC Improve
LLMEva 3,079 1,056 (34.30%) 2,195(71.29%) 107.86%

CodeReview 384 56 (14.58%) 380 (98.86%) 578.57%
EvoSuite 384 353 (91.93%) 371 (96.61%) ↓ 18 bugs

• EvoSuite [28]: It is a state-of-the-art search-based software
testing approach [28], [39] used for generating test cases
for Java code, and it has been demonstrated to achieve
high code coverage and improve bug detection capabilities.
Generating test cases for code is an effective way to assess
the quality of the code and ensure that it can avoid errors
through appropriate exception handling. Many search algo-
rithms have been proposed for EvoSuite, and we choose
DynaMOSA [40] as the search algorithm, which optimizes
multiple coverage targets simultaneously. Search algorithms
have various parameters to set, but previous work [41] shows
that parameter tuning SBST is extremely expensive and not
necessary compared to default parameter values. Thus, we
use the default settings of DynaMOSA. Moreover, consider-
ing our work focuses on exception handling in the generated
code, we choose branch coverage and exception coverage as
the optimization objective. To ensure the efficient allocation
of resources, we established a time budget of two minutes
per class for this process and repeated it 10 times. The
executions is run on gnu/Linux system (Ubuntu 18.04.6
LTS) with 5.4.0-128-generic Linux kernel, 28-core 2.60GHz
Intel(R) Xeon(R) Gold 6348 CPU and 1TB RAM.
For LLMEva, we evaluate results of all coding tasks in our

experiment because the evaluation process is automated. While
to tackle the time-consuming nature of both CodeReview and
EvoSuite, we employ a statistical sampling method [42] to
analyze MIN randomly selected instances of the coding tasks.
MIN = 384 in this work, which ensures the estimated
accuracy is in 0.05 error margin at 95% confidence level.

2) Result: Table II shows the number of code with good
exception-handling practices generated by our KPC and Chat-
GPT, which can reflect their effectiveness of exception han-
dling under different evaluation methods. Overall, our KPC
demonstrates significant advantages across all three evaluation
methods, with exception handling improvements of 107.86%,
578.57%, as well as a reduction of 18 real bugs, respectively.

According to LLMEva, 34.30% (1,056 out of 3,079) of the
code generated by ChatGPT and 71.29% (2,195 out of 3,079)
of the code generated by our KPC-based approach are proven
to be with good exception-handling practice. As discussed
in Section II-A, LLMs have several limitations in handling
exceptions. The reliability of results evaluated by LLMEva is
uncertain. However, based on the relative results (71.29% vs.
34.30%), it is evident that our KPC-based approach exhibits
a significant improvement in exception handling compared to
the code generated directly by ChatGPT.

The same results are more pronounced in manual code
review. According to code review (i.e., the “CodeReview” row
in Table II), only 14.58% of code generated by ChatGPT can
meet good exception handling practice, while that of our KPC-
based approach is as high as 98.86%. For manual code review,

the Cohen’s Kappa between the two authors is 0.98, which
indicates they are with a significantly high agreement in the
labeling results.

With careful observation, we find the main reason for
the huge gap between the results of CodeReview and
LLMEva is LLMs lack sufficient exception-handling knowl-
edge and best practices for exception handling. Specifically,
LLMs prefer to use general exceptions handling strategies,
e.g, “RuntimeException”, instead of specific exceptions, e.g.,
“ArrayIndexOutOfBoundsException”. Using general exception
handling can catch and handle multiple types of exceptions
with a single catch block, but may result in the loss of
important information needed to diagnose and fix specific
errors, which is considered a bad practice in this work.
By contrast, our KPC-based approach leverages fine-grained
knowledge-driven prompts that include specific exceptions and
their corresponding conditions. Our approach enhances the
ability of LLMs to generate informative and accurate error
messages. By providing developers with more detailed error
messages, our approach can be a valuable tool for debugging.

Furthermore, the results of EvoSuite reveals that out of the
384 randomly selected tasks, a total of 31 (384− 353) unique
bugs across 10 runs can be detected in the code generated
by ChatGPT. In comparison, 13 (384− 371) unique bugs are
detected in the code generated by our KPC-based approach.
As the ultimate goal of exception handling is to minimize
runtime errors, results from EvoSuite indicate that our KPC-
based approach has the potential to help developers handle
real bugs in their code. Although our approach only reduces
18 more real bugs in the sampled dataset compared with
EvoSuite, we would like to remind the readers that EvoSuite is
a sophisticated software tool that requires long-term research
and significant amount of enginering effort to build and
maintain. In contrast, by standing on the shoulder of the LLMs
and through the design of an AI chain and knowledge-driven
prompts, which is much simpler than EvoSuite, our approach
achieves the performance on par with EvoSuite. This result
sheds the light on the new opportunities to build software
analysis tools on top of the LLMs.

Answer to RQ4: Our KPC-based approach can enhance
the ability of LLMs to generate informative and accurate
error messages, which can also help reduce runtime bugs
in the generated code.

VI. USER STUDY

We conduct a user study to evaluate the usefulness of our
KPC-based code generation approach for helping developers
write code efficiently and correctly.

A. User Study Design

1) Tasks and Procedure: As shown in Table III, we select
six typical Java programming tasks from the dataset of em-
pirical study (Section II) and evaluation (Section V), which
includes two easy tasks (T2 and T6), two medium tasks (T1
and T5) and two hard tasks (T3 and T4). The participants

are expected to use a certain kind of Java API to write code
and implement a method that satisfies the requirement of each
task. It is free to access any online resources, including API
documentation and Q&A forums, except the code generator
(e.g., CodeX and ChatGPT). Each task has a time limit of ten
minutes, which means the user study can be finished within
one hour. After the user study, we conduct a short survey
by collecting feedback on each participant, which is used to
understand their behaviors and improve our work in the future.

2) Participants: We recruit 12 participants from an IT
company that has over 2,000 developers to attend the user
study. The participants have 1 to 5 (on average of 3.2) years
of Java development experience on both commercial and open-
source projects. They are divided into three groups (i.e., G-1,
G-2, G-3) equally, and each group consists of four participants.
G-1 and G-2 are control groups, where G-1 is given only the
coding tasks, while G-2 is given both the coding tasks and
reference code generated by ChatGPT. G-3 is the experimental
group that is given both the coding tasks and reference code
generated by our KPC-based code generation approach.

3) Evaluation Metrics: We consider two key factors for
evaluating the performance of participants: task completion
time and answer correctness. Task completion time reflects
how fast a participant can complete a coding task. Answer
correctness represents whether the code submitted by a partic-
ipant is actually an appropriate solution with good exception-
handling practice to the task. The two authors first review
the code to determine the correctness of it independently
and discuss for final decisions if there exist different results.
We compute Fleiss’s Kappa [43] to examine the agreement
between the two authors. If the submitted code is annotated
as correct, the participant gets 1 mark, otherwise 0 mark.
We use Wilcoxon signed-rank test [44] with Bonferroni cor-
rection [45] to determine if the performance variation across
different groups is statistically significant. For example, if the
corresponding Wilcoxon signed-rank test result (i.e., p-value)
is less than 0.05, we can consider one group performs better
than the other at the confidence level of 95%.

Furthermore, we ask participants in G-2 and G-3 a sup-
plementary question, “To what extent does the reference
code help you to complete the task successfully?”. They are
supposed to answer it by giving a score of 0 to 4 for each
task, where 0 means helpless, and 4 means very helpful.

B. Result

Table III shows the results of the user study.
1) Correctness: The “Correctness” column in Table III

indicates the accuracy of each task completed by different
groups. For instance, a value of “1/4” means that only one
out of four participants completed the coding task correctly.

We can see from Table III that without any reference to
complete the coding tasks, G-1 only achieves an average
correctness of 29.17%. All coding tasks have limited numbers
of correct answers, with only one or two participants being
able to complete them correctly. In contrast, G-2 and G-
3 have reference code to complete the tasks, which obtain

TABLE III
CODING TASKS AND RESULTS OF USER STUDY

No. Coding Task Difficulty Correctness Time Consumption
(second) Usefulness

G-1 G-2 G-3 G-1 G-2 G-3 G-2 G-3
T1 Please write a Java method that removes the

char at the specified position in this sequence.
Medium 1/4 3/4 4/4 84.5 267.5 131.3 3.5 4.0

T2 Please write a Java method to swap two ele-
ments in a vector using Java

Easy 2/4 2/4 4/4 82.3 225.0 148.8 3.0 4.0

T3 Please write a Java method that acquires a lock
on the given region of this channel’s file.

Hard 1/4 1/4 2/4 500.0 385.5 420.0 3.5 3.8

T4 Please write a Java method that creates a new
instance of URLClassLoader for the specified
URLs and default parent class loader.

Hard 0/4 1/4 2/4 253.0 248.0 480.0 3.8 3.5

T5 Please write a Java method that interrupts a
running Thread in Java.

Medium 1/4 2/4 4/4 159.0 147.3 190.0 3.8 3.5

T6 Please write a Java method that split a string
into a number of substrings in Java

Easy 2/4 2/4 2/4 95.3 180.5 107.5 3.3 2.8

Average - - 29.17% 45.83% 75.00% 195.7 242.3 246.3 3.5 3.6

relatively higher average correctness of 45.83% and 75.00%,
respectively. This suggests the reference code can significantly
assist participants in completing coding tasks, especially when
the code is generated by KPC-based approach and provide
sufficient information about exception handling. The Wilcoxon
signed rank test shows that the differences of the correctness
between G-1 and G-2, G-1 and G-3, and G-2 and G-3 are
statistically significant at p− value < 0.05.

We gain the following research findings when evaluating
the correctness of coding tasks. In cases of no reference code
is provided (i.e., G-1), easy tasks such as T2 and T3 are more
likely to be completed correctly, while hard tasks such as T3
and T4 are still big challenges for the participants to solve.
However, the situation becomes more complex when a refer-
ence code is provided. In G-2, the reference code generated
by ChatGPT may contain numerous problems with exception
handling, which could mislead participants. Consequently,
there is no improvement for half of the tasks, including T2, T3
and T6. On the other hand, the reference code generated by
our KPC-based approach can provide more useful information
for exception handling, achieving significant improvements
in correctness. Specifically, all four participants successfully
completed tasks T1, T2, and T5, showcasing the effectiveness
of our approach. It is worth noting that even provided with
reference code, participants in G-2 and G-3 may occasionally
complete T6 incorrectly. We find the main reason is that both
ChatGPT and our KPC fail to generate the correct reference
code as the API documentation does not include exception-
handling specifications for the APIs used in this task, which
has been explained in Section II-B.

2) Time Consumption: The “Time Consumption” in Ta-
ble III refers to the meantime that a group completes each
task, in which G-1 takes the shortest time to finish the tasks
with an average of 195.7 seconds. We find that the participants
in G-1 tend to complete the coding tasks on their own without
referring to any generated code. In contrast, participants in G-
2 and G-3 are more likely to read the reference code carefully
to extract useful information about the tasks, which costs
them more time to finish the tasks, with average values of
242.3 seconds and 246.3 seconds, respectively. Although it

takes about 25% more time to read the reference code, it is
worth that the participants have more chances to solve the
coding task correctly. The Wilcoxon signed-rank test shows
the differences in the task completion time between G-1 and
G-2, G-1 and G-3, and G-2 and G-3 are statistically significant
at p− value < 0.05.

3) Usefulness and Interview: The “Usefulness” in Table III
is a unique feature of G-2 and G-3, and we obtain similar
scores of 3.5 and 3.6 for the two groups, respectively, which
means the participants believe the code generated by both
ChatGPT and KPC is helpful. We further analyze the interview
records and have two interesting findings. Firstly, most of the
developers have weak awareness of exception handling. For
example, when we ask them “Is there any exception handling
issues in the reference code?”, they feel very hard to identify
the problem accurately, even for those APIs that are frequently
used. This phenomenon applies not only to junior developers
but also to senior developers, who often overlook seemingly
“minor” issues. That is precisely why developers can in-
advertently make mistakes, and even impeccably designed
software may still contain bugs. Second, ChatGPT is very
“good” at generating flawed code that appears to be correct,
thereby misleading developers. That’s because ChatGPT was
trained with a plethora of online resources, and the answers
it generates partly reflect common practices in the software
development community, but common practices aren’t neces-
sarily the right ones. Hence, our reliable knowledge-driven
approach is therefore of paramount importance here.

VII. DISCUSSION

A. Limitations of KPC

As our KPC-based code generation approach is implemented
on top of ChatGPT, several limitations need acknowledging.

1) Code understanding: ChatGPT’s capability to under-
stand code is limited because it is primarily designed for
natural language processing and lacks direct experience with
programming languages. Generally, ChatGPT is able to recog-
nize and generate basic code syntax, e.g., variable declarations
and conditional statements, but does not have a deep under-
standing of underlying concepts and semantic interpretation

of programs. Therefore, writing comprehensive code to solve
complex coding tasks remains a big challenge for ChatGPT.

In this work, leveraging prompts to interact with ChatGPT
exists in most steps of our approach, e.g., collecting API and
exception-handling information in step-2 (see Section III-B).
ChatGPT’s limitation in code understanding is one of the
potential negative impacts on the performance of this work.

2) Trade-off between efficiency and effectiveness: Our KPC
interacts with ChatGPT iteratively to deal with the exception
handling issues in the code until the generated code is with
good practice. According to the CodeReview (Section V-B)
and user study (Section VI), we also realize that the more
iterations KPC interacts with ChatGPT, the more complex the
generated code will be, resulting in confusing and difficulties
for developers to understand the code. Although increasing
loops give our tool a higher probability of solving all excep-
tions in the coding tasks, this strategy ignores the requirement
of efficiency and might not be a good practice in the industry.
As demonstrated in RQ3, a reduced loop number within 10
loops is suggested for balancing efficiency and effectiveness.

B. Threats to Validity

1) Internal Validity: There might be inaccuracy when la-
beling the exception-handling practice for generated code (i.e.,
Section V-B) and scoring for users’ answers (i.e., Section VI).
Both annotators have more than five years of programming
experience in Java programming. Additionally, two annotators
check all the information about a vulnerability independently
and discuss if they cannot reach an agreement.

2) External Validity: One of the threats is the exception-
handling specifications in Official API documenation [26] are
not comprehensive, which makes our KPC-based approach
ignore some useful exception-handling solutions. In the fu-
ture, we will mine exception-handling knowledge from other
sources (e.g., GitHub and Stack Overflow) to continuously
extend our API knowledge base. We may also leverage the
LLM as a neural knowledge base [46] to consult it for API
exception knowledge, as the LLM “sees” all kinds of formal
and informal API documentation during pre-training. This will
further simplify our approach and mitigate the reliance on
high-quality API reference documentation.

VIII. RELATED WORK

A. Large Language Model & Prompt Engineering

LLMs (e.g., BERT [47], BART [48] and GPT-3 [49]) have
become ubiquitous in NLP field and achieved impressive
performance in various tasks including question answering [1],
content creation [2]–[4], logical reasoning [5], [6], software
testing [50]–[52] and robotics [53], [54]. PEER [2] and
Re3 [3] decompose content creation as recursive plan, write
and revision steps, which achieve strong performance across
various domains and editing tasks. Lemieux et al. [50] propose
CODAMOSA for test case generation, which conducts search-
based software testing until its coverage improvements stall,
then asks LLMs (i.e., Codex [7]) to provide example test
cases for under-covered functions. Besides, LLMs offer a

potential solution to automated graphical user interface (GUI)
testing [52]. The robustness and performance of LLMs depend
strongly on the quality of prompt and tremendous effort has
been made on the prompt engineering [21]–[24]. Nashid et
al. [25] present a retrieval-based prompt selection method to
solve test assertion generation and program repair problems,
which can potentially be applied to multilingual and multitask
settings without task or language-specific training.

B. Code Generation
Following the success of LLMs at natural language tasks,

the application of LLMs to code has generated significant
interest. As a result, multiple models for generating code
were developed, such as Codex [7], GitHub Copilot [55],
AlphaCode [8], PolyCoder [56], InCoder [10] and Code-
Gen [57]. Codex [7] is a state-of-the-art code generation
model that utilizes GPT-3 technology and an API interface
for public access. GitHub Copilot [55] is powered by Codex
and trained on public GitHub repositories, which support
multiple programming languages such as Python, JavaScript,
TypeScript, Ruby, and Go. Although LLMs’ utility is apparent,
the degree of their robustness remains uncertain, which leads
to a wide range of research interests. Barke et al. [13]
study how programmers interact with Copilot and provide
recommendations for improving the usability of future AI
programming assistants. Chen et al. [58] leverages one LLM to
automatically generate code samples and test cases for them.
Recently, ChatGPT [59] has garnered a significant amount
of attention, and researchers try to leverage this powerful
technique to generate high-quality code [12]. In this work, we
focus on exception handling in the process of code generation
to make the generated code samples more reliable.

C. Exception Handling
Exception handling practice has been widely studied in

literature [17]–[19], [60], [61]. Padua et al. [18] conduct an
empirical study to explore the relationship between exception
handling practices and software quality on open-source Java
and C# projects. They find that exception flow characteristics
in Java projects have a significant relationship with post-
release defects. Nguyen et al. [60] design a tool to predict
the potential exception type that could occur in a given code
snippet and recommend proper code to handle those excep-
tions. To implement automated exception handling, Zhang
et al. [20] propose a novel neural approach to predict the
locations of try blocks and automatically generate the complete
catch blocks for an exception. Recent work [16] tends to
apply LLMs to handle exceptions with explanations of the
errors and suggestions on how to fix the error, and shows
promising performance in this field. Similarly, Our work takes
advantage of LLMs’ few short learning abilities and obtains
domain-specific knowledge from API documents to guide the
exception code generation.

IX. CONCLUSION

This paper presents the first knowledge-driven prompt
chaining based code generation approach. We first extract

exception-handling specifications from official API documen-
tation and construct an API knowledge base. Then, we use the
fine-grained knowledge to construct knowledge-driven prompt
chains to assist LLMs in considering exception-hand in code
generation tasks. Our KPC has been proven to be highly
efficient and effective in handling exceptions. The usefulness
of our KPC-based approach has also been demonstrated in
practice. However, we acknowledge that the capability of
LLMs to analyze code and the availability of exception-
handling specifications in API documentation are still limited.
Thus, there is still much room for improvement in this field.
In the future, we aspire to address these limitations and make
significant contributions to the field of knowledge-driven code
generation for handling exceptions.

X. ACKNOWLEDGEMENTS

We would like to thank the reviewers for their detailed
comments and constructive suggestions. This research was
partially supported by “the Fundamental Research Funds for
the Central Universities”(226-2022-00064).

REFERENCES

[1] S. Arora, A. Narayan, M. F. Chen, L. J. Orr, N. Guha, K. Bhatia,
I. Chami, F. Sala, and C. Ré, “Ask me anything: A simple strategy for
prompting language models,” arXiv preprint arXiv:2210.02441, 2022.

[2] T. Schick, J. Dwivedi-Yu, Z. Jiang, F. Petroni, P. Lewis, G. Izacard,
Q. You, C. Nalmpantis, E. Grave, and S. Riedel, “Peer: A collaborative
language model,” arXiv preprint arXiv:2208.11663, 2022.

[3] K. Yang, N. Peng, Y. Tian, and D. Klein, “Re3: Generating longer
stories with recursive reprompting and revision,” arXiv preprint
arXiv:2210.06774, 2022.

[4] T. Wu, M. Terry, and C. J. Cai, “Ai chains: Transparent and controllable
human-ai interaction by chaining large language model prompts,” in Pro-
ceedings of the 2022 CHI Conference on Human Factors in Computing
Systems, 2022, pp. 1–22.

[5] A. Creswell, M. Shanahan, and I. Higgins, “Selection-inference: Ex-
ploiting large language models for interpretable logical reasoning,” arXiv
preprint arXiv:2205.09712, 2022.

[6] S. M. Kazemi, N. Kim, D. Bhatia, X. Xu, and D. Ramachandran, “Lam-
bada: Backward chaining for automated reasoning in natural language,”
arXiv preprint arXiv:2212.13894, 2022.

[7] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan,
H. Edwards, Y. Burda, N. Joseph, G. Brockman et al., “Evaluating large
language models trained on code,” arXiv preprint arXiv:2107.03374,
2021.

[8] Y. Li, D. Choi, J. Chung, N. Kushman, J. Schrittwieser, R. Leblond,
T. Eccles, J. Keeling, F. Gimeno, A. Dal Lago et al., “Competition-
level code generation with alphacode,” Science, vol. 378, no. 6624, pp.
1092–1097, 2022.

[9] E. Nijkamp, B. Pang, H. Hayashi, L. Tu, H. Wang, Y. Zhou, S. Savarese,
and C. Xiong, “Codegen: An open large language model for code with
multi-turn program synthesis,” arXiv preprint arXiv:2203.13474, 2022.

[10] D. Fried, A. Aghajanyan, J. Lin, S. Wang, E. Wallace, F. Shi, R. Zhong,
W.-t. Yih, L. Zettlemoyer, and M. Lewis, “Incoder: A generative model
for code infilling and synthesis,” arXiv preprint arXiv:2204.05999, 2022.

[11] P. Vaithilingam, T. Zhang, and E. L. Glassman, “Expectation vs. experi-
ence: Evaluating the usability of code generation tools powered by large
language models,” in Chi conference on human factors in computing
systems extended abstracts, 2022, pp. 1–7.

[12] Y. Dong, X. Jiang, Z. Jin, and G. Li, “Self-collaboration code generation
via chatgpt,” arXiv preprint arXiv:2304.07590, 2023.

[13] S. Barke, M. B. James, and N. Polikarpova, “Grounded copilot: How
programmers interact with code-generating models,” Proceedings of the
ACM on Programming Languages, vol. 7, no. OOPSLA1, pp. 85–111,
2023.

[14] R. Gozalo-Brizuela and E. C. Garrido-Merchan, “Chatgpt is not all you
need. a state of the art review of large generative ai models,” arXiv
preprint arXiv:2301.04655, 2023.

[15] A. Mastropaolo, L. Pascarella, E. Guglielmi, M. Ciniselli, S. Scalabrino,
R. Oliveto, and G. Bavota, “On the robustness of code generation
techniques: An empirical study on github copilot,” arXiv preprint
arXiv:2302.00438, 2023.

[16] J. Leinonen, A. Hellas, S. Sarsa, B. Reeves, P. Denny, J. Prather, and
B. A. Becker, “Using large language models to enhance programming
error messages,” in Proceedings of the 54th ACM Technical Symposium
on Computer Science Education V. 1, 2023, pp. 563–569.

[17] E. A. Barbosa and A. Garcia, “Global-aware recommendations for
repairing violations in exception handling,” in Proceedings of the 40th
International Conference on Software Engineering, 2018, pp. 858–858.

[18] G. B. de Pádua and W. Shang, “Studying the relationship between
exception handling practices and post-release defects,” in Proceedings
of the 15th International Conference on Mining Software Repositories,
2018, pp. 564–575.

[19] D. Sena, R. Coelho, U. Kulesza, and R. Bonifácio, “Understanding the
exception handling strategies of java libraries: An empirical study,” in
Proceedings of the 13th International Conference on Mining Software
Repositories, 2016, pp. 212–222.

[20] J. Zhang, X. Wang, H. Zhang, H. Sun, Y. Pu, and X. Liu, “Learning to
handle exceptions,” in Proceedings of the 35th IEEE/ACM International
Conference on Automated Software Engineering, 2020, pp. 29–41.

[21] Y. Gu, X. Han, Z. Liu, and M. Huang, “Ppt: Pre-trained prompt tuning
for few-shot learning,” arXiv preprint arXiv:2109.04332, 2021.

[22] X. Liu, K. Ji, Y. Fu, W. Tam, Z. Du, Z. Yang, and J. Tang, “P-
tuning: Prompt tuning can be comparable to fine-tuning across scales and
tasks,” in Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers), 2022, pp. 61–68.

[23] X. Chen, N. Zhang, X. Xie, S. Deng, Y. Yao, C. Tan, F. Huang,
L. Si, and H. Chen, “Knowprompt: Knowledge-aware prompt-tuning
with synergistic optimization for relation extraction,” in Proceedings of
the ACM Web Conference 2022, 2022, pp. 2778–2788.

[24] J. Liao, X. Zhao, J. Zheng, X. Li, F. Cai, and J. Tang, “Ptau: Prompt tun-
ing for attributing unanswerable questions,” in Proceedings of the 45th
International ACM SIGIR Conference on Research and Development in
Information Retrieval, 2022, pp. 1219–1229.

[25] N. Nashid, M. Sintaha, and A. Mesbah, “Retrieval-based prompt se-
lection for code-related few-shot learning,” in Proceedings of the 45th
International Conference on Software Engineering (ICSE’23), 2023.

[26] JavaDoc, “Java official sdk & jdk api documentation,” https://docs.
oracle.com/en/java/javase/17/docs/api/index.html, 2023.

[27] KPC, “Kpc replication package,” https://github.com/goodchar123/KPC,
2023.

[28] G. Fraser and A. Arcuri, “Evosuite: automatic test suite generation for
object-oriented software,” in Proceedings of the 19th ACM SIGSOFT
symposium and the 13th European conference on Foundations of soft-
ware engineering, 2011, pp. 416–419.

[29] Tutorialspoint, “Tutorialspoint,” https://www.tutorialspoint.com/
javaexamples/index.htm, 2023.

[30] JavaAPI, “The exception handling specification for
java.util.vector.get(int index),” https://docs.oracle.com/en/java/javase/17/
docs/api/java.base/java/util/Vector.html#get(int), 2023.

[31] ——, “The exception handling specification for java.util.vector.set(int
index, e element),” https://docs.oracle.com/en/java/javase/17/docs/api/
java.base/java/util/Vector.html#set(int,E), 2023.

[32] ——, “The exception handling specification for
java.lang.string.split(string regex),” https://docs.oracle.com/en/java/
javase/17/docs/api/java.base/java/lang/String.html#split(java.lang.
String), 2023.

[33] H. Li, S. Li, J. Sun, Z. Xing, X. Peng, M. Liu, and X. Zhao, “Improving
api caveats accessibility by mining api caveats knowledge graph,” in
2018 IEEE International Conference on Software Maintenance and
Evolution (ICSME). IEEE, 2018, pp. 183–193.

[34] X. Ren, J. Sun, Z. Xing, X. Xia, and J. Sun, “Demystify official api
usage directives with crowdsourced api misuse scenarios, erroneous
code examples and patches,” in Proceedings of the ACM/IEEE 42nd
International Conference on Software Engineering, 2020, pp. 925–936.

[35] beautiful-soup 4, “Beautiful soup 4,” https://beautiful-soup-4.
readthedocs.io/en/latest/, 2023.

[36] C. S. Xia, Y. Wei, and L. Zhang, “Practical program repair in the era of
large pre-trained language models,” arXiv preprint arXiv:2210.14179,
2022.

[37] H. Huang, M. Wen, L. Wei, Y. Liu, and S.-C. Cheung, “Characterizing
and detecting configuration compatibility issues in android apps,” in

https://docs.oracle.com/en/java/javase/17/docs/api/index.html
https://docs.oracle.com/en/java/javase/17/docs/api/index.html
https://github.com/goodchar123/KPC
https://www.tutorialspoint.com/javaexamples/index.htm
https://www.tutorialspoint.com/javaexamples/index.htm
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Vector.html#get(int)
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Vector.html#get(int)
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Vector.html#set(int,E)
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/Vector.html#set(int,E)
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html#split(java.lang.String)
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html#split(java.lang.String)
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/lang/String.html#split(java.lang.String)
https://beautiful-soup-4.readthedocs.io/en/latest/
https://beautiful-soup-4.readthedocs.io/en/latest/

2021 36th IEEE/ACM International Conference on Automated Software
Engineering (ASE). IEEE, 2021, pp. 517–528.

[38] Openai, “Gpt-3.5-turbo,” https://platform.openai.com/docs/models/
gpt-3-5, 2023.

[39] M. Harman, P. McMinn, J. T. De Souza, and S. Yoo, “Search based soft-
ware engineering: Techniques, taxonomy, tutorial,” Empirical Software
Engineering and Verification: International Summer Schools, LASER
2008-2010, Elba Island, Italy, Revised Tutorial Lectures, pp. 1–59, 2012.

[40] A. Panichella, F. M. Kifetew, and P. Tonella, “Automated test case
generation as a many-objective optimisation problem with dynamic
selection of the targets,” IEEE Transactions on Software Engineering,
vol. 44, no. 2, pp. 122–158, 2017.

[41] A. Arcuri and G. Fraser, “Parameter tuning or default values? an
empirical investigation in search-based software engineering,” Empirical
Software Engineering, vol. 18, no. 3, pp. 594–623, 2013.

[42] R. Singh and N. S. Mangat, Elements of survey sampling. Springer
Science & Business Media, 2013, vol. 15.

[43] J. L. Fleiss, “Measuring nominal scale agreement among many raters.”
Psychological bulletin, vol. 76, no. 5, p. 378, 1971.

[44] F. Wilcoxon, Individual comparisons by ranking methods. Springer,
1992.

[45] E. W. Weisstein, “Bonferroni correction,” https://mathworld. wolfram.
com/, 2004.

[46] D. Rai, Y. Zhou, B. Wang, and Z. Yao, “Explaining large language
model-based neural semantic parsers (student abstract),” arXiv preprint
arXiv:2301.13820, 2023.

[47] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[48] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy,
V. Stoyanov, and L. Zettlemoyer, “Bart: Denoising sequence-to-sequence
pre-training for natural language generation, translation, and comprehen-
sion,” arXiv preprint arXiv:1910.13461, 2019.

[49] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal,
A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language mod-
els are few-shot learners,” Advances in neural information processing
systems, vol. 33, pp. 1877–1901, 2020.

[50] C. Lemieux, J. P. Inala, S. K. Lahiri, and S. Sen, “Codamosa: Escaping
coverage plateaus in test generation with pre-trained large language
models,” in 45th International Conference on Software Engineering, ser.
ICSE, 2023.

[51] S. Kang, J. Yoon, and S. Yoo, “Large language models are few-shot
testers: Exploring llm-based general bug reproduction,” arXiv preprint
arXiv:2209.11515, 2022.

[52] Z. Liu, C. Chen, J. Wang, X. Che, Y. Huang, J. Hu, and Q. Wang, “Fill
in the blank: Context-aware automated text input generation for mobile
gui testing,” arXiv preprint arXiv:2212.04732, 2022.

[53] I. Singh, V. Blukis, A. Mousavian, A. Goyal, D. Xu, J. Tremblay, D. Fox,
J. Thomason, and A. Garg, “Progprompt: Generating situated robot task
plans using large language models,” arXiv preprint arXiv:2209.11302,
2022.

[54] W. Huang, F. Xia, T. Xiao, H. Chan, J. Liang, P. Florence, A. Zeng,
J. Tompson, I. Mordatch, Y. Chebotar et al., “Inner monologue: Embod-
ied reasoning through planning with language models,” arXiv preprint
arXiv:2207.05608, 2022.

[55] Openai, “Github copilot,” https://github.com/features/copilot, 2023.
[56] F. F. Xu, U. Alon, G. Neubig, and V. J. Hellendoorn, “A systematic

evaluation of large language models of code,” in Proceedings of the
6th ACM SIGPLAN International Symposium on Machine Programming,
2022, pp. 1–10.

[57] E. Nijkamp, B. Pang, H. Hayashi, L. Tu, H. Wang, Y. Zhou, S. Savarese,
and C. Xiong, “A conversational paradigm for program synthesis,” arXiv
e-prints, pp. arXiv–2203, 2022.

[58] B. Chen, F. Zhang, A. Nguyen, D. Zan, Z. Lin, J.-G. Lou, and
W. Chen, “Codet: Code generation with generated tests,” arXiv preprint
arXiv:2207.10397, 2022.

[59] Openai, “Introducing chatgpt,” https://openai.com/blog/chatgpt, 2023.
[60] T. Nguyen, P. Vu, and T. Nguyen, “Recommending exception handling

code,” in 2019 IEEE International Conference on Software Maintenance
and Evolution (ICSME). IEEE, 2019, pp. 390–393.

[61] X. Ren, X. Ye, Z. Xing, X. Xia, X. Xu, L. Zhu, and J. Sun, “Api-
misuse detection driven by fine-grained api-constraint knowledge graph,”
in Proceedings of the 35th IEEE/ACM International Conference on
Automated Software Engineering, 2020, pp. 461–472.

https://platform.openai.com/docs/models/gpt-3-5
https://platform.openai.com/docs/models/gpt-3-5
https://github.com/features/copilot
https://openai.com/blog/chatgpt

	Introduction
	An Empirical Study on Exception Handing for LLMs Code Generation
	Challenges of LLMs in Exception Handling (RQ1)
	Incomplete exception handling
	Incorrect exception handling
	Abuse of try-catch

	Prompt Engineering for Exception Handling (RQ2)
	General prompting
	Coarse-grained prompting
	Fine-grained prompting

	The Approach
	API Knowledge Base Construction
	Knowledge schema
	Knowledge extraction

	Kpc-based Code Generation
	Generating
	Checking
	Rewriting

	Experimental Setup
	Research Question
	Task Collection and Implementation

	Evaluation
	Efficiency of Kpc (RQ3)
	Method
	Result

	Effectiveness of Kpc (RQ4)
	Method
	Result

	User Study
	User Study Design
	Tasks and Procedure
	Participants
	Evaluation Metrics

	Result
	Correctness
	Time Consumption
	Usefulness and Interview

	Discussion
	Limitations of Kpc
	Code understanding
	Trade-off between efficiency and effectiveness

	Threats to Validity
	Internal Validity
	External Validity

	Related Work
	Large Language Model & Prompt Engineering
	Code Generation
	Exception Handling

	Conclusion
	Acknowledgements
	References

