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Abstract—When deploying Deep Neural Networks (DNNs),
developers often convert models from one deep learning frame-
work to another (e.g., TensorFlow to PyTorch). However, this
process is error-prone and can impact target model accuracy.
To identify the extent of such impact, we perform and briefly
present a differential analysis against three DNNs widely used for
image recognition (MobileNetV2, ResNet101, and InceptionV3)
converted across four well-known deep learning frameworks
(PyTorch, Keras, TensorFlow (TF), and TFLite), which re-
vealed numerous model crashes and output label discrepancies
of up to 72%. To mitigate such errors, we present a novel
approach towards fault localization and repair of buggy deep
learning framework conversions, focusing on pre-trained image
recognition models. Our technique consists of four stages of
analysis: 1) conversion tools, 2) model parameters, 3) model
hyperparameters, and 4) graph representation. In addition, we
propose various strategies towards fault repair of the faults
detected. We implement our technique on top of the Apache
TVM deep learning compiler, and we test it by conducting
a preliminary fault localization analysis for the conversion of
InceptionV3 from TF to TFLite. Our approach detected a fault in
a common DNN converter tool, which introduced precision errors
in weights, reducing model accuracy. After our fault localization,
we repaired the issue, reducing our conversion error to zero.

I. INTRODUCTION

Deep Neural Network (DNN) models, trained using a given
deep learning (DL) framework (such as PyTorch [1], Tensor-
Flow (TF) [2]), can be converted to a different DL framework
(such as Keras [3]). Common reasons for this conversion
include 1) deployment on resource-constrained environments
such as IoT devices, which may require lightweight DL frame-
works (e.g., TFLite), and 2) support for a wider set of features,
that allow more in-depth model modification and optimization,
such as explicitly defining forward propagation implementa-
tion. Conversion of DNN models between DL frameworks is
facilitated by automated conversion processes using tools such
as tf2onnx [4], onnx2keras [5], onnx2torch [6], and
MMdnn [7]. However, this conversion process can introduce
faults [8]–[11], which can make the converted models unde-
ployable or reduce performance on their target task [12], [13].

In order to mitigate this problem, we propose an automated
approach for fault localization and repair of faults introduced
by the DL framework conversion process. We focus on DL
framework conversion used in deployment of pre-trained im-
age recognition models, utilized for image classification tasks.

Authors, Ajitha Rajan and Nikolaos Louloudakis, would like to acknowl-
edge support received from funding sources, UKRI Trustworthy Autonomous
Systems Node in Governance and Regulation (EP/V026607/1) and Royal
Society Industry Fellowship, for this work.

Note that our methodology is agnostic to the DNN architecture
and can be applied to other tasks such as image segmentation.
Our approach detects faults introduced in model parameters,
hyperparameters, and the model graph, as the primary co-
efficients that define DNN model behaviour. The proposed
approach performs analysis and comparison against source
and target model parameters and hyperparameters, as well as
comparison of layer activations for inputs resulting in output
label discrepancies against the source and the target model.
Additionally, we explore potential discrepancies introduced
by graph transformations between the source and the target
model during the conversion process. Then, we propose a
set of strategies to mitigate conversion faults such as the
replacement of model parameters of the target model with
those from source, and applying graph transformations that
eliminate the error from the converted model. Finally, we
present an evaluation example of the conversion process for the
InceptionV3 model converted from TensorFlow to TFLite. Our
technique is able to detect precision errors in weights related to
convolutional layers introduced by the TFLiteConverter tool,
with value deviations of up to 0.01 between Source and Target,
which, although small, affected the model performance.

Overall, the main contributions of this paper are: 1) A novel
method to systematically localize faults in DL framework
conversion processes, and 2) repair strategies for said faults.

II. RELATED WORK

A number of studies have been conducted related to faults
introduced in the deployment process of DNNs. For instance,
a study of 3023 Stack Overflow posts built a taxonomy of
faults and highlighted the difficulty of DNN deployment [12].
Another study explores the effect of DNN faults on mobile
devices by identifying 304 faults from GitHub and Stack
Overflow [13], while other studies provide surveys on existing
contributions towards machine learning testing components,
workflow and application scenarios [14]. In addition, there
are works related to exploring the test oracle problem in the
context of machine learning [15], [16]. In terms of fault lo-
calization, DeepCover [17] attempts to apply a statistical fault
localization approach, focusing on the extraction of heatmap
explanations from DNN inputs. DeepFault [18] focuses on a
suspiciousness-oriented spectrum analysis algorithm in order
to detect parts of the DNN that can be responsible for
faults, while it also proposes a method for adversarial input
generation. DeepLocalize [19] attempts to detect faults in
DNNs by converting them to an imperative representation
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and then performing dynamic analysis on top of its execution
traces. Regarding fault localization in DL framework specif-
ically, CRADLE [20] tries to detect faults introduced by DL
frameworks by performing model execution graph analysis.
LEMON [21] leverages the metrics used by CRADLE for its
analysis to apply mutation testing.

Although the above works attempt to overcome fault local-
ization challenges for DNNs, none of them considers model
conversions as a factor of fault introduction in DNNs and,
therefore, no previous work explores this problem. How-
ever, several tools exist to ease the DL model conversion
process, including MMdnn [7], tf2onnx [4], onnx2keras [5],
onnx2torch [6], and tflite2onnx [22]. There are also some
native APIs for DL framework conversion to ONNX found
within PyTorch [1] and TFLite [2]. These tools are extensively
used, as they all have more than 100 stars on their GitHub
repositories. In addition, a recent study by Openja et al. [23]
highlights the challenges of the conversion process, while
our preliminary work [8], [24] explores the robustness of
DNNs against different computational environment aspects,
including DL framework conversions. However, the impact of
DL framework conversions on DNN model correctness is not
explored in-depth in the literature.

To the best of our knowledge, this paper is the first attempt
focusing on the error proneness, fault localization, and repair
of DL framework conversions for DNN models. We focus on
image recognition models as a a starting point, but our work
is applicable to DNNs used in other domains.

III. MOTIVATION

To observe the potential impact of DNN model conversions,
we conducted an initial evaluation using three widely used
image recognition models of varying size and architectural
complexity: MobileNetV2 [25], ResNet101 [26], and Incep-
tionV3 [27]. For each model, we used pre-trained versions
from official repositories of four different DL frameworks:
TensorFlow [2], TFLite [2], Keras [28], and PyTorch [1]. We
refer to the pre-trained model of each DL framework as the
Source model. As a result, we have 4 Source versions for
each of our 3 models. We then convert each Source model
to use a different DL framework; we refer to the converted
model as Target. To implement the conversion, we use tools
that convert the Source model either directly to Target, or
to the ONNX [29] format, a popular model representation
format that is designed to act as a common interchange format
between frameworks. Some DL frameworks, such as PyTorch
and TFLite, have native tools for this conversion; whereas for
others, such as TensorFlow, we leverage popular third-party
conversion tools like tf2onnx [4]. We then convert from ONNX
to Target using a number of widely used libraries, such as
onnx2keras [5] and onnx2torch [6]. Following the conversion
process, we perform pairwise comparison between Source
and Target model inferences using the ILSVRC 2017 object
detection test dataset [30], in order to detect discrepancies in
classification introduced by the conversion process.

Fig. 1. Pairwise comparison of output labels between Source and converted
Target models.

For each image of the dataset, we compare the output
labels of Target against Source to check if any errors were
introduced by the model conversion. The proportion of output
label dissimilarities between Source, Target pairs across all
images in the dataset is shown in Figure 1. As can be seen
from the empty grey cells, the conversion tool crashes in
10 out of the 36 conversions across the three DNN models,
indicating that the conversion process failed. This happened
due to compatibility issues between the conversion tool and
a given model architecture, or the Source or Target DL
framework. Additionally, we observe a further 10 cases where
the conversion succeeded without crashing, but the Target
model gave considerable label discrepancies in comparison
to the Source model (over 35%), with a maximum observed
discrepancy of 72% in the output labels when converting
the ResNet101 model from PyTorch to TF. The conversion
of TensorFlow models to Keras gives varying results across
models, with MobileNetV2 having a considerable amount of
dissimilarity (49%), ResNet101 having 4% dissimilarity, and
InceptionV3 leading to a crash. This points to weaknesses in
the conversion tool with certain model architectures. Finally,
for conversions between TF or TFLite to PyTorch no conver-
sion errors were observed, while when converting TF to TFLite
across all models we see relatively small discrepancies, 0-
10%, demonstrating a more reliable conversion. However, even
small discrepancies may have non-negligible impact when
these models are used in safety critical applications.

From Figure 1, it is clear that the conversion process is
error-prone and there is a need for a technique to localize and
fix faults introduced by DL frameworks converters. We discuss
our approach for fault localization and repair in Section IV.

IV. METHODOLOGY

The stages in our proposed approach for fault localization
and repair are shown in Figure 2. It starts by converting a given
model from Source to Target DL framework, then performs
inference over both models over an input dataset, compares
output labels to identify parts of the dataset which led to
different outputs, and finally performs a fault localization and
repair process where possible/appropriate. We describe the
fault localization and repair steps below.



Fig. 2. Fault Localization & Repair Pipeline.

A. Fault Localization & Repair

We start by examining the tools involved in the DNN
model conversion to identify if the fault is introduced during
conversion from Source to the ONNX format, or from ONNX
to Target. We then complement this analysis by examining
differences for three key DNN model architecture aspects:
1) Hyperparameters (such as kernel and batch size), 2) pa-
rameters (such as weights and biases), and 3) the model’s
graph structure (such as operations and their connections). We
describe these steps below.

1) Conversion Tools Analysis: Following the DNN model
conversion process, when discrepancies are observed between
the Source and the Target model, it is important to identify
which part of the conversion process was responsible. The
conversion process typically uses more than one tool, e.g., one
for conversion to ONNX format from Source, and another to
convert from ONNX to Target. We explore this over a subset
of the images that presented discrepancies between Source
and Target while also considering the intermediate ONNX
representation. In particular, we consider a subset of the
dataset inputs that presented different outputs between Source
and Target models. In addition, we perform inference using
the ONNX intermediate representation from the conversion
process, and compare the outputs against the Source and
Target. If the conversion process involves multiple steps, we
repeat the process for all intermediate steps, so that we can
better localize where the fault is introduced.

2) Parameter Analysis: A correct DNN model conversion
should result in a target model having the same parameters,
and producing the same output as the source model. However,
if for some reason the parameters are altered (e.g., due
to a precision error in the conversion process), this could
potentially affect the model’s correctness.

To detect this fault, we take the Source and Target model
variants, and extract their parameters (e.g., weights and bi-
ases). We then compare the parameters between model vari-
ants across layers of the same type (e.g., convolutions, bias
additions, etc), by computing mean(abs(Psource − Ptarget)),
where Psource , Ptarget are the parameters of the source and
converted target models, respectively. The value of the mean
difference is expected to be zero when the model parameters
are unaffected, and any other value indicates that there is a
difference across the parameters in a specific layer, which is
a potential cause for bugs.

3) Hyperparameter Analysis: Much like parameters, incor-
rectly converted hyperparameters are another potential source
of error. For example, we would expect for a convolutional
layer, the padding, strides, dilation, and other configurations
would remain unchanged during a conversion. However, a dif-
ference could indicate a potential source of error and is marked
for further evaluation in our fault localization approach.

4) Layer Analysis: To detect faults that occur on a specific
layer, we propose a layer-based dynamic analysis approach.
Using a small, indicative subset of 5 images from the dataset
that present output label discrepancies between Source and
Target models, we perform inference and compare per-layer
activations between the models. For each input, we compute
the mean of differences found across activations for each
layer. We then further examine the layers affected sequentially,
starting from the first layer and moving forward. We focus on
errors in the graph representation of that layer, as well as on
implementation details. In particular, we examine if a layer or
its graph neighbors are implemented in a different manner or
are using different but equivalent operations (e.g., reshape and
flatten) between the Source and Target model.

5) Fault Repair: Once a difference is detected, we attempt
one of the following options based on the location of the
difference for fault repair.

(a) For differences in model hyperparameters, weights, and
biases, the respective values from source can be replaced by
the target model. Since the conversion process should preserve
those values, then the replacement in the target model should
resolve the observed differences.

(b) For differences detected in layer activations, there are
a number of measures that can be applied. First, a set of
mappings can be applied in order to perform in-place re-
placement of parts of the graph that should behave similarly,
but differences in implementation (such as the selection of a
different layer type, or the addition of extra redundant layers)
could cause differences in layer outputs. For example, we
observed cases (e.g., MobileNetV2, PyTorch-to-Keras con-
version) where the flatten layer was replaced by a reshape
layer by the converter tools. We instruct a layer replacement
to the target based on the layer of the source model, while
adjusting tensor inputs and outputs to preserve model validity.
In addition, if there are extra nodes added close to the layer
affected, they could be modified and removed as an attempt
to eliminate errors. For instance, we observed the addition
of some padding layers to the target model for a number of
conversions (e.g., MobileNetV2, TF-to-PyTorch conversion).
A potential fix is to simply remove this node.

Our current approach has limitations for cases where whole
sub-graphs in the Target model have completely different
structure than the Source. A replacement in this scenario is
non-trivial and is subject to consideration for future work.
Once a fix is applied, inference is performed with the target
model against the inputs causing discrepancies, and the behav-
ior is monitored. If an improved result is detected for some or
all of the images, then the fix is considered successful.



B. Implementation Details

Our methodology is implemented using Apache TVM [31],
a cross-platform machine learning compiler framework. We
use TVM in order to build and perform inference for the
Source and Target models, while we extract the graph pa-
rameters, graph structure provided by each model for weights,
biases, and hyperparameters utilizing the model static param-
eters and graph description metadata generated across the
build process. We also use ONNXRuntime [32] to perform
intermediate representation inference. In addition, we utilize
the TVM Debugger to extract layer activations upon inference,
as well as set specific inputs and extracting targeted outputs
from hidden layers. The TVM debugger was also used in order
to achieve model repair strategies, such as replacing weights,
biases, and hyperparameters. For the graph modification part,
we utilized the ONNX [29] API in combination with ONNX-
Modifier [33] in order to apply graph modifications. We also
used Netron [34] for DNN graph observation purposes.

C. Preliminary Evaluation

As an initial case study, we consider the conversion of
InceptionV3 using TensorFlow (TF) as Source and converting
it to TFLite as Target. The conversion involved two utilities,
the native API of TFLite (TFLiteConverter), and tf2onnx. We
observed label differences between Source and Target models
for 4% of the input images (240 out of 5500 images). We were
interested in this particular case study because the conversion
error is low but still present in a small number of images.
This “subtle” failure is of particular interest for safety critical
applications, where edge case behavior is more important.

For fault localization, we start by performing an analysis of
the conversion tools on the images showing label differences.
As seen in Table I, for three sample images label differences
occur when converting models from TF to TFLite, but not
in the conversion to ONNX. As a result, we find that the
TFLiteConverter is the problematic part of this particular
conversion process. We perform further investigation of this
tool in the next steps.

TABLE I
TOP-1 INFERENCE OF IMAGES FOR INCEPTIONV3 USING TF,
INTERMEDIATE ONNX AND TFLITE CONVERTED FROM TF.

Image ID TF TFLite (TF) ONNX

Image 1 drum drum drum

Image 2 wallet purse purse

Image 3 wallaby It. greyhound It. greyhound

We then proceed with parameters and layers analysis be-
tween Source and Target to further examine the effects and
the potential reasons for the problem. We consider an image
presenting no discrepancies and two images presenting minor
and major label discrepancies (by calculating and comparing
Kendall’s Tau coefficient [35] for the top-5 inference labels).
We present the results in Figure 3, where the Parameters

Fig. 3. Layer-wise evaluation of the differences between InceptionV3 model
sourced from TensorFlow, and converted to TFLite. Parameters shows the
mean difference between their weights and biases for convolutional and bias
addition layers. Image 1, Image 2, and Image 3 show models’ differences in
activations for two inputs across Source and Target models.

line indicates the mean of differences per-layer (x-axis) in
parameters for two types of layers, convolutions and bias addi-
tions. The remaining lines depict the differences in activations
(mean of tensor values comparison) for each layer between
Source and Target. Image 1 presented no discrepancies, Im-
age 2 presented small discrepancies, and Image 3 presented
major discrepancies, measured using Kendall’s Tau coefficient.
We observe layer 2 started presenting discrepancies between
Source and Target for all images under test, affecting the
model early in the process. Additionally, there is a spike in the
difference observed in layers 170 onwards for Image 3 (which
presented large discrepancies between Source and Target). We
examined if the cause of the discrepancy was errors introduced
in the model weights while using TFLiteConverter in the con-
version process. In particular, we performed a manual Source
and Target model parameters inspection using Netron [34],
which confirmed the fault localization finding, as we observed
precision errors in the generated ONNX graph from Source.

In order to fix the error, we replaced the model weights of
the Target model with those from the Source, and performed
inference against the subset of images presenting discrepancies
between the models. The outputs of the updated Target were
identical to the original Source, resolving the issue, and
proving its cause.

V. CONCLUSIONS AND FUTURE WORK

We presented a novel fault localization approach for er-
rors encountered during DL framework conversion in image
recognition models. It focuses on key DNN model elements
such as parameters, hyperparameters, and graph architecture.
We also propose strategies to repair the detected errors, such
as correcting corrupted model weights. As an example, we
examined InceptionV3 when converted from TF to TFLite,
which resulted in discrepancies for a small fraction of the
input images. We used our approach to localize the conversion
bug and fix it. As future work, we aim to evaluate our
approach against all conversion tools in Figure 1 and other
image recognition models. We will also apply it to other DL
tasks such as object detection. Finally, we plan to expand our
fault repair strategies to address conversion errors that cause
significant changes in Source and Target model graphs.
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